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The effect of three-body clusters on the binding energy of nuclear matter is studied. An attempt is made 
to treat all such clusters of the third order as self-energy diagrams and to include their effect into the single-
particle energies, thereby improving the convergence of the Goldstone expansion considerably. For this 
purpose, an expression for off-diagonal reaction matrix elements is derived. One of the consequences of this 
procedure is that, to a good approximation, the contribution of all the third-order diagrams together is equal 
to that arising from just the even "/" states of the simplest of these diagrams. Many of the arguments and 
approximations used are based on the previous paper of this issue by Bethe et at. 

I. INTRODUCTION 

THE Goldstone1 linked-cluster expansion for the 
binding energy of nuclear matter is derived using 

a total Hamiltonian 

where 
H=H0+HU 

i<j i 

Vij being the two-particle potential between the pair ij, 
and Ui being the single-particle self-consistent potential 
of the ith nucleoli. 

With the help of the Brueckner reaction matrix 

G=v~v(Ho-EQ)-lQG, (1) 

where Q= operator projecting onto states above the 
Fermi sea and E0= unperturbed energy of the filled 
Fermi sea, we can condense these diagrams into those 
involving only G or U interactions. It was shown2 that 
the convergence of the resulting series could be con
siderably improved by adopting a suitable choice of the 
single-particle energies Ui. Such convergence is clearly 
desirable, as it renders the use of just the first-order 
diagrams to determine the binding energy more exact. 
For a proper choice of Ui, the diagrams involving "U" 
interactions should cancel as much as possible of the 
other diagrams. In effect, this corresponds to including 
the effect of higher order terms into the first-order 
diagrams. 

The most recent, and perhaps the best such choice is 
made by the recent work of Bethe, Brandow, and 
Petschek.3-4 Their "reference spectrum" for particle 
energies is so derived that the diagrams in Figs. 1(a), 
1(b), and 1(c) together vanish on the average. The 
reason for their picking Fig. 1(b) and Fig. 1(c) is that 
among the third-order diagrams (which would provide 

* Supported in part by the joint program of the Office of Naval 
Research and the U. S. Atomic Energy Commission. 

1 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957) 
2 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 

(1960). 
3 H . A. Bethe, B. H. Brandow, and A. G. Petschek, preceding 

article [Phys. Rev. 129, 225 (1963)]. 
4 From here on referred to as BBP. 

the largest correction to Brueckner's first-order ap
proximation to the binding energy, there being no 
second-order diagrams), these are the only ones that 
look like self-energy diagrams. In other words, the 
interaction G^ with the hole "n," can be treated as a 
self-energy insertion into the energy of particle "b." 

Thus, BBP evaluate the middle interaction G2 in 
Fig. 1(b) along with its exchange in Fig. 1(c), sum over 
the hole "w," average over holes I and m and use the 
result as U(b) in a self consistent manner. This essen
tially gets rid of Figs. 1 (b) and 1 (c) with the help of 
Fig. 1(a), and also Figs. l(b') and (lc;) with the help 
ofl(a'). 

The purpose of this paper is to point out the im
portance of the other third-order diagrams.5 These can 
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FIG. 1. Third-order diagrams with relative weights as described 
in Sees. 3 and 4. The diagrams in each column are made to cancel 
one another by the proper choice of U(b). 

5 One of these graphs was considered by H. S. Kohler, Ann. 
Phys. (New York) 12, 444 (1961). 
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be shown to be comparable in magnitude to the "bubble 
diagram'7 of Fig. 1(b), and consequently, deserve to be 
considered in the same degree of approximation as the 
latter. I t will be shown that, though some of these 
diagrams are strictly three-nucleon clusters, yet all of 
them can be treated as self-energy inserts into the 
particle energies, a privilege that is normally accorded 
only to Figs. 1(b) and 1(c). Since the BBP work shows 
that the bubble diagram contributes as much as 
4-5 MeV to the binding energy, which is itself only 
about 15 MeV, one can see that neglecting these other 
diagrams, which are of comparable size, is quite un
justified. If one were to include their effect into the 
single-particle energies, as will be done below, then 
essentially all third-order diagrams are eliminated. 

