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There is a left-right asymmetry in the bremsstrahlung emitted by transversely polarized electrons analo
gous to the left-right asymmetry in Mott scattering. The magnitude of this effect has been calculated from 
the second Born approximation, where it appears in the cross terms between the matrix elements of order 
Ze3 and those of order ZV. Principal contributions come from the Feynman diagram in which the photon 
is emitted between the Coulomb interactions with the nucleus, while the largest terms from the diagrams 
with the photon emitted before or after both Coulomb interactions are of relative order v/c compared to the 
principal terms. The contributions of all three diagrams to relative order (v/c)2 are included in the final 
result. As is the case in Mott scattering, the asymmetry in bremsstrahlung depends only on intermediate 
states which lie on the energy shell. The reason for this has not been investigated here. It does not seem 
feasible to integrate the cross section over electron momenta analytically. In order to reduce geometric 
complexity, the calculation is performed in detail for forward electron momentum. The matrix elements 
for this case are listed explicitly so that other polarization-dependent effects may be conveniently calculated. 
An outline of the evaluation of the integrals which appear, and a discussion of the divergences associated 
with the no-cutoff limit of the Coulomb field, as they apply to bremsstrahlung, are included. 

1. INTRODUCTION 

TH E calculation described in this paper is con
cerned with determining the angular asymmetry 

of the photon emitted in bremsstrahlung of transversely 
polarized electrons. As is the case in the Coulomb 
scattering of transversely polarized electrons, the asym
metry arises from the interference between the two 
lowest order matrix elements contributing to the 
process.1 

Figure 1 depicts the lowest order Feynman diagrams 
contributing to bremsstrahlung. These lead to the 
Bethe-Heitler result.2 No angular asymmetry appears 
here, just as none appears in the first approximation to 
radiationless scattering. The second approximation to 
radiationless scattering does lead to an angular asym
metry when the incident particle is transversely po
larized, and the effect also appears in bremsstrahlung 
when the diagrams of the next order are considered. 
These are presented in Fig. 2. They contribute terms of 
relative order Za when compared to the diagrams of 
Fig. 1. The quantity Za is, of course, the nuclear 
charge times the fine structure constant. Kacser3 has 
calculated the unpolarized cross section in second Born 
approximation utilizing an approximation scheme to 
evaluate the integrals involved. The radiative correc
tions to the diagrams of Fig. 1 also are of relative order 

a, and have been calculated elsewhere.4 In our work the 
radiative corrections have been neglected so that the 
results are strictly valid only for large Z, i.e., heavy 
nuclei; but this is the case anyway since nuclear recoil 
is also neglected. 

Diagrams (a) and (b) of Fig. 2 are simpler than (c), 
because in both (a) and (b), the electron is in a unique 
momentum state, although not on the mass shell, when 
the photon is emitted. The integrals involved then are 
familiar, being exactly those for radiationless scattering 
taken off the mass shell. In (c) the electron is not in a 
unique momentum state when the photon is emitted, 
and this leads to more complicated integrals. The largest 
contributions to the asymmetry come from diagram 
(c). Fortunately, that part of (c) which involves the 
most difficult integral may be neglected. There are two 
reasons for this. First, the effect depends on the trans
verse component of the initial electron's spin. This 
causes the Mott effect to wash out like 1 — v2/c2 for, 
example, so that not too fast electrons are involved. 
Secondly, only the imaginary parts of the various inte
grals involved contribute, and these come from regions 
in momentum space which are very near to the mass 
shell. This means that the imaginary parts come from 
a very restricted range of momentum transfers. These 
two facts make the estimation of the relative contribu-

(a) (b) 

FIG. 1. Lowest order Feynman diagrams in bremsstrahlung. 

1 R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951). 
2 H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146 

83 (1934). 
3 C. Kacser, Proc. Roy. Soc. (London) A253, 103 (1959). 

(a) (b) (O 
FIG. 2. Second-order Feynman diagrams in bremsstrahlung. 

4 A. N. Mitra, P. Narayanaswamy, and L. K. Pande, Nucl. 
Phys. 10, 629 (1959). 
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tions of each term of Fig. 2 quite simple. All of the 
points mentioned above are discussed in Sec. 2. 

In order to avoid the difficulties arising from the 
long range of the Coulomb potential, it is cut off by the 
usual exponential factor. This gives rise to well-known 
divergences when the no cutoff, or pure Coulomb, limit 
is desired. Dalitz1 has shown that these divergences 
lead only to an unobservable phase factor in the case 
of radiationless scattering, and Kacser3 has proven that 
they cancel identically in bremsstrahlung, and, there
fore, do not give rise to spurious interference effects. 
These points are briefly discussed in Sec. 2, and in 
Appendix C. 

