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Nuclear Vibrations, Rotations, and the Shell Model. II* 
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Within the s-d shell of the nucleus it is possible to approximate an interaction between particles having 
any given range by a sum of an extreme short-range interaction and an extreme long-range interaction. 
The long-range interaction is nearly equal to the P% interaction. This approximation is applied to the vibra­
tional theory and it is shown that rotational spectra are predominant for all ranges of interaction. 

TH E vibrational theory for nuclei which has been 
presented by Flamm, Meshkov, and Levinson1 

(this paper will be referred to as I) is utilized in order 
to investigate the dependence of the collective vibra­
tions on the range of the two-body residual interaction. 
I t is shown that, within the s-d shell, reasonable inter­
actions can be approximated, for any given range, by 
a linear combination of two interactions, an extreme 
long-range interaction, and an extreme short-range 
interaction. The long-range interaction is found to be 
nearly equal to the Pi interaction. This decomposition 
of the residual interaction is used to investigate the 
simple problem of vibrations for the case of two particles 
in the s-d shell. I t is shown that the long-range part of 
the force tends to be dominant, which produces a 
rotational spectrum and a strongly deformed nucleus. 
I t is shown that for long-range forces the Elliot2 wave 
functions form a good representation for the system. 

APPROXIMATION OF THE INTERACTION 

A scalar two-particle operator, which is symmetric 
with respect to the exchange of particles, has only ten 
nonvanishing matrix elements in the nuclear s-d shell. 

G!=i((P0\V\(P0), 

G2=(l/7)((P2\V\d*2), 

G 3 = ( 3 / 3 5 ) ^ 2 4 | F | ^ 4 ) , 

G,= (l/U^2)(d22\V\sd2)s, 

G^(l/5^2)(s20\V\d20\ 

GQ=s(sd2\ V\sd2)s, 

G7=(s20\V\s20), 

Gs=(dn\v\dn\ 
G2=a(sd2\ V\sd2)a, 

Gw=(d23\V\d23). 

The wave functions are denoted by | hhL), where L 
is the total angular momentum. The index ^ or a 
indicates whether the function is symmetric or anti-
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(i) 

symmetric with respect to an exchange of the particles. 
The matrix elements Gi to Gi contain functions sym­
metric under the exchange of two particles whereas Gs 
to Gio contain antisymmetric functions. In order to 
calculate these matrix elements, it is convenient3 to 
expand the interaction between two particles in terms 
of Laguerre polynomials which constitute a complete 
set of functions. 

The Laguerre polynomials are defined by 

£«<1/2)=£ (-1)*-, (2) 

where 
p = | r u | * / 2 J » ; (3) 

b is the range parameter of the harmonic oscillator 
potential, i.e., 

b= {fi/nto))1'2. (4) 

The Laguerre polynomials satisfy the orthogonality 
relation 

/ LJ^(p)Ln^
2Kp)e~^2dp^dmnl-) f J. (5) 

The interaction between particles can be expanded as 

nk 1 2 | )=L„ / j ^>(p ) . (6) 
The / „ are obtained by using Eq. (5). 
Thus, 

/ » = — ( ) / Ln^(p)V(P)e-^2dp. (7) 
V7r\ n J Jo 

By using the definition for Ln
a/2) and the binomial 

coefficient property 

/n\ 2k+1 2 /n+\ )(?)"' 
where 

'(24+1)11 * l \ » - f t . 

( 2 * + l ) ! 1= 1 X 3 X 5 X • • • X (2JH-1), 

Jn is obtained in the form 

( - 1 ) V » \ 2k+l 

' (2f t+l) 

(8) 

* V7T 

b/n\ 2k+l r* 

\k)(2k+l)UJo 
e-t>p»+$V(p)dp. (9) 

3 J. P. Elliott, lectures given at Princeton University, 1958 
(unpublished). 

307 



308 M O S H E K U G L E R 

I t is possible to relate the J n integrals to the Talmi In 

integrals defined as 

/»=-
2n+l 

Thus, 

1 r« 

Uy/iclo (2»+l)!!\/w 
e-pp^V(p)dp. (10) 

( ID 

The determination of the matrix elements of the 
polynomials Ln

a,2) is straightforward. For the s-d shell 
it is noted that polynomials with ^ ^ 4 have non-
vanishing matrix elements. 