The most important difference between the bubble 
diagram and the other third-order ones is that while the 
bubble interaction is diagonal, the latter have off-
diagonal interactions in the middle [Figs. l ( c ) - l ( h ) ] . 
Thus we need first to derive an expression for the off-
diagonal reaction matrix under the BBP reference 
spectrum conditions, and study its behavior as com
pared to the diagonal term. An evaluation of this off-
diagonal term is of some value in itself, as it paves a 
way towards the possible estimation of higher order 
terms. 

II. OFF-DIAGONAL REACTION MATRIX 

The reaction matrix in the reference spectrum 
approximation is defined by 

The neglect of the Pauli operator Q, as compared to 
Eq. (1), is justified by BBP. This leads to 

<* | (£r o -£o)- 1 G|0o>=(0ko-^o> 
= (*|fo>, 

where |^o) is the "two-particle wave function" defined 
by 

+ (Hi>-Eo)-1v(H0-Eo)-1v • -] |0o). (2) 

We are essentially doing a two-body problem with a 
modified energy spectrum. The problem can be sepa
rated into center-of-mass and relative coordinates, the 
former leading as usual to momentum conservation. We 
therefore concern ourselves with the relative coordinate 
problem. In the spirit of the reference spectrum it is 
assumed that H0—Eo can be written in relative coordi
nates as — (h2/M?n*)(V2—y2), where y2 is a positive 
number. The fact that the interaction is off the energy 
shell makes y2 more positive. 

For simplicity, from here on we will consider all wave 
functions as contained in a cube of unit volume. We will 
also suppress the factor h2M~l. 

Let 0 = e i k ' r ' a n d <£o=^k°'r. From (2) it can be seen 
that ro=</>o—<Ao obeys 

( V 2 - 7 2 ) f o = - w M 0 o - f o ) ; 
4> obeys 

(V*+A2)0=O. (3) 

In order to illustrate the behavior of our nondiagonal 
element as compared to the diagonal ones, we will use 
the following simple potential: 

v— co for r<c, 

v = 0 for r>c. 

Qualitative conclusions analogous to the ones we will 
derive, hold also for more realistic potentials. 

Inside this "hard core/ ' i.e., for r<c, we have 
fo=<£o= eiko'x. The contribution to (<£ | f o) from inside the 
core is, then, 

2T ddsind ^ f 2 ^ ( k ~ k 0 ) - r = 4 7 r { [ ( ^ ) 2 / ^ ] i i ( ^ ) } , (4) 
Jo Jo 

where q—k—k0. To evaluate the contribution to 
{(j> | f o) from outside the core, we expand 

ro= (kor)-iZiiKU+l)Pi(ko-f)xi(kor), 

ct>-(kr)^Zsis(2s+l)Ps(k'f)Ss(kr), 

where £o=ko/&o, r=t/r, and k = k/k. Therefore, 

/WO<*T = (Mo)"1 £* (2H-1)£ . (2H-1) 

X [ ~Pi(h'?)Ps(k-f)Xi(kor)3s(kr)W-s. 
J r2 

Using 

Pi{h'f) = Pl{k-f)Pl(k'h) 

i (l-m)l 
+ E ( ~ l ) m Pim{k-f)Pr(k-kz) cosw0, 

we get 

/ 0*fodr = -— Zi(2l+l)Pi(k-ko) 
Jr>c RKO 

X xi(kor)3i(kr)dr. (5) 
J c 

Equations (5) and (4) together give the total contribu
tion to (<£|fo). Therefore, once we evaluate (5), then 
we can find the off-diagonal element, 

<0|G|0o)=<«| ( f fo -£o ) -^ | *o>(AHV) /w* 
= [(^+72)/m*]<0|ro). 

To find the value of the expression in (5), we proceed 
as follows: Equations (3) reduce to 

[_d2/dr2-y2-l{l+\)/r2~]xi{hr) 

= —m*v[3i(ktir) — xi(ktir)2. (6) 
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From (6) it can be proved, as described in Sec. V of the identities 
BBP, that 

^Zi(2l+l)Pi(M-kQ)ji(kr)Mfa)= <r*-*dQ 

drxi(kor)$i(kr) 

= ( * 2 + 7 2 ) - 1 b K * o c ) [ ^ / ( f e ) - H z , W ] 

= 4:irjo(qr), (9a) 

4*Zi(2l+l)Pi&4Q)ji'(kr)Mk<<r) 

+ / L3ifa)-Bl(r)yn*vt$l(k<r)--xi(ktir)yr , 
J c > 

where all differentiations are with respect to r. Hi obeys 

[ r f 2 / ^ 2 - ^ t f + l ) A 2 - 7 2 ] 5 r i W = 0 
and 

Hl(c) = ^l{kc). 