The matrix elements are discussed in Sec. 2, and in 
Appendix A. The asymmetry parameter is obtained in 
Sec. 3. The appendices are concerned with calculations 
of the matrix elements and the integrals which appear, 
and with a discussion of the divergences associated 
with the no cutoff limit of the Coulomb field as they 
affect bremsstrahlung. 

2. THE MATRIX ELEMENTS 

A. Preliminaries 

The natural system of units with h—c—\ is used 
throughout. Four-momenta are denoted by p^ with 
p4—ipo=iE. Also 

and we employ Hermitean y matrices. The electron 
charge is taken as -\-e, e<0, so that the central poten
tial of the positively charged nucleus is 

A(r)=-
Ze 

-—— t A>0. (2.1) 

The exponential cutoff has been introduced in order to 
avoid the difficulties associated with the long range of 
the Coulomb potential. The bremsstrahlung matrix 
element is (k,s\S\p), where p and s are the initial and 
final electron momenta, and k is the photon momentum. 
In order to calculate the process to order Z2a4, we need 
only consider 5,(2) and 5 ( 8 ) . The matrix elements of SK0) 

will vanish because the process involves emission of 
radiation, not included in 5 ( 0 ) , and those of S(1) will 
vanish because of energy-momentum conservation. The 
matrix elements for S(m\m>3, are all of higher order. 

We seek the cross section [da(d)/dti]dQ, for emission 
of a photon in an element of solid angle dQ, making an 
angle 6 with the incident electron momentum p, and 
in the plane perpendicular to the initial (transverse) 
spin of the electron. The cross section will be propor
tional to 

| M ( 2 ) + M ( 3 ) | 2 ^ | M ( 2 ) | 2 + 2 ReM' ( 2 )*M ( 3 ) . (2.2) 

where 

M^ = Ma 
(2) + W2) = -(k^Sa^+S^lp), (2.3) 

V 
(2) 

> 
'-\B 

( I ) 

FIG. 3. Coordinate system. 

and 

M^ = Ma^+Mb^+Mc^ 

= (k,s\Saw+Sb™+Sc^\p). (2.4) 

Here the subscripts refer to the Feynman diagrams of 
Figs. 1 and 2. The terms in | M(3) |2 are of 0(Ze2) higher 
and are neglected for consistency. The coordinate sys
tem is chosen so that the 1 axis is in the direction of 
the incident electron, and so that the 1-2 plane is 
perpendicular to the incident electron spin. Figure 3 
depicts the coordinate system. Polarization vectors 
e and e' are indicated in Fig. 3, and are defined by 

e=n8= l&l^kXe', 

-ni sin0+n2 cos0= |&| - 1eXk, 

ni'Tii—l. 

(2.5) 

In order to minimize geometric complexity, and since 
large angle scatterings of the electron are rather im
probable, only the case s||p will be considered. Further 
simplifications could be obtained by considering only 
the high-frequency limit of the spectrum, that is the 
case s = 0 . However, this is precisely the region in 
which the Born approximation is worst.5 Since the 
initial and final electron momenta are parallel, the 
corresponding spinors may be written as6 

.«(p) = exp(JaixM0), 

v(s) = v(G) exp(—£ai^). 
(2.6) 

Here u(0) and v(0) are rest spinors, cc=iy4y, and ^ and 
X are the usual Lorentz transformation parameters 
satisfying6 

tanhx=£/#o, ( 2 ? , 

t&nh\l/—s/so. 

The choice of spinors in (2.6) means that all matrix 
elements are taken between positive energy rest states, 
and with the choice of polarization vectors in Eq. (2.5), 
half the matrix elements will be zero. In addition, it 
will be convenient to pick ^(0) and v(0) as eigenvectors 
of cr,3. Then the expectation value of the transverse 

6 By considering the photoelectric eiJect and bremsstrahlung as 
inverse processes the high-frequency limit has been calculated. 
See K. W. McVoy and U. Fano, Phys. Rev. 116, 1168 (1959); 
R. H. Pratt, ibid., 120 1717 (1960). 

6 See for example P. Stehle, Phys. Rev. 110 1458 (1958). 
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component of the initial spin is proportional to Here * is the momentum transferred to the nucleus, 

( » / ^ ) % t ( ? ) ( r 3 ( M / ? 0 ) i / 2 M W = ( i _ , i ) w . ^ = p - k - s = p - l , (2.10) 

Now the asymmetry depends essentially on this com- a n ( J S(To)=sd(po-ko_So) i s t h e u s u a l energy-conserving 
ponent 01 the spin, so^we see that we should deal with g function 
electrons for which pois not too much greater than m, ' . = ^ , 
the rest mass of the electron. ^ u l u' (2.11) 

(p2+w2)*= h+ (s2+m2)1/2. 
B. The Matrix Elements . . , . . 