The polynomials with nonvanishing matrix elements 
in the s-d shell are 

L0
(1/2) = l, 

£ i G / » = i ( i - 3 p ) , 

15 / 4 \ 
L2a/2) = _ h _ | p + _ _ p 2 

8 \ 15 / 

35/ 8 \ 
L8tt/2> = _ l - 2 p + | p 2 pM, 

16\ 105 / 

315/ 

128\ 3 5 

(12) 

315/ 8 8 32 16 \ 
Z4d/2)= 1—p+-p* P

3 + p4 . 
" 105 945 / 

Since the polynomial L0
aj2) is a constant, it does not 

contribute to level splitting. Within a major shell of 
the same parity, the polynomial Li(1/2) also does not 
contribute to the splitting. This is seen by writing Li(1/2) 

in terms of rn (the distance between particles). 

Lfi™ = -
" 1 "I 
1 (fi2+r2

2— 2fir2 cos0) . 
. 3b2 J 

(13) 

The matrix elements of r? are a constant within a 
major shell. The term containing cos0 has a zero matrix 
element because it has negative parity. 

Thus, we have shown that in the s-d shell only Z2
(1/2), 

-L3
(1/2), and L^1/2) contribute to the level splitting. 

Therefore, the level splitting of an arbitrary potential 
V is determined by three parameters / 2 , Jz, and J±. 

The J's can be determined by using the known Talmi 
integrals and Eq. (11). The Talmi integrals for various 
potential shapes are given by Thieberger.4 

For the case of a Gaussian potential, 

F ( r 1 2 )=F 0 exp( - r 1 2 Ao) 2 , (14) 

the Talmi integrals are 

where rj is the dimensionless parameter 

_ _ ^ f o 2 / ( f o 2 + 2 & 2 ) . (15) 
4 1 . Talmi, Helv. Phys. Acta 25, 185 (1952); R. Thieberger, 

Nucl. Phys. 2, 533 (1956-7). 

By using this result, we find that 

(16) 

The parameter ?/ varies from zero to one as the range 
of the Gaussian potential rQ from zero to infinity. 

For extreme short ranges of the potential, the factor 
7]m may be absorbed in the constant VQ. 

A 5-type potential is obtained by letting rj approach 
zero and keeping 

limP>3/2==l. 
7?->0 

In this limit 
(17) 

In the extreme long-range limit of the potential 

rd^>bj and, therefore, rj^l. 

For this reason, we have 

/ 0 » J r i » / 2 » / 3 » / 4 . 

Since L0
a/2) and Li(1/2) do not contribute to the splitting 

and since Jz and J\ are much smaller than J2 , we find 
that the level splitting is essentially determined by 
L2

(1/2) only. 
The L2

(1/2) polynomial contains some nonsplitting 
terms, specifically the constant and the first power of p. 
Thus, the only significant splitting term is 

1 1 
-(ri2+r2

2—2rir2 cos#)2 

w 
1 

Sb2 

Sb2 

r 8 3cos20-
r^+r2

4+-r1W 
3 2 

+fn.W+2ri2r2
2—4rif2 cos0(ri2+r2

2) 

Since within a major shell 

W ) = f [ ( 2 A H - 3 ) 2 + l ] - § ^ + l ) , 
and since 

we obtain 

1 
L.<v» = -

8# 

(3cos 2 0- l ) /2=P 2 (cos0) , 

- |ai2+l22)+-fiV2
2P2(cos0) 

3 

(18) 

(19) 

(20) 

+nonsplitting terms (21) 

This shows that in the long-range limit any reasonable 
potential contains a considerable amount of the so-
called P 2 potential, F=fiV2

2P2(cos0). 
The matrix elements of the Z2

(1 /2\ Lz{1/2\ and Z4
(1/2) 

polynomials are given in Table I. I t is observed that 
the symmetric matrix elements of L^ll2) and L4

(1/2) 

have a nearly constant ratio. This means that the 
parameters Jz and J A do not enter into the various 
matrix elements independently, but rather as a linear 
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TABLE I. Matrix elements of the Laguerre polynomials. 

