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reciprocal mass tensors reveals that the Fermi surface is 
disk shaped. 

CONCLUSIONS 

An ellipsoidal fit has been made to the Fermi surface 
of the new carriers. The fit is in all likelihood a distortion 
of the true surface. Analysis beyond the data given in 
Table I should await high-field dHvA measurements. 

I. INTRODUCTION 

TH E renewal of interest in the anharmonic 
properties of solids during the last few years 

draws attention to the problem of determining the 
force constants which appear in the theory of lattice 
dynamics. For the case of central forces, the inter
atomic potential can be characterized by two parame
ters, the well depth and the equilibrium interatomic 
separation. These are determined by measurement of 
the sublimation energy of the crystal and of its lattice 
spacing, respectively. The force constants are then 
obtained directly by differentiation of the interatomic 
potential with respect to the atomic separation. How
ever, it has been shown1 that a potential, such as the 
Mie-Lennard-Jones (w,6) potential, does not give very 
good agreement with the experimental data available 
for the inert gas solids for any of the values m= 10, 11, 
12, 13, 14. The parameter m is a measure of the steep
ness of the repulsive part of the potential well. I t has 
been suggested1 that a third term might reasonably be 
added to the Mie-Lennard-Jones potential. If this 
term represents the dipole-quadrupole contribution to 
the van der Waals energy, the interatomic potential 
will have the form 

0 (r) = Ar~m+Br-*+Cr-s, 

where r is the interatomic separation. Since there are 
now three parameters apart from m in the expression 
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for <p(r), it is necessary to have experimental data in 
addition to that mentioned above in order to determine 
the third parameter. Though difficult to obtain in the 
case of the inert gas solids, the elastic constants are an 
obvious choice for this purpose. Therefore, it seems 
worthwhile to set forth here relations between the 
elastic constants and the force constants. Furthermore, 
in obtaining these relations we ascertain the number of 
independent force constants which arise in the lattice 
model under consideration.2 This information is im
portant when one is considering the possibility of 
extending a nearest neighbor, central force theory to 
noncentral forces, and further neighbors. I t must be 
emphasized that the force constants are derivatives of 
the potential energy evaluated at the minimum of the 
potential energy, and that in the relations which we 
obtain, the elastic constants are also appropriate to 
the configuration which corresponds to the minimum 
of the potential energy. Since dynamic effects are 
excluded, the relations which we obtain correspond to 
elastic constants at the absolute zero of temperature in 
the approximation for which there is no zero-point 
motion. In order to determine these elastic constants 
from the experimental data, the zero-point energy of 
the lattice must be taken into account and the temper
ature dependence of the elastic constants must be 
determined. This problem will not be considered here. 

2 The independent force constants for fee and bec lattices with 
nearest neighbor interaction have also been obtained by G. 
Leibfried and W. Ludwig in Solid State Physics, edited by F. Seitz 
and D. Turnbull (Academic Press Inc., New York, 1961), Vol. 
12. 
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The symmetry properties of a lattice are used to relate the second and third order force constants to the 
elastic constants of the lattice and to ascertain the number of independent force constants. Explicit relations 
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are obtained for central forces in these two lattices. 
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In Sec. I I we summarize the work of Leibfried and 
Ludwig3 and express the elastic constants in terms of 
combinations of the force constants which have the 
appropriate symmetry properties. In Sec. I l l we con
sider the case of a face-centered cubic lattice with 
nearest neighbor interaction and in Sec. IV we obtain 
the corresponding relations for the body-centered cubic 
lattice with nearest and next-nearest neighbor inter
action between atoms. The special case of central 
forces in these two lattices is set forth in Sec. V. 

II. GENERAL SYMMETRY CONSIDERATIONS 

In this section we summarize the work of Leibfried 
and Ludwig3 in which the restrictions imposed on the 
force constants by the requirements of symmetry are 
used to express the elastic constants in terms of appro
priate combinations of force constants. 

The energy density due to a homogeneous deforma
tion Vik is given by 

1 
w = E CikVik-i— E C%k,jiVikVji 

ik 2 ! ikjl 

1 
H E Cik,jl,rsVikVjiVrS-\ , (1) 

3 I ikjlrs 

where Vik is defined by 

2Vik=vik+vki+Y,jJ VjiVjk, 

and va is defined by 

Yim is the ith coordinate of the lattice point m and Xim 

is its mean position. Invariance of the energy density 
under rotation of the crystal is ensured since (Vik) is 
zero for pure rotations.4 The Cikji,... are the elastic 
constants and are symmetric with respect to interchange 
of pairs of indices ik, jl, • • • and with respect to inter
change of the members of a pair i, k. 