Some of the terms in (2.8) may be simplified using 
The matrix elements corresponding to the diagrams the Dirac equation 

of Figs. 1 and 2 are listed below. 
„ „ # (p—im)u(p) = 0, v(s)(s—im) = 0. 

C2 _ p—k+im 
Maw = —•—v(s)y4r eu(p), (2.8a) Recalling the identities 

T 2 + X 2 (p—k)2+m2 

~ ab+ba=2aflbM 

MbW= v(s)e yMp), (2.8b) ke+ek=0, 
T2+X2 (k+sy+m* 

_ ~ . we find for example 
p— k-\-im 

Ma^ = czv{s)yJ{p-k^s)yij—-—-MP), (2.8c) (p-k+im)eu(p) = Lek+2pllell+e(-p+im)u(p) 

k+s+im M = (ek+2p„kll)u(P)-

(k+sy+ms r r" Further we define h, I, J0, J, K0, K, and Ki} from 
Mc^ = c3v(s)yiK(p,k,s)yMp), (2.8e) J ( # - * - * s ) = ( * m + w » ) i ' o + Y - I , (2-12) 

^Ze3 / w2 \ 1 / 2 / (#—*J+fe)=(^474+iw)J ro+V J> (2.13) 
c2= ( I * (T 0 ) , (2.9a) 

= (£iyi+im—k)e(piyi+im)Ka-\-K-ye(j>4,yi-\-im) 

Cz=_i^f_c^ ( 2 > 9 b ) +(pm+im-k)ey1K+yieyiK{h (2.14) 

(2x)3 ' so that 

(l,8i) 
( /„,/ /)= /<Z3g , (2.15) 

C(q+k-p)2-X2]Cq2-s2-«X(q-s)2+X2] 

(1,2;) 
( / „ , / , ) = / # < ? , (2.16) 

I ( q - k - s)2+X2Jq2- p 2 - ie][(q- p)2+X2] 
(l»?y»?<?y) 

(K^KM- d'q . (2.17) 
C(q-k)2-s2-«][q2-p2-^][(q-p)2+X2][(q-k-s)2+X2] 

The matrix elements then become Jkfc
(3) = c35(.?)Y4{[>2e— keiptyi+im^Ko 

Ci 2e„pllt+ek +[2(piyi+im)e-kev']-K+yieyjKiJ}u(p). 
MJ»=— v(s)yi —u(p), (2.18a) .„ 1£) , 

( T 2 + X 2 ) - 2 / > A (2.18e) 

M 6 ( « = — ^ i - K ^ ^ ^ T ^ ^ ) , (2.18b) C - Contributions to the Asymmetry 
(T + A ) 2.?M#M ' p n e asymmetric part of the bremsstrahlung cross 

Cz section is that part which is odd in powers of £2= & sin0 
j|fa(3) = ^ (^)7 4 [ (^47 4 +iw) /o+r , I ] =&sin(p,k). In Appendix A we show that only the 

— 2ptlktl _ imaginary parts of the integrals involved in the matrix 
XyAfafipp+efyjAuip), (2.18c) elements contribute to the asymmetry. Using this, and 

M (8>= ( 12 h Y( V? -4-~P> ^ e ^ a c t ^ a t w e a r e dealing with not too fast electrons, 
6 we may consider pQ, s<£^?n in order to investigate the 

XY4[ (M4+«») /o+Y- J > M £ > , (2.18d) relative magnitudes of Ma
(3), AfV8), and Mc

(3 ) . The key 
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FIG. 4. Second-order Feyn-
man diagram for Coulomb 
scattering. 

point is that the imaginary parts of all the integrals 
come from momentum transfers whose magnitudes are 
of 0(p) or less. To see why this is so, consider Coulomb 
scattering for a moment. Here the integrals are similar, 
but a bit simpler and have all been discussed by Dalitz.1 

Only the imaginary parts of these integrals contribute 
to the asymmetry in Coulomb scattering. The pertinent 
Feynman diagram is that of Fig. 4. 

The matrix element is 

M^ «7/74[(M4+iw)iV+Y * I'iK*- (2-19) 

We shall only look at IQ, which is the simplest and has 
all the typical features: 

/ < / ~ \ &qd*rdH 

<PQ 

5 functions 

[ r 2 + X 2 ] [ q 2 + w 2 - i e ] [ t 2 + X 2 ] 

1 (2.20) 

[ ( p - q ) 2 + X 2 ] [ q 2 - p 2 - * e ] [ ( q - s ) 2 + X 2 ] 

Since 

-7r^(p 2 -q 2 ) , 

it is obvious that the imaginary part of Io comes only 
from the neighborhood q2z=zp2. I t depends on the mo
mentum transfers r—p—q and t—q—s, and on X, the 
range parameter of the potential. Thus ImIo depends 
on values of r and t which are 2p at most. Now if either 
r or t is zero, things depend critically on X. But Fig. 4 
indicates that this corresponds simply to an external 
line modification, and leads at worst to an unobservable 
phase factor.1 The infinite range of the Coulomb field 
manifests itself here in the limit X —> 0. For brems-
strahlung, Kacser3 has shown that these contributions 
actually cancel in the limit X —> 0. In Appendix C the 
divergent terms of each matrix element are removed 
explicitly. 