Gi 
G2 
G* 
G* 
G& 
G* 
G7 
Gs 
G* 
Gio 

Zo(1/2) 

1/5 
1/7 
3/35 
0 
0 
1 
1 
1 
1 
1 

I^d/2) 

-2/5 
-2/7 
-6/35 
0 
0 

-2 
-2 
-2 
-2 
-2 

Z,2(l/2) 

2/3 
23/84 
3/14 
1/3 
2/3 
23/12 
35/12 
11/4 
3/2 
15/8 

jr3d/2) 

-7/15 
-11/84 
-9/70 
-11/24 
-7/6 
-11/12 
-35/12 
-7/4 
-1/2 
-7/8 

X4
(1/2) 

21/80 
3/56 
9/280 
3/16 
21/32 
3/8 
105/64 
0 
0 
0 

combination J%—aJ±. Thus, a potential of any range 
can be described within the s-d shell by means of two 
arbitrary parameters or as a linear combination of two 
potentials. For convenience, we take these two po­
tentials to be the extreme short-range potential V8 

defined as 

Fs-Lo(1/2)+L1W2)+L2(1/2)+L3
(1/2)+^4(1/2), (22) 

and the extreme long-range potential VL defined as 

VL=hLs<MK (23) 

ANTISYMMETRIC 
STATES 

FIG. 1. Energy levels of 
two particles in the s-d shell 
as a function of the range 
parameter a. 

02. OA 06 O S I F a 

The matrix elements of these two potentials are given 
in Table II. We now diagonalize the matrix of the linear 
combinations of these potentials, 

V=aVL+(l-a)VSy (24) 

for the simplest case of two particles in the s-d shell. 

TABLE II. Matrix elements of V8 and VL-

GI 
G2 
Gz 
G, 
G5 
Gs 
Gi 
Gs 
G9 
Gio 

vs 
21/80 
3/56 
9/280 
1/16 
5/32 
3/8 
41/64 
0 
0 
0 

VL 

1/3 
23/168 
3/28 
1/6 
1/3 

23/24 
35/24 
11/8 
3/4 
15/16 

FIG. 2. Approximation of 
energy levels for a Gaussian 
interaction for various val­
ues of the range parameter 
y] by a: aFj ,+ (l — a)Vs in­
teraction. 

L=3 

~C=! " 

~L=4 
-L=0 • 

-L=2 

-L=2 • 
-L=3 
-L=2 " 
-L=0 . 

-L=l 
-L=4 

-L=2 

-L=3 
_L=0 
-L=2 

-L=4 
-L=l 

___L=0 1=0 L»0 
*?=OJ BEST T?=Q5 BEST 7 "0.7 BEST 

This diagonalization only involves diagonalizing 2X2 
matrices. The results of this diagonalization are given 
in Fig. 1. The over-all magnitude of the potential has 
been adjusted so that the splitting between the two 
L=0 levels remains constant. In order to check the 
accuracy of this approximation, we compare the energy 
splittings produced by a Gaussian potential for various 
values of rj with those splittings using a variable range 
in our approximation. We have used a least-squares 
fit to find the best a for each rj. As shown in Fig. 2, the 
level splittings are in reasonable agreement. The least-
squares fit for a vs r? is given in Fig. 3. 

We have shown that within the s-d shell an arbitrary 
(range) potential can be approximated fairly well by 
a sum of two potentials. The short-range part of the 
potential possesses the characteristics of a pairing 
potential, i.e., it depresses one energy very deeply 
compared to the other energy levels. The long-range 
part of the potential is nearly of the Pi type and will 
produce a rotational spectrum, as is well known. 