In terms of the Vik, Eq. (1) becomes 

u=Y^CikVik~\— E [Cik,ji-\-Cki§ij]vncVji 
ik 2 ! ikjl 

i 2-r \J^ik,jl,rs I ^ik,lsOjr~i~^ksjl^ir"T"Ckl,rs^ijj 
3 ! ikjlrs 

XvikVjivrs-\ . (2 ) 

When we expand the potential energy of the lattice 
^(r^r 2 , - • -rm , - • •) in terms of the derivatives of the 
potential, we obtain 

3 G. Leibfried and W. Ludwig, Z. Physik 160, 80 (1960). 
4 G. Leibfried, in Handbuch der Physik, edited by S. Fliigge 

(Springer-Verlag, Berlin and Gottingen, Heidelberg, 1955), Vol. 
VII/I, p. 238. 
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H Hm,n,P,ij,k 3>ijkmn»qimqjnqk
p-\ f, (3) 

3! J 

where $ij...mn'" = dv$/drimdrjn..., the ^th-order force 
constant is evaluated at the mean positions, Xim, of the 
lattice points, V is the volume of the crystal and 

We can define quantities Sikji,... according to 

1 

V m,n, • • • i,i,' • • 

so that Eq. (3) becomes 

1 
^ = E SikVik~\— E SikjiVikVji 

ik 2 ! ikjl 

-\ E Sik,jl,rsVikVjlVrS-i . ( 4 ) 
3 ! ikjlrs 

By comparing Eqs. (2) and (4), we can express the C**,... 
in terms of the Sik,.... However, for a finite lattice the 
contribution to Sik,... from points in the surface is of 
the same order as that from the interior points, so 
further constants (?#,... are introduced for which the 
surface effects are negligible. These constants are 
defined by 

^ ^ ij,kl== *J ik,jl\^il,jk 

1 
= - Z *«"" ,(*V»-.X'*»)(Xi°-.Xim) , (5a) 

V mn 
and 

^ ij,rs,kI — *Jik,jl,rs I *Jil,jk,rs 

1 
= - £ #«,»»»(x.p-x.-)(z»»-x»») 

V mnp 
X ( X * n - X z m ) . (5b) 

For an ideal lattice, translational symmetry requires 
that 

d) . . m n • • • — <J).. m+h n+h• • • 

where h is a lattice vector, in which case the (?#,... 
depend on the relative separation of the lattice points. 
This means that the sums in Eqs. (5) can be carried 
out for an ideal lattice neglecting the contribution from 
points in the surface. Then Eqs. (5) become 

2<?*,w= - (1 /7 . ) E n *</>»X*nXia, (6a) 



24 R O S E M A R Y A . C O L D W E L L - H O R S F A L L 

2£*>..*i= - (1/F.) E n P ̂ >°^X sPX f c
nX z

a , (6b) 

where Vz (=V/N) is the volume per particle of the 
lattice. 

Using Eqs. (2), (4), and (5) and the symmetry 
properties of the elastic constants we obtain the 
following relations: 

{sikjl— C ij,kl~T~ C kj,il 0 ifc.j'Z ^kl^ij 

—Cu8kj-{-Cji8ik, (7) 

(-"jfc.yj.rs— O ij,rs,kl~T~ ^kj,rs,il ^ik,rs,jl ^kl,rs^ij ^il,rs^kj 

+ C jl,rsbik — \[2C iktls-\~C M,ks-\-C is tkl]fijr 

\^2\S^js,kl ^jl.ksjPir 
Jrh[Cu,js~ Cis,ij~y>kr> (8) 

III. RELATIONS FOR THE FACE-CENTERED 
CUBIC LATTICE WITH NEAREST 

NEIGHBOR INTERACTION 

First of all we need to know the independent force 
constants for the lattice model under consideration, 
namely, for a face-centered cubic lattice with nearest 
neighbor interaction.2 

The second-order force constants are of two types, 
$ij00 and $ij0n, where n is a nearest neighbor lattice point 
to the origin 0. When the independent components of 
$ij0n have been obtained for one value of n, all other $# 0 n 

are obtained by the appropriate symmetry operations 
which take n over all the nearest neighbor lattice points 
in a fee lattice. Since the vector 0 is invariant with 
respect to interchange of =b#, ±y and ± 3 , the in
dependent components of <£i/° are easily obtained. 
The vector n = l = (1,1,0) is invariant with respect to 
interchange of x and y and with respect to reflection in 
the x-y plane. These considerations yield the independ
ent components of <£ -̂0n. The results are given in Table I. 
The nearest neighbor vectors are expressed in units of 
Co/2, where #o is the lattice parameter. 