Since in our pure hard core, v = 0 for r>c, we have 

x ^ ^ o ^ ^ W ^ ^ ^ + f ^ i M K / W - ^ W ] . 

= -ik / Piik-cDPiiq-^e-^dtt 

and 

4TT £ Z ( 2 / + l)Pi(£ • lo)jV (foOj*(M 

2 P 2 ( ^ r ) + P 0 ( ^ r ) 

(9b) 

= - & 2 -<r^-rdl2 

Putting (9a), (9b), and (9c) into Eq. (8), and adding 

I t is interesting to note that in the above equation it is 
the term involving ko that remains undifferentiated, 
while the terms involving the final state k are differenti
ated with respect to r ; whereas fo(&o) is the wave func
tion that is distorted by the potential and not 4>(k). 
From the Hermitian properties of the G matrix, it can t o L q ' W> w e g e t 

be seen that a similar result can be derived for <k01G| k), <fc\G\ ko) = 4^(m*)-1{ (k2+y2)l(qc)2/q's2ji(qc) 
where the roles of k and ko are interchanged. The value , , , 2 , , 2 2 / ? -, . , v 
of 7 for this expression will, however, be different so as v 7 j 7;yow ^ 
to produce the same matrix element. ~~ ̂ c ~7~kc/y)ji(qc)Pi(k-q) 

Equation (5) now becomes + (k2c2/2y)[_lP2(k-q)J2(qc)-\jv(qc)~]}. (10) 

^odr=(k2+y2)~Kkko)-

Using 

The above expression, though somewhat unhygienic in 
appearance, is nevertheless quite general, valid for all 
k, k0, and any amount by which the interaction may be 

X 4 x E K 2 m ) P 4 - £ o ) ^ M Q J / ( ^ ) - F / ( c ) ] . o f ! t h e energy shell, provided one uses the reference 
spectrum. Besides, it reduces to simpler forms for the 
particular cases we have in mind. 

H{=gl{kc)l{d/dr)\nHl-]c 

(7) 

and the differential equation for<0zto eliminate l(l-\-l)$i, 
it can be shown that 

Modr = 4TTC ( t f+7 2 ) - 1 £ i (21+ \)Pl (k.k0)ji (he) 

X ji(kc)(l+yc+k2c/2y) 

+j f(kc)(c+-) 

where 
y) 27 

-ji"(kc) (8) 

III. THIRD-ORDER DIAGRAMS 

We shall now discuss the third-order diagrams in 
detail, referring to Figs. l ( a ) - l ( h ) . 

Fig. 1(b). This, along with its exchange in Fig. 1 (c), is 
used by BBP to define their energy spectrum. The 
middle G2 matrix is diagonal here, and can be obtained 
as a special case from Eq. (10) by putting k0 —» k. We 
then get 

<k|G|k0> 

= (m^~l[_(k2+y2)Vc+^c(\+yc+k2c/3y)^ (11) 

where F c =core volume. This is the result obtained by 
BBP for a hard core. Before this can be placed as an 
insert into the energy of particle b, it has to be summed 

The sums over / can be evaluated in closed form using over n and averaged over m and I. The resulting 

Si(x) = xji(x). 
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contribution U2(b) to the energy of the particle b is 

c/2(6) = p(w*)- 1 [ (^+7 2 )avF c +47rc( l+ 7 ^+^V37)av] , 

where p=density of nuclear matter, k = J(b—n) 
averaged over n, y2==(e~k2/m^)av, and e= excitation 
energy of the diagram. 

Fig. 1(d). This diagram and those following it are 
those we are concerned with. They were in the past 
considered unimportant as compared to the bubble 
diagram. We will now proceed to show that they are 
comparable to the bubble diagram in Fig. 1(b), and 
consequently should and can be added as insertions 
into the single-particle energy of state b. The fact that 
Figs. 1(b) and 1(d) should be comparable can be seen 
from the simple argument that the momentum transfer 
involved in G2 of Fig. 1(d) is q=m—n. Since m and n 
are both inside the Fermi sea, q is on the average much 
smaller than £ o = | | (a—n) | or k — \\ (b—m)| , a and b 
being above the sea. Thus, for most values of b, the G2 

interaction of Fig. 1(d) is almost diagonal, and, there
fore, there should not be much difference between 
Fig. 1(d) and Fig. 1(b). 