The comments above about IQ also apply to the 
integrals appearing in our matrix elements. Thus using 
the facts that r, tc^O (p) and po, stf^m, we estimate 
below the relative magnitudes of the terms in M(3). I t 
is sufficient to consider the case r=t=r/2. The mo
mentum transfer u was defined in (2.10). In the follow
ing we shall use q to denote the order of magnitude of 
all three momenta which appear, so that 2p^q. The 

matrix elements are listed in (2.18). We have 

1 s+^r+im 

Mb<®-

1 T 2 + X 2 [ ( * + ! r ) 2 + w 2 ] 

1 p—k-\-im 
XY4 eu (2.21) 

h2+\2[_{p-k)2+m2~] 

v[_— q2—2m2 (1 +74)+2itny±y • q]eu 

qS(q*+2poko) 

ve£—q2—2m2(l-\-yi)-\-2imyqyi]u 

q«(q2-2s0k0) 

(2.22) 

Mcw~ V\JX- qY* eY- q—2ime- p ( l+Y 4 ) ]^ . (2.23) 
q* 

In Eq. (2.23), the qeq term comes from the Kim term, 
while the rest is a combination of the Ko and K terms. 
Since u and v are positive energy spinors we have 
approximately 

C V , Y 4 > = 0 ( 1 ) , 

v[_a, y^u=O (q/m). 

Making use of these in (2.21) and (2.22), we find 

Ma
(z\Mbw = 0(q-«), 

and that these two matrix elements tend to cancel as 
far as asymmetric effects are concerned. This is borne 
out in the detailed results of Appendix A. See Eqs. 
(A3) and (A4). From (2.23) we find 

Mc^ = 0(mq-7), 

while the contribution of the Kim term is 0(m~lq~5). 
Therefore, to relative order q/m, the major contributions 
to the asymmetry come from Afc

(3), and to terms of 
relative order q2/m2, the Kim terms may be neglected. 
We neglect K\m so that our final result, Eq. (3.7), is 
valid only to terms of relative order p2/po2. 

3. RESULTS 

The results in this section refer to the case p||s and 
are valid up to terms of relative order (v/c)2. This latter 
restriction arises because the terms in 5,(3) which in
volve Kij were neglected. In Appendix B we show that 
all the integrals appearing may be evaluated exactly 
and, therefore, this restriction may be removed. Of 
course, the matrix elements may be calculated for 
arbitrary final electron momentum and the first re
striction also removed. Very little further insight can 
be gained by carrying out the tedious program needed 
to remove these restrictions. 

The asymmetry parameter 5 is defined by (3.1) 

8=-
\{k,s\S^+S^\p)\2 

\(kAs*\p)\2 
(3.1) 
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The denominator is just the Bethe-Heitler amplitude 
squared for an initial beam of transversely polarized 
electrons with p||s. The numerator is the asymmetric 
contribution to the scattering calculated in Appendix 
A. See Eq. (A5). Since we are interested in the limit 
A —» 0, the X dependence of the integrals has been re
moved as per the discussion in Appendix C. Denoting 
the finite imaginary parts of these integrals by a caret, 

to=ImlQ—ImIoO0, etc., (3.2) 

the numerator becomes 

2(k/r2) sm6\c2Cz\{aIo+bJQ+cKo+dK1+eK2}. (3.3) 

The quantities a, b, c, d, e are defined in (A6), while c2 

and cz are defined in (2.9). For the case under con
sideration (p||s), the denominator is 

|c2&4]
2 

0 + / 3 COS0+Y cos20], (3,4) 
mvry 

where 

p 2 = - 2 M , = ( p - k ) 2 - s 2 , ( 3 5 ) 

r2=-2v^=p2-(s+k)2, 

a = 2 [z .+5 0 ^o( r 4 +p 4 ) -2m 2 rV] J 

£ = 2 ( ^ 0 - ^ o ) ( p 4 - r 4 ) , 

T=-2[,+Mr4+p4)], 
„= (p/kT2-s/kp2){ (sopo+sp+m2) 

X (p/kV*-s/kf)- (sPo+pSo)(T2+P
2)}. 