The restriction to nearest neighbors means that there 
are only three types of third-order force constant to 
consider, 

$ijk
m, $ ^ 0 0 p , and $; i fc

0nP, 

where n and p are nearest neighbors to the origin and 
to each other. The points 0, n, p form an equilateral 
triangle which is typical of the close-packed structure 
therefore all other <i>#fc0np are obtained by applying the 
appropriate symmetry operations to the original tri
angle. In order to obtain the independent components 

TABLE I. Second-order force constants for fee lattice. 

TABLE II . Third-order force constants for fee lattice. 
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of the third-order force constants, one must use the 
symmetry properties of the $ # . . . m n " \ I t is clear from 
their definition in Eq. (3) that the $ij...mn'" possess 
the following properties: 

$ t > . . m n " -= ( - - ! ) ' $# . . . -

(9a) 

(9b) 

where v is the order of the force constant. Also, they 
are invariant under translation by a lattice vector. 
These properties and the considerations which applied 
to the second-order force constants yield the independ
ent components of <£^0 0 p and <£;y&0np. The results are 
given in Table I I . I t is immediately obvious from 
Eq. (9b) that $ijk

m is zero. 
We can reduce the number of independent constants 

still further by use of the relation which expresses 
translational invariance of the crystal as a whole, viz., 

E p * ^ 0 n p = 0, (10) 

and the requirement that the expression 

£ p ̂ iJk^X^+^^r+^k^djr (11) 

be symmetric in k, r, which is the condition for rota
tional invariance of the crystal as a whole.3 From Eq. 
(10) we obtain 

and 
E p $ 3 i 3 0 1 p = € 2 - T 2 + 2 ( £ 3 - 7 3 ) = 0, (12) 

Zp<S>2i201p = 5 2 - f t + 2 ( f o - r 3 ) = 0. ( 1 3 ) 

The symmetry requirement Eq. (11) yields the following 
relations: 

(14) 

for i=k=j=l, r=2: 

[—a2+02— 2 (0:3+73) ] X 0 = 271, 

for i—k—\, j=r—3: 

[e2+2ft+273+2f3]Xo=a-i- /3i , (15) 

for i=l, k = 2, j=r=3: 

C - 7 2 + 2 f t - 2 5 3 - 2 7 ? 3 ] X o - 7 i (16) 
where 

Go/2 = X0 . 

Thus there are seven independent third-order force 
constants. 
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(17) 

Using the Voigt notation, the elastic constants for a 
lattice with cubic symmetry are Cm, Cm, Cm, Ciu, Ci66, 
and C456 which we can express according to Eqs. (7) 
and (8) as follows: 

Cm— Cn.ii.ii—3cn, 

Cl l2=Ol l ,22 , l l " - -£ l2 , 

Cl2Z~ 2Cl2,33,12— Cll, 33,22+^12, 

^144= 2Cl2 ,23 ,13~ Cll,23,23~" C\2, 

Cl66 = CU,12,12 — CI2—2CQQ, 

^456= : C33,12,12"~ ^66, 

and 

Cn= C 11,11—Ci, 

Cl2= 2C 12,12— C l l , 2 2 + C i , 

^44— C 2 2 . 3 3 - Ci. 

From Eq. (6a) and Table I we find that 

(18) 

-Fa<?1 1 ,22=2(a1+ft)X„2 , 

- F , C 1 2 , i 2 = 2 7 l X 0
2 . 

(19) 

The dj ,rs,ki are obtained from Eq. (6b) and Table I I 
and are as follows: 

- F , C 1 1 , 1 1 , 1 1 = - 4 ( a 2 - 2 a 8 ) X o 3 , 

-V.Cu.n.n= - 2 0 3 , - 4 0 , + 2T3)XO3 , 

- F ^ 1 2 , 3 3 , 1 2 = 4 ( 6 3 + 5 3 ) X o 3
) 

- F 2 ( ? 1 1 , 2 2 , 3 3 = 2 ( 4 ^ 3 - 2 f 3 - 7 2 ) X o 3 , (20) 

— Vi€ll,12,12= — 2(a 2 +2a3)Xo 3 , 

- F ^ S 3 , 1 2 , 1 2 = - 2 ( T 2 - 2 f 3 ) X o 3
) 

- F , < ? 1 2 , 2 3 , 1 3 = - 2 ( € 2 - 2 T 3 ) X O 3 . 