The algebra gives the same result. Equation (10) for 
(k IGI ko) reduces in this case to 

(k |G|k0>= (rn*)-l(k2+y2)Vc[\- (qc)2/'10+ • • • ] 
+4.wc(ni*yi(l+yc+k2c/3y)Zl- (qc)2/6+ • • • ] • 

In the above equation, we have averaged over the 
directions of q relative to k. For nuclear matter, we have 

(q*)= < w 2 + w 2 - 2 m - n ) = (m2)+(n2) = \.2kF\ 

c = 0 . 4 F , * F = 1 . 5 F - 1 ; 
therefore 

(q2)c2^0A32. 

For Fig. 1(d), then, 

<k|G2 |k0)= (ni*)-1(k2+y2)Vc(l-0M3+ • • •) 
+4,wc(m^1(l+yc+k2c/3y)(l-0.072+ - • •). 

Comparing this with Eq. (11) we can see that the two 
expressions are roughly of the same magnitude. 

We can average the above expression over m and 1 and 
integrate over states n, to obtain a contribution U*(b) 
to the single-particle energy, given by 

U*(b)= -p(f»*)-T0.96<*2+72>av^c 
+ (0.93)4TTC<1+7C+A V37>av]. (12) 

The minus sign in front of p arises because of the sign 
convention used in the Goldstone method, in dealing 
with the different diagrams.1 

Thus, we see that Fig. 1 (d) can also be used as a self-
energy insertion into U(b), and its contribution U±(b) is 
comparable to UzQj) arising from Fig. 1(b). 

Fig. 1(f). This diagram is similar to Fig. 1(d), 
inasmuch as it also has a particle-hole interaction in the 
middle. The contribution arising from this figure to 
U(b) is, on the average equal to that from Fig. 1 (d), and 
is hence given by Eq. (12). 

FIG. 2. Vector diagram in momentum 
space for the hole-hole interaction. The 
hole n is restricted to be in the shaded 
region. 

Fig. 1(h). This is the "hole-hole" interaction which 
does not seem to directly involve the particle b. How
ever, the value of y2 for this interaction will involve b 
and in fact has a term proportional to b2 in it. Thus, this 
diagram can also be inserted in U(b). The general 
expression (10) for (k |G|k 0 ) holds here as well, and can 
be shown to be of roughly the same order of magnitude, 
as in the previous cases. 

The effect of this diagram, however, is considerably 
lessened by the following factors: 

(i) The hole n, for a given m and 1, cannot just be 
anywhere in the Fermi sea. I t has to be such that the 
hole l ^ m + 1 — n is also inside the sea. 

In the example shown (Fig. 2), n has to be inside the 
shaded region. I t can be shown that on the average n 
traverses a quarter of the Fermi sphere. This multiplies 
the contribution of this diagram by a factor of 1/4. 

(ii) Since the two nucleon loops are identical, one-
half of the hole-hole interaction is associated with 
particle b and the other half with particle c. This 
introduces another factor of 1/2 on the contribution 
to U(b). 

Owing to these reasons, this diagram is relatively 
unimportant, but its effect, when necessary, can be 
calculated using expression (10) as before. 

Figs. 1(c), 1(e), and 1(g). These are the only other 
diagrams in column A. They all have the common 
characteristic that their middle interaction converts 
states above the sea into those below the sea, and con
sequently involves a large momentum transfer. Using 
arguments similar to the ones used before, we can see 
that they will be roughly equal to each other. Fig. 1(c), 
which is the simplest, has 

therefore 
k=J(b-n), k0=i(*-b)=-k; 

q = 2 k and (q-k)=l. 

Expression (10) then gives 

< k | G 2 | — k > 

= 47r(w*)~ (k2+y2) (sin2kc/Sk3-c co$2kc/4:k2) 

csin2&c/l (-+yc+ 
Ike \ 2 -47c/ 

1 / I 
+c cos2&q —h 

\2 47c/J 

(13) 

Figures 1(e) and 1(g) will give roughly the same result 
since they have approximately the same 7, k, and q. 
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I t should be noted here, for future use, that for large 
values of b, (13) is small compared to (11), and these 
diagrams do not influence U(b) very much. However, 
for b^A F - 1 , which is used as a typical value by BBP, 
(13) is about 4/7 of (11), thereby raising the relative 
importance of these diagrams to U(b). 