Thus the asymmetry parameter becomes 

2Ze2m2r2TY 
5 = 

(27r)3£ 
tah+bJo+cKo+dKx+eKz) 

Xsinfl . (3.7) 
I a+/3 cos0+y cos20 J 

This result is complicated but numerical calculations 
should facilitate its analysis. Preliminary work indi
cates that the effect is of the order of 10% for electrons 
with v/c=0.95 on Pb at 150.7 

I t should be pointed out that if only the no-spin-flip 
terms contributed, the radiation would be more left 
than right i.e., d > 0. This is true qualitatively since the 
"force" responsible for the asymmetry y X v - v E is 
always in the same direction. However, "when the spin 
flips," this force is in the opposite direction and can 
cause 5 to become negative when the spin-flip terms 
dominate. This is true simply because the axes of the 
multipoles responsible for the radiation may be oriented 
at different angles to the left and right of p for the two 
cases. 
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APPENDIX A 

The matrix elements of (2.18) have been calculated8 

between the positive-energy rest spinors of Eq. (2.6), 
for the photon polarizations of (2.5), and with initial 
and final electron momenta colinear. In Sec. 2 we 
showed that the contribution of the Kij terms was of 
order q2/m2 smaller than the largest terms in M{Z). The 
momentum q is typical of the system so that q<^.m, and 
q=:2p at worst. Compared to the largest terms in M®\ 
we retain only contributions of relative order 1 and 
q/m. This means that I and J may be neglected, as 
well as sundry terms involving 70, Jo, K0, and K. If 
the photon is polarized in the direction perpendicular 
to the pk plane, polarization direction e = n 3 , only the 
spin-flip matrix elements contribute. For photon po
larization in the plane of emission only the no-spin-flip 
matrix elements contribute. The matrix elements are 
listed in Table I. 

In Table I, Z,= coshi |(x+^), # = c o s h £ ( x - * ) , P 
= sinhj(x—^), ^ = s i n h | ( x + ^ ) , and Kh K2, and Kz 

are the components of K. 
In order to find the asymmetric part of the cross 

TABLE I. Matrix elements. 

Polarization e||pXk. Only spin flip contributes. 

eMaW= (c2h/r2p2)ZiN cosd-L sind-iPl 

eMbW = - {c2k^T
2Y2)[iN cosd-L sin0-HT] 

eMa
{3)=- (c3k0/p

2)Iolso(iN cosd-L smd)+m(iL cosd—N sin0)] 
«Af6<

8> = (czk0/T
2)JolpQ(iN cosd-L sind)+m(iL cos$-N sin0)] 

eMcW = czko{KQ[p0(iN cosd-L sind-iP) 
+m(iL cosd-L smd+iR)~]+iN Kx-LK2} 

Polarization e'J_pXk. Only no spin flip contributes. 
,,Afa(*> = - (c2/rV)Z2Lp smd+h(N+iR smd-P cosfl)] 

e,if6(2>= (c2/T
2V2)[_2Ls smd+fa(N-iR sind+P cos0)] 

e'lfa<
3)= - (icz/p2)IoZso(2Lp smd+kiN)+m(2Np sin0+&4£)] 

e,MbW=(ic3/r2)JoZpo(2Ls smd+faN)+m(2Ns sin0+£4£)] 

e,McW = Cz{KoZpok0(P cosd-N-iR sm$) 
-mk0(R cosd+L-iP smd)l+i(2p0L+2mN-k0L) 

X (K2 cosd-Ki sin0)-£o#CKi cosd+K2 sin0)}. 

7 J. C. Strauss, M.S. thesis, University of Pittsburgh, 1962 8 E. Sobolak, thesis, University of Pittsburgh, 1961 (un-
(unpublished). published). 
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(Al) 

section, the odd part of 2 ReM (2)*M (3) is required. 

2 ReM (2 )*M '3) 

= 2 ReM (2) ReM ( 3 ) +2 ImM ( 2 ) ImM f3 ) 

= (2/r2)[Rec2<2(2) ReczQ^+Imc2Q
(2) I m ^ e ( 3 ) ] 

= (2\c2\cz/r
2)lReQ^ ImQ^-ReQ™ ImQ^J 

In (Al) we have used the fact that c2 is pure imagi
nary and Cz is real. Now since each final electron state 
involves only one photon polarization, the sum over final 
electron states is equivalent to summing 2 ReM (2)*M (3) 

for each polarization. Further 

ReQ(2) is even 

Im<2(2) is odd 
for polarization e, 

R e Q ^ i s o d d ] 
[for polarization e', 

Im()(2) is even J 

so that, denoting even and odd parts by E and 0, 
respectively, 

0(2ReM^*M<3>)e 

= 21 c2\czr-2lRtQ^O(ImQ^) 

-Im<2<2>£(Re<2<3>)], (A2a) 
0(2ReJ^2)*M<3))e' 

= 21 c21 c3r-2[Re(3(2>£(Im(2(3)) 
- Im<2 ( 2 )0(Re(3^)] . (A2b) 