Thus, we can express the elastic constants in terms of 
the nearest neighbor force constants using Eqs. (17) 
to (20), and we obtain 

- Vzcln= - 4 ( a 2 - 2 a 3 ) X 0
3 - 12^1Xo2-3F,c1 , 

-Vzcin= -203 2 -4 /3 3 +2 7 3 )X o
3 

- 2 ( 2 T l - a i - / 3 i ) X o 2 + F 2 C l , 

-F 2 c 1 2 3 =C8(6 2 +5 3 ) -2 (4^3 -2 f 3 -72 ) ]X 0
3 

+ 2 ( 2 7 i - a i - f t ) X o 2 - F . c 1 , 

-F . C l 44=2(4fo-2f3-72)Xo 3 

- 2 ( 2 7 l - a 1 - ^ 1 ) X 0
2 + F 2 c 1 , 

(21) 

- F z c 1 6 6 = - 2 ( a 2 + 2 a 3 ) X 0
3 

- 2 ( 2 7 l + a 1 + / 3 1 ) X 0
2 - F . c 1 , 

- 7.C4M- - 2 ( 7 2 - 2 r 3 ) X o 3 - 2 ( a 1 + / 3 1 ) X 0
2 - F . c 1 . 

The elastic constant C\ is zero for vanishing external 
stresses, 

TABLE III. Second-order force constants for bcc lattice. 

(1,1,1) 

(2,0,0) 

05 
05 
ai 
0 
0 

CX5 

05 
0 
07 
0 

05 
« 6 

0 
0 
07 

IV. RELATIONS FOR THE BODY-CENTERED CUBIC 
LATTICE WITH NEAREST AND NEXT-NEAREST 

NEIGHBOR INTERACTIONS 

Since the body-centered cubic lattice is not <& close-
packed structure, we shall take into account next-
nearest as well as nearest neighbor interactions between 
atoms. 

There are two types of second-order force constant 
to consider, 

< V ! and <V5 , 

where 1= (1,1,1) and 5 = (2,0,0). The other < V n are 
obtained by the appropriate symmetry operations. The 
invariance of 1 with respect to interchange of x, y, and 
z yields the independent components of $ij01. The in
dependent components of $#06 are obtained by requiring 
invariance with respect to interchange of ± y and zLz. 
These results are shown in Table I I I . 

Similar considerations together with the symmetry 
properties of the <£^...mn"* given in Eq. (9) yield the 
independent components of <&ijkm and ^A; 0 0 5 . The only 
other type of third-order force constant is ^-fc015. This 
is invariant with respect to interchange of y and z. 
Further restrictions on <£>^015 are obtained by the 
requirement of translational symmetry, e.g., 

*, ijk = $ , i f c -5 1-5 0 = j D _ x [ ^ i . 0 1 5 ] ? 

where ZLX is the operator which changes x to —x. 
These results are shown in Table IV. 

The number of independent constants is further 
reduced by use of the conditions given in Eqs. (10) and 
(11). Thus, Eq. (10) gives 

E p * i 2 i 0 1 p = T 4 - f 3 4 - a 8 + / 3 8 - T 8 ~ r 7 8 + f 8 = 0 , (22) 

and 
Z P < W 5 l ) = f36-T6+478=0. (23) 

TABLE IV. Third-order force constants for bcc lattice. 

^ • & 0 n P 3W*0nP <M0nP 

«4 74 74 04 04 &i 04 S4 04 
(0,0,0) (1,1,1) /34 04 64 74 « 4 74 54 04 04 

04 54 04 §4 04 04 74 74 «4 
ce6 0 0 0 06 0 0 0 06 

(0,0,0) (2,0,0) 0 06 0 T 6 0 0 0 0 0 
00 06 0 0 0 T 6 0 0 
0 as as <*8 0 0 as 0 0 

(1,1,1) (2,0,0) 08 78 58 ~ 7 8 «8 *?8 " 5 8 VS fs 
08 <>8 78 —58 f8 978 ~ 7 8 V8 *8 
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The symmetry requirement given in Eq. (11) yields the 
following relations: 

for n = l , i=j=k=l, r=2: 

^4-a4-3a8-78+2e8+778=2/35Xo-1 ; (24) 

for n = l , i = k=l, j=2, r=3: 

- / 5 4 +54-«8~78-25 8 +7 7 8+2f 8 =^Xo- 1 ; (25) 

for n = 5 , i=r=l, j=k = 2: 

-276-40=8+478= ( a y - ^ X o - 1 . (26) 

Thus, there are nine independent third-order force 
constants. Using Eq. (6a), and Table I I I we obtain the 
following expressions for the dj,ki'-

~F,C 1 1 ) 1 1 = 4(«5+a7)Xo2, 

-F,C1i )22=4(a5+/37)Xo2 , 

-F ,C 1 2 , i 2 =4&Xo 2 . 