We have thus studied briefly, the contributions 
arising from all the diagrams in column A. 

IV. RELATIVE WEIGHTS OF THE DIAGRAMS 

If one uses a spin-independent potential, the different 
diagrams do not have the same weight. This is because 
a nucleon with a certain charge and spin component will 
not change these properties due to such an interaction. 
Thus, for example, in Fig. 1(d), once the hole m is 
defined, the hole n is forced to have the same z compo
nent of spin and isospin. Therefore, only 1/4 of the 
states inside the Fermi sea are allowed for n. Now, if 
in Ui(b), we mean by p the actual density of nuclear 
matter regardless of spin or isospin, then we have to 
multiply the contribution by a factor of 1/4. The hole 
n in Fig. 1(b), however, can take all spin and charge 
states regardless of m, so that U2(b) should not be 
multiplied by 1/4. 

As a general rule, it can be seen that all nucleons in a 
single "loop" must have the same charge and z compo
nent of spin. The relative weight of a diagram is hence 
given by (1/4)M_I', where /*= number of independent 
states and v=number of loops. The sign associated with 
each diagram1 is given by (— l)h+v, where h is the 
number of internal hole lines. The weights thus ob
tained, along with the appropriate signs, are given 
alongside the figures in both columns A and B. 

V. CONCLUSION 

The above considerations indicate that the single-
particle potential energy of the state labelled ub" should 
be obtained by adding the averaged middle interaction 
from the diagrams 1 (b) to 1 (h), with the proper relative 
weights. This would essentially incorporate their effect 
into the first order diagram. Figure 3 shows the require
ment on U(b). Repeated use of Eq. (10) for all the 
cases in Fig. 3 gives U(b) in detail. By choosing U(b) 
thus, we can cancel Fig. 1 (a) with all the other graphs 
of column A. I t can be easily seen that the same choice 
of U(b) also cancels Fig. l (a ' ) with all other graphs of 
column B. 

To estimate the effect of our procedure we note that 
the diagrams 1(b), (d), and (f) have in common that 
the momentum is changed only slightly [or, in (b), not 
at all] by the middle interaction. We have shown in 
Sec. I I and I I I that the value of the matrix element is 

a b c d e f 

FIG. 3. The choice of single-particle energies. 

not much affected by the slight change of momentum. 
Therefore diagrams 1(b), (d), and (f) are approximately 
equal, apart from the statistical weight factor, and their 
sum is then just one-half of diagram 1(b). (The correc
tions to this statement can be calculated from Sec. II.) 
Similarly, diagrams 1(c), 1(e), and 1(g) all involve a 
large momentum change in the middle interaction 
approximately from a to m, and these momentum 
changes are again about equal; thus the sum of these 
diagrams (with statistical weights) is again one-half of 
the cluster diagram 1(e). Thus we find that the bubble 
interaction 1 (b) should be replaced by 

u^imi+Kmi- (i4) 
I t can be shown that, if the number of available spin-
isospin states were n rather than 4, the factor \ in (14) 
would be replaced by l — 2/n. In particular, for a pure 
neutron gas, this is zero. 

Now the middle interaction in 1(b) is a "direct" 
interaction of particles n and b while 1 (c) is an exchange 
interaction between these particles, and 1(e) is essen
tially the same. But the direct interaction may be 
written as the sum over the even plus a sum over the 
odd angular momenta, while the exchange interaction 
is even minus odd. Thus the effective total interaction, 
1(6) to 1(g), is 

U=% (direct)+2 (exchange) = (even L only). (15) 

BBP, using only 1(b) and 1(c), get instead 

U BBP = direct— J (exchange) 
= f (even L)+ (5/4) (odd L). (16) 

Similar conclusions can be drawn about the diagrams in 
column B. The diagram 1(h) has been omitted because 
of its small coefficient; it would add 0.03 times the 
direct term. 

Our considerations are only valid for spin-independ
ent, isotropic interactions. I t has been shown by Bethe 
and Brandow6 that the result is very similar if the 
forces are spin dependent but still isotropic. Tensor 
forces seem to give a somewhat different result. 