APPLICATION TO VIBRATIONS 

The formalism developed in I and the variable range 
approximation developed in the previous section will 
be used in order to investigate the collective behavior 
for the simple case of two particles in the s-d shell. 
This case is investigated since the vibrational theory 
of I is exact for this case, which allows a clear deter­
mination of the validity of the approximations that 
will be used. 

a 
i.o] 

0.6 
FIG. 3. Dependence of the 

range parameter a on the 
range parameter 77 of the 
Gaussian interaction. 0.4 

1.0 7 



310 M O S H E K U G L E R 

-o!3 

4L \ 
-0:2 -oT\ 

1p 

-0.10 

0.05 

X 

-0.05 

°-05 FIG. 4. Pi and P 2 as a function 
of #for a=1.0. 

fp 

^~^s . 
—-A^\ 
-0:3 -0:2 ^ \ 

0.1 

0.05 

X 

-0.05 

-0.1 

FIG. 6. Pi and P2 as a function 
of x for a = 0.4. 

The intrinsic wave function we will use is denned by 

*(aj,12) = [ - ( 3 « + l ) 5 o ( l ) + d o ( l ) ] 
X [ - ( 3 a ? + l ) S 0 ( 2 ) + d 0 ( 2 ) ] . (25) 

For x=0 this function is equal to the lowest Elliot 
wave function except for a normalization factor. The 
function <£(#,12) is equivalent to the function used in 
I but for the vibrational parameter x, which is defined 
differently. 

By using this wave function, it is possible to expand 
H$(x,12) in terms of five independent functions, 

<£, L2$, L% —<£>, and — 5 
dx dx2 

This expansion may be written as 

i > i = - C i ( ~ 7 G . - S G 4 + G 8 ) 

+ ( - 7 G 2 - 14G4+G«)*- 2IG4X2], (27b) 

P 0 6 = " 

15 \ 45 -1 
5GH—G$)+15G?>x-\—G^x2 L 

6 / 2 J 
(27c) 

1 / 13 \ 
- ( - 13Gi+20G 2 -3G 3 +20G 4 G51 
L2\ 2 / 

/ 13 \ 39 1 
+ f 5G4 GB jx G,x2 L (27d) 

1 

24 
- [ (Gi -2G 2 +G8-2G4+iG B ) 

+ ( -6G4+3G 5 )x+ |G 5 x 2 ] . (27e) 

#<i>(#,12)=- P o a W + P o & ( ^ ) L 2 + P o C ( x ) L 4 

( P - | 
+ P i ( * ) — + P 2 ( * ) — p(*,12). (26) 

dx d#2J 

The P polynomials are calculated as in I and are given 
by 

2 = — [ ( - I G i -
9L 

P2=— I ( - | G 1 + 7 G 2 + 5 G 4 - i G 5 - G 6 + i G 7 ) 

+ x ( - 1 5 G i + 4 2 G 2 + 5 7 G 4 - 1 5 G 5 - 6 G 6 + 3 G 7 ) 

/ 45 135 \ 
+xH G!+63G2+189G4 G5-9G6+|G7J 

405 -i 
+x3(189G4-135G5)-a:4 G5 , (27a) 

4 J 

0.05 FIG. 5. Pi and P 2 as a function 
of x for a = 0.7. 

The case of "freezing" is defined by the condition 
that there exists a value x=x-o, for a given Hamiltonian 
such that 

iM*o) = P2(*o) = 0. (28) 

In this case it is possible to operate on Eq. (26) with 
the projection operator PL. This operator projects out 
that part of <£ which has an angular momentum L. 
Thus, since PL commutes with the Hamiltonian, 

[ P ^ i T H O , (29) 
it is evident that 

HPL$(xQ,l2)=-tPoa(xo)+Pob(xQ)L(L+l) 

+P0c(x0)L
2(L+l¥lPL$(xo,12). (30) 

Therefore, PL<£(x0,12) is an eigenfunction of the 
Hamiltonian with the eigenvalue 

EL= -Poa(x0)-Pob(xo)L(L+l) 

-Poe(x0)L
2(L+iy. (31) 

FIG. 7. The freezing point 
xo as a function of the range 
parameter a. 
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FIG. 8. The quadrupole 
deformation (Qo) as a func­
tion of the range parameter 
a. (<2o) = 8 is the deforma­
tion for the Elliott wave 
functions based on the 
group SU3. 