The elastic constants dj are then obtained from Eq. 
(18). We find that 

» F ^ 1 1 = 4 ( a 5 + « 7 ) X o 2 + F 2 c 1 , 

- F ^ 1 2 = 4 ( 2 / 3 5 - a 5 - f t ) X o 2 - 7 * i , (27) 

- 7 * 6 6 = 4 ( a 5 + / 3 7 ) X o 2 + 7 * i . 

The third order Cij,rs,ki are obtained from Eq. (6b), 
and Table IV, and are given by 

-VzCn,ii,u= -4(a 4+2a 6+26 8 )Xo 3 , 

- 7.^1,22,11= - 4 ( ^ 4 + a 8 - 4 f t + 3 7 8 + 7 7 8 ) X o 3 , 

- F2C12j33)i2= -4(54+458)Xo3 , 

- V3Cu,M,22= - 4 ( ^ 4 + a 8 + 3 7 8 + ^ 8 " 4 f 8)Xo3, 

-F ,Cn ) i 2 , i2=-4 (a4-2e 8 )Xo 3 , 

- VzCw,i2,i2= -4 (^ 4 +ce 8 -78-3^ 8 )X 0
3 . 

Then, using Eqs. (17), (27), and (28), the following 
relations are obtained for the elastic constants c^h: 

- F.ci i i= -4(a 4 +2a 6 +2e 8 )Xo 3 

- 1 2 ( a 5 + a 7 ) X o 2 - 3 7 * 1 , 

- F * n 2 = -4 (^4+a8-4 /58+3 7 8+^)Xo 3 

- 4 ( 2 / ? 5 - a 5 - £ 7 ) X 0
2 + 7 * i , 

- F*i23=-4(25 4+85 8 - /3 4 -o: 8 -378-t78+4r8)Xo 3 

+ 4 ( 2 f t - a 5 - / ? 7 ) X o 2 - F * i , 

- F * i 4 4 = -4(/34+a8+378+r78-4f8)Xo3 

- 4 ( 2 £ 5 - a 5 - / 3 7 ) X o 2 + 7 * i , 

— 7*166= -4 (o :4 -2e8 )Xo 3 

- 4 ( 2 / 3 5 + a 5 + / 3 7 ) X c ? - 7 * i , 

— 7*456= "-4( /3 4 +Q:8—7S—3*7 8 )Xo 3 

-4(a5+^)X0
2-7*1 . 

V. CENTRAL FORCES 

For the case of central force interaction between 
atoms the number of independent force constants is 
considerably reduced. Since 

$ = J E m n < K | r m - r n | ) , 

d 8 0( | r m —r n | ) 
$Ukmn*=- - = 0 if m ^ n ^ p . 

(30) 

(29) 

dX^dXfdXk* 

Thus, in the fee lattice we have 

a 3 = f t = 7 3 = 5 3 = €3=773 = ^ 3 = 0 , (31) 

and in the bec lattice, 

a8 = 08 = 78=< 58= €8 = l?8 = f 8 = 0 . (32) 

The force constants which remain are of the form 

/ l 3 3 \ 
< £ ^ h = X * X * X W - * ' " ( r ) - - * " ( r ) + - ^ ' ( r ) ) 

+ (Xi%k+X*dH+XkHij) 

x ( - 0 " ( r ) - - * ' ( r ) \ (33) 

and 
/ I 1 \ 1 

< V * = -XpXM -<j>ff{r)—^{r) )—<j>f(r)Sih (34) 

where r is the length of the vector h and <£'(r), etc. are 
derivatives of <j>(r) with respect to r. 