Then since K0 and K\ are even and K2 is odd for p||s, 
we find 

0(2ReifW*ifW) # 

= 21 c21 C3T~2h2 sin0 
! ( 

# cos0+P N cosd-P\rs0L+mN 

r2 "A" Imlo— 
poL+mN 

ImJo 

—L(po+m) ImKo—L csc0 ImK2 + 1 cos0 Im/ 0 

J V r2/L p2 

0(2 ReM<2>*M<3>)( 

= 2|c2k3r-2Wsin(9 (• 

poN+mL 

r2 cos0 ImJ0+(poP—mR—p0N cosQ—niL cos0) ImiT0—iV ImiTi ])• (A3) 

/2sL+k0R 2pL-koR\rs0N+mL T poN+mL 
- Im/o Im/o 

r 2 p2 / L p2 r 2 

+ (poP cosd-poN-rnR cos-tnL) Im^o—^(ImiTi cos0+ImZ 2 sin0)] 

+ 
(N-P cos0 N+P cos6\r2sQpL+2mpN 

r2 X- Im/o— 
2p0sL+2msN 

r2 -Im/o 

+ (pohR-mkoP) ImK0+ (2p0L+2mN - k0L)(Im^-Imfo cot0) 1 1 . (A4) 

Here we see in detail that only the imaginary parts 
of the various integrals are involved, and that the con
tributions from Ma

(3) and Mb(3) really do tend to cancel 
as was indicated in the qualitative argument of Sec. 2. 
In these cross terms there are still some terms which 
would yield contributions of the same order as the Kim 

terms. These have been weeded out in the expressions 
(A5) and (A6), which give the asymmetric part of the 
transition rate as imaginary parts of the integrals 

multiplied by coefficients. The lowest contribution of 
the Kim terms would be 0(l/m2pz). So we keep only 
terms of 0(l/mp4)= (m/p)0(Klm) and of 0(1/p5) 
= (m/p)20(Klm). We find then that 

\(k,s\Sw+SM\p)\aBym* 

= 21 c21 cZT~2ko sin0{# ImIQ+b ImJ0 

+c ImKo+d ImKx+e lmK2), 
where 

(A5) 

a= (mp^T2)-^ (T2-p2)pZso2+2s0po+m2-2p+k0s cos0] 

+ (sp2-pT2)lso2+2sopo+m2+sp']- (p+ffi)[sk<?+p(2sop-ss0-spo) cos0]}, 

J = (mrVO-H ( p 2 - r 2 ) ^ o 2 + 2 ^ o + ^ 2 - ^ + ^ o ^ cos0] 

+ (pT2-sp2)Zp0
2+2s0po+m2+sp']- ( r 2 + p 2 ) [ ^ o ( ^ o + ^ o ) + ^ ( 2 ^ 0 - ^ o - ^ o ) cos0]}, 

c= (2mp2T2)-1{(T2-p2)kol((m-sQ)(m~-po)+sp) c o s 0 - 2 ^ o ] 
- (T2+p%kQ(po+m) (p-s)+2sp0+ppo+pso+2ps cos0] 

-2(sp2-pT2)lm2+s0po+spo+pso+sp+(2spQ~-pkQ) cos0]}. 

d = (mT2p2)-l{ (T2-p2)ls0
2+2poSo+m2-sp2+ (pT2sp2) (po+s0) cos0 - (r2+p2)(pp0+pS Q+ sk0-2sp0) cos0}, 

e= {mT2p2)-l{ (p 2 - r 2 ) [5o 2 +2^ 0 -yo+w 2 ~^] cot0+ (pT2-sp2) (po+s0) sin0 
-i(r2+P2)tko(p~s) cscd+ko(p+s) sind-(pp0+ssQ+3ps0-3spo) cos0cot0]}. 

(A6) 
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APPENDIX B K and Kij may be written in terms of K0 and simpler 

Exact Evaluation of JKTo, K, and K{j integrals. Since ReK0 may also be evaluated exactly 

Since integrals of the form of h and I have been b ^ standard techniques,7 or to a good approximation 
evaluated elsewhere,1-9 only ImiT0 and ImK are re- by Kacser's3 method, the only unknown quantity is 
quired for the results of this paper. As we shall see, ImiT0. 

f * 
KQ= lim / d?q-C(q-k)2-s2-i6][q2-p2-i6][(q~p)2+X2]C(q-k-s)2+X2] 

/ ( - \p +7ri5(q2-p2)]rP + ^ [ ( q - k ) 2 - s 2 ] ] l , (Bl) 
J l[(q-p)2+X2][(q-k-s)2+X2]L q2-p2 JL (q-k)2-s2 J J 

whence 

ImK 
J l C ( q -

d3q r S(q 2-p 2) 5 [ ( q - k ) 2 ~ s 2 ] ' 