To see the effect on the reference spectrum param
eters, we note first that for large values of b, the matrix 
elements of the middle interaction for even and odd L 
are about equal (BBP Sec. 5). This is perhaps most 
evident if we remember that the exchange interaction 
1 (c) goes to zero in this limit. Therefore, for large b, the 
potential of BBP should be essentially reduced to half. 
For small b, on the other hand, the contribution from 
odd L is small, and if it is neglected, (15) is even bigger 
than (16). We do not believe that this result is signifi
cant because (a) even for kb as small as &F, the odd L 
are not negligible, and (b) tensor forces are important 
in the initial interaction leading from m to a state of 
low b, and for these (15) is not valid. 

6 H. A. Bethe and B. H. Brandow (private ommunication). 
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We expect then that at small b the potential U(b) 
will not be greatly changed from the result of BBP. 
Since it will be halved at large b, we believe that the 
effective mass correction, 1 — w*, will be roughly 
divided by 2 while the constant term A 2 in the potential 
(7.1) of BBP will not be changed much. Detailed 
calculations are needed for more accurate predictions. 

The only other third order graph that has not been 
considered here involves a hole-bubble interaction. 
This can, however, be absorbed in the hole energy as 
shown by BBP. Thus, all third-order diagrams are 
eliminated by this procedure which renders the first-
order estimation for the binding energy correct up to 
third order. 

Finally, it is clear that the above procedure not only 
eliminates all third-order graphs but also greatly 

IN connection with a systematic study1 of the level 
structure of even tin isotopes resulting from the de

cay of neutron-excess indium isotopes, a new 7.5-sec 
activity was found and was assigned to the hitherto un
known isotope In122. The purpose of this note is to re
port the principal decay characteristics of this new 
activity and the basis for assigning it to In122. 

In this investigation, the activity mentioned was pro
duced upon irradiations of a 90.8% enriched metallic 
Sn122 sample with 14-15 MeV neutrons from the Uni
versity of Arkansas 400-kV Cockcroft-Walton accelera
tor. Neither bombardments of highly enriched Sn118 

(96.6%), Sn120 (98.39%), and Sn124 (96.0%) samples nor 
irradiations of natural tin produced any observable 
amount of the activity under consideration, due in the 
latter case to masking by other strong activities pro
duced. In most experiments, the samples were sealed in 
light polyethylene ("Marlex") capsules that could be 
transported from the accelerator target to the spec
troscopy laboratory in less than 0.5 sec with the aid of 

* Present address: Institute of Physics, University of Helsinki, 
Helsinki, Finland. 

f Work supported in part by the U. S. Atomic Energy Com
mission. 

1 J. Kantele, M. Karras, and R. B. Moler (to be published). 
2 Supplied by the Isotopes Sales Department, Union Carbide 

Nuclear Company, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee. 

reduces the effect of a very large number of fourth- and 
higher-order graphs that involve interactions shown in 
Fig. 3. The evaluation of the off-diagonal (k\G\ko) also 
paves the way towards estimating the contribution of 
the remaining higher-order graphs which are not thus 
eliminated. Hopefully, they will not make large correc
tions to the binding energy. 
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a pneumatic transport system. The radiations produced 
in the capsule itself [mainly radiations characteristic of 
N16 decay3)] were studied and taken into account in 
analysis of the actual data. About 30 to 50 short runs 
were needed for acceptable statistics in most cases. 

Gamma and beta radiations were investigated by 
means of scintillation detectors; namely, two 3 X3-in. 
Nal(Tl) crystals for gamma-ray studies and a l | - in. 
diam by 1-in. deep plastic crystal for rough beta spec
troscopy. The sum-peak spectrometer4 of our laboratory 
was also used for gamma-gamma coincidence studies. 
Due to low activities produced, resolving times of 0.4 
to 0.9 /xsec could be used, which assured complete elec
tronic coincidence efficiency. Decay curves were ob
tained usually by using an RIDL 200-channel analyser 
as a multi-channel scaler. 

Since the first (probably 2+) excited state of Sn122 

was known5,6 to lie at 1.14 MeV, possible short-lived 
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A new isotope, In122, has been produced by 14-15 MeV neutron bombardment of tin. The basis for mass 
and atomic number assignment is presented, as well as the following decay characteristics: half-life, 7.5±0.8 
sec; beta end-point energy, 4.5=b0.8 MeV; two coincident gamma rays having energies 1.140±0.010 MeV 
and 0.995+0.010 MeV. 