Using Eq. (31), the elastic constants for the face-
centered cubic lattice simplify to the following 
expressions: 

- 7 * m = -4a 2 Xo 3 -12/3 iXo 2 -37*i , 

- 7 * n 2 = - 2 f t X o 3 - 2 ( 2 T i - a i - / ? i ) X o 2 + 7 * i , 

- 7*i23= 2T2Xo3+2 (2 7 i - a i - - /3 i )Xo 2 - Vzch 

- 7 * H 4 = - 2 7 2 X o 3 - 2 ( 2 7 i - a i - f t ) X o 2 + 7 * i , 

- 7 * i 6 6 = - 2 a 2 X o 3 - 2 ( 2 7 i + a i + / 3 i ) X 0
2 - 7 * i , 

- 7 * 4 5 6 = - 2 T 2 X o 3 - 2 ( a i + 0 i ) X o
2 - 7 * i . 

Also, from Eq. (16) we have 

— 7 2 X 0 = 7 1 ; 

therefore, we find that 

6 l 2 3 = ^ 4 5 6 = "~"C\U. 

Using Eqs. (33) and (34), the independent force 
constants are expressed in terms of the derivatives of 
4>(r) evaluated at r = a0/v2 as follows: 



a2 = - . 
2vlL 

R E L A T I O N B E T W E E N 

3 / 1 

7 2 = - — < 

rv2l_ 

*'"(f)+-(*"(f)--*'(f))], 

*"(r) —*'(r)], 

1 
a i = <£'(f) 

r 

7 i = - ^ " ( O - - 0 ' ( f ) ) . 

(36) 

E L A S T I C C O N S T A N T S 

74 = (3 4, 

76 = 06, 

(04-a4)Xo=2/36 , 

(54-/34)Xo=/36, 
— 275X0=0:7—j37. 

Then we have 

Cl23=C466=Cl66, 

Cll2=Cl44-

Using Eqs. (33) and (34) we obtain 

27 

(39) 

(40) 

a4= 
L.3V3 rv3A r / J W l 

(41) 

Then substituting these expressions into Eqs. (35) 
and putting —Ci=p, the external pressure, we find 
that the elastic constants are related to the force 
constants of a fee lattice with nearest neighbor central 
force interaction between atoms by 

l r 3 9 - 1 
cm=-\ <j>'"{r)—<f>"{r)—4>'(r) \-3p, 

v2L r r2 J 

l r 3 11 -1 

2V2L r r* J 

c166=— [V"(r)—*"(r) — * ' W 1 - ^ 
2v2L r r2 J 

(37) 

c i 2 3 = - ( 4 / r 2 v 2 > ' ( r ) - / > . 

In the body-centered cubic lattice, use of Eqs. (32) in 
Eqs. (29) yields 

- 7 ,Ciu= - 4 ( a 4 + 2 a 6 ) X 0
3 - 12(a6+«7)X0

2-3FzCi, 

- F2cn2= -404Xo 3 -4 (2 f t - a 6 -07 )Xo 2 +F 2 c 1 , 

-F 2 c 1 2 8 =-4(26 4 - / J4 )Xo 3 

+ 4 ( 2 ^ - a 6 - / 3 7 ) X 0
2 - F 2 C i , (38) 

- y s c 1 4 4 = - 4 0 4 X o 3 - 4 ( 2 f t - a 6 - 0 7 ) X o
2 + F 2 c 1 , 

- F.ci66= -4a4X0
3-4(2/36-f-a5+/37)Xo2- V2cu 

- Fac466= - 4 0 4 X o 3 - 4 ( a 6 + 0 7 ) X o
2 - F.ci, 

and Eqs. (22)-(26) reduce to the following: 

/ 3 4 = [ ( l / 3 v 3 > " ' M ] ^ n , 

« 5 = - * [ * " « + ( 2 / r ) * ' ( r ) ] W l J 

05=-IC*"W-(iA)^»'W]teri, 

a»=C*" '(r)]r«», 

0 ,= [ ( l / r ) * " ( r ) - (l/r2)<*>'(r)]r_r2, 

« 7 = - ! > " W ] r - , - 2 , 

/ 3 7 = - [ ( l / ^ ' ( r ) ] r = r 2 , 

where fi is the nearest neighbor separation and r2 is 
the next-nearest neighbor separation. Finally, we ex
press the elastic constants of the body-centered cubic 
lattice in terms of derivatives of the central potential 
as follows: 

c i , i = — y " ( r , ) — - * " ( r 0 -<S>'(n) 
3v3 v3>! r M 

6 
+2<t>'"(r2) —<j>"(r2)-3p, 

n 

cn2=-—j>'"(rx)——*"(fi) 
3v3 V3>i 

* » = — * ' " ( f i ) - — - * " ( ' i ) 
3V5 v ^ 

4 2 
(42) 

fa" 

2 2 
-^'(n)—4>'(r*)-p-

r&3 r2
2 