C ( q - P) 2+X 2 ] [ (q~ k - s)2+X2] ! 
P +P-

( q - k ) 2 - s 2 
(B2) 

The "principal value" is superfluous in (B2). We poles in the angular integration, and the principal 
see this as follows. Consider the first principal value value designation may be omitted. The second term is 
term: similar with the roles of q2—p2 and (q—k)2—s2 inter-

(q— k)2— s2== q2+k2— 2q- k— s2 changed. We have then 

= p 2 + k 2 „ s 2 _ 2 ^ cos(q,k), ImKo=7r(X+Y\ 

where we have used the fact the | q | integration in- where 
volves 3 ( q 2 - p2). Now ^ g ( q 2 _ p 2 ) 

f+V-si-lpkcosi^ip-ky-s* (no vectors). * = J [ ( q _ p ) 2 + x 2 ] [ ( q _ k _ s ) 2 + x 2 ] [ ( q _ k ) 2 _ s 2 ] -

But conservation of energy tells us that 5 J (B3) 
( £ 2 + w 2 ) i / 2 = = ( ^ + w 2 ) i / 2 + ^ - d*q 5(q2-s2) 

p2+k2-2k(p2+fn2y<2=s2, ~J [(q-s)2+X2]C(q+k-p)2+X2][(q+k)2-p2] 
(£__£)2--,S2>0. 

The replacements p —> s, k —> — k yield X —» F . Per-
Therefore, the term [(q— k)2—s2]_ 1 will involve no forming the 5 function integration we find 

/

l /»27T 

in / d<f> { C 2 / > 2 ( 1 - M ) + X 2 ] - 1 { ^ + ^ 2 - 5 2 - 2 ^ [ > co s0+( l - M
2 ) i sing cos^.]}"1 

X {p>+l2+\2-2plhi cos(p,l)+(l-/**)» sin(p,l) costf.]}"1}- (B4) 

Recall 6 is the angle between p and k. Equation (B4) The <j> integration then yields10 

may be written as 

f1 1 

X=pir I dfi-2ir y v — ir" I "'A* 

X 
B 

(B6) —1 
_ £)2)l/2 J 

X E ^ - ^ c o s ^ j - ^ C - D c o s ^ ] - 1 . (B5) L(A2-B2)1!2 (C2-D2) 

Since 
We've seen above that A — B cos4>0 always, and, 
therefore, A2>B2. Conservation of energy also says that A2-B?=A4-4£2&2 s in 2 0-4A 2 ^u cos0+4^2&y (B7) 
| p | > | k + s | = | l | . Thus, C-Z>cos<£>0, and C2>D2. =r+m+t»2, 

9 H. Mitter and P. Urban, Acta Phys. Austriaca 7, 311 (1953); 10 B. O. Pierce, A Short Table of Integrals (Ginn and Company, 
M. Gavrila, Phys. Rev. 113, 514 (1959). Boston, 1929), Eq. (298). 
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with 

C2-D2= (f+py-^pp sin
2(p,l) 

~4:(p2+P)plfjL cos(p , l )+4£ 2 /y (B8) 

= e+ffj,+gij?. 

We have 

X—pir j dp 
i {a—by) (c—dp) 

/ pk sin# 
X 

#s in (p , l ) 

A2=p+k2-s% 

a=2p2+\2, 

b=2p2, 

c= (p2+l2)pk smd-A2pl sin(p,l), 

d=2\j)-lpk sin0— p-k^/sin(p, l) . 

(BIO) 

, (r+»/*+*M2)1/2 (e+/M+£M2) 1 / 2 / 
(B9) 

X=-
pT f £/>& sin# 

-In 
be—ad 1 a 

bpl sm(p,l) 

The /x integration is straightforward and results in11 

ra+b\/2a2-(a-b)(bn+2at)+2ba(r+n+t)1/2\ 

\a-bJ\2 

In 

2 a 2 - (a+b)(bn+2at)+2ba(r-n+t) 

a+b\/2(32-(a-b)(bf+2ag)+2bl3(e+f+gy12' 

b/\2p2-(a+b)(bf+2ag)+2bp(e-f+gy
/2, 

ba{r-t-n-^t)ll*\-\ 

bair-n+t)1'2) \ 

J^& sin.0 
In 

c+^ \ /27 2 - ( c -< f ) ( ( fw+2d)+2( f7 ( ' ' +«+0 1 / 2 ' 

+ 
J/>/sin(p,l) c + d \ / 2 5 2 - ( c - d ) W + 2 c g ) + 2 d 8 ( e + / + g ) 1 ' * 

/ W - (c+d) (df+2cg)+2dS(e-f+g) L\c-d/\2 1/2/ 
(Bl l ) 

where where 
a2=rb2+abn-{-a% 

I32=eb2+abf+a2g, 

y2=rd2+cdn+cH, 

d2=ed2+cdf+c2g. 