02 0.4 0.6 0.8 10 a 

Physically the existence of the eigenfunction PL$(XQ,12) 
that contains only one value of x, namely, XQ, means 
that there are actually no vibrations taking place and 
that the nucleus only rotates. In this case the nucleus 
shall be said to be "frozen at the point #o." 

The energy spectrum for the case of freezing is almost 
that of a rigid rotator. The term containing L 2 (L+1) 2 

is a small correction for all cases of physical interest. 
We shall show that the freezing condition in Eq. (28) 

is nearly satisfied for reasonable interactions. The 
polynomials P i and Pi are plotted as a function of % 
for various values of the range parameter of the inter­
action a, Figs. 4 to 7. The nucleus is nearly frozen 
because there exists a point xo for which P\ and Pi are 
both very small. The freezing condition is satisfied 
better for long-range interactions than for short-range 
interactions. In order to check the accuracy of the 
"freezing" approximation, the approximate eigen-
function PL^(XQ,12) is compared with the exact eigen-
function obtained by diagonalizing the interaction 
Hamiltonian for various values of the range parameter 
a. The overlap between these two functions is calculated 
for L = 0 and L=2. For long-range interactions this 
overlap is nearly 100%. As the range becomes shorter 
the overlap gets smaller. However, even for the case 
a = 0 (an extreme short-range interaction) the overlap 
is greater than 98%. Therefore although the freezing 
approximation for short-range interactions is not as 
good as for long-range interactions, it is still a very 
good approximation. 

I t is also possible to investigate the dependence of 
the freezing point Xo on the range of interaction (Fig. 7). 
The freezing point denned by Eq. (28) is taken to be 

-0r4 -03 -0,2 -0,1 

FIG. 9. The one-dimensional 
potential V as a function of x 
for a long-range interaction 
(a=1.0) , forL=0. 

I 

Z 

[~3 

that point where Pi(x) = 0, since Pi changes more 
rapidly than P% I t is seen that for long-range inter­
actions the freezing point is nearly equal to the point 
x=0 which defines the Elliot function. As the range of 
the force decreases, x0 becomes larger. This shows that 
the Elliot representation is better for long-range inter­
actions than for short-range interactions. 

For the case of freezing it is possible to calculate the 
average of the quadrupole operators defined within a 
major shell by 

Qo=2(47r/5)nr2/b*)Y0*(e<p), (32) 

where F0
2 is the spherical function. The average 

deformation is given by 

($(xo,12)\Qo(i)+Qo(2)\Hxol2)) 

<$(ato,12)|$(*012)> 
= <Go>. (33) 

This deformation can be expressed in terms of xo 

(Qo)=8(2xo+l)/(3xo2+2x0+l). (34) 

i 

-0,4 -03 -0,2 -0.1 
FIG. 10. The one-dimensional 

potential V as a function of x 
for a short-range potential 
(a=0), for £ = 0. 

M 

-2 

In Fig. 8 the dependence of the deformation on the 
range of interaction is shown. For long ranges of inter­
action the nucleus is strongly deformed. As the range 
of interaction becomes smaller, the nucleus is less 
deformed. However, even for the extreme short-range 
case, the nucleus is still far from spherical. I t should 
be stressed that this deformation is the deformation 
of the outer shell only. 

A pictorial description of what is meant by saying 
that the freezing is stronger for long-range forces than 
for short-range forces is given in Figs. 9 and 10. The 
one-dimensional potential V, denned in I, in which the 
nucleus vibrates is plotted as a function of x. I t is seen 
that the potential is much deeper and narrower for the 
long-range interaction (Fig. 9), i.e., the freezing is 
stronger for this case than for the short-range 
interaction. 
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