v ^ p + l ^ P + k + s . (B14) 

(B12) 

The replacements p <^> s, k <-> — k i n t h e parameters 
defined by (B7), (B8), (BIO) and (B12) give F . From 
(BIO) and (Bl l ) we see directly that if s is not parallel 
to p, ImiTo involves terms which are odd in sin#. These 
arise from the k-s term in (Bl). However, if p||s, then 
(Bl) or (BIO) and (Bl l ) tell us that ImiTo is even. 
Note in connection with this that sin(p,l)= (k/l) sin# 
for p||s, and sin(p,l) = & s in(p,k)+s sin(p,s)/Z for p 
and s not collinear. Of course, if we could integrate the 
result over all final electron momenta, the k-s depend
ence of K0 would disappear leaving only contributions 
which are even in sin#. For our case, X assumes the 
simpler form below. 

Of course, F follows from the substitutions mentioned 
previously. 

The next task is to evaluate ImK. We note that in 
general K may be expanded in terms of the linearly 
independent set of momentum vectors p, k, s,8 

K = f d^qql(q-k)2-s2-ie2-1lq2-V2-^J-1 

X [ ( q - p ) 2 + X 2 ] - 1 [ ( q ~ k - s ) 2 + X 2 ] - 1 

qd3q 
(BIS) 

X=- •ln-
4^2 

2pTy X2 

7T f 1 
-In-

1 
ln-

4ps^{r2 (p2-l2)2 p2 A*-2p2k2 

fp-Y\/r2(ps+s2)+2k2S'l-A2s-k\-] 

<ps/ \T2(ps-s2)-2k2s-l+A2s-k. r2 LVp-^/Vi )l 

(D(2)(3)(4) 

= Ap+Bk+Cs. 

We are interested in the case p||s so that the expansion 
above may not be valid, but the one below certainly 
will be. 

K = , 4 p + £ k + C ' p X k . (B16) 

As might be expected, C = 0 for p||s. We see this as 
as follows. 

f f+°° ^PXk^pXk 
K - p X k = C ' ( p X k ) 2 = d2q | P X k | . 

J V - (D(2)(3)(4)' 
But the integrand is an odd function of ^PXk, q.e.d. 
Since we choose p along the 1 axis, k in the 1-2 plane, 

(B13) » B. O. Pierce, reference 9, Eq. (195). 

file:///a-bJ/2
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this means K^—O, a fact we have used in Appendix A. 
Similar arguments hold for I, J. 

We evaluate A and B next. Noting that 

2 p . q = < Z
2 + ^ + \ 2 - ( 3 ) 

= (2 ) - (3 )+2p 2 +X 2 +*€ 

= ( 2 ) - ( 3 ) + 2 ^ , 

since eventually both X and e —* 0. Also, 

2 k . q = ( 2 ) - ( l ) + A 2 . 
We have then 

TT , r 1 / - / 7 3
[ ( 2 ) - ( 3 ) + 2 ^ ] 

p - K = l f = - / <P<p-

1 r 
k-K=iv=- ;<p? 

(1)(2)(3)(4) 

I f . C(2)-(l)+A»] 

or 

K = 

where 

M = ^ 0 + | / o - | / o ' , 

(1)(2)(3)(4) 

MW-Np-k Npz-Mp-k 
p_| J, 

£ 2 £ 2 - (p -k ) 2 />2&2-(p-k)2 

(B17) 

(B18) 

(B19) 

/ „ ' = / " ( f 3 5 [ ( q - k ) 2 - s 2 - M ] - 1 [ q 2 - p 2 - i £ ] - 1 

X [ ( q - k - s ) 2 + X 2 ] - 1 . (B20) 

Thus we see that K may be written in terms of Ko and 
simpler integrals. 

For completeness we also indicate how K^ may be 
evaluated. 

K = / d\ . (B21) 
(1)(2)(3)(4) 

This is simply a dyadic constructed from the linearly 
independent vectors p, k and pXk. 

K = ( a p + 6 k + c p X k ) ( a p + / 5 k + 7 p X k ) . (B22) 

We have then 

p- K p= (ap2+bv k)(a£2+/3p- k) 

(p-q)2 

= *<r, 
Since 

we find 

p - K p 

(D(2)(3)(4) 

p - q = i [ ( 2 ) - ( 3 ) + 2 ^ ] , 

(B23) 

= -4 piK<,+3p*Io-3pVv'-2p- Jo' 

rjt*±__^f_f*L__2rj!_\ (B24) 
J (1)(3)(4) J (1)(2)(4) J (1)(4)J 

Constructing the other products of p, k, and p X k 
with K then enables us to obtain the coefficients in 
(B22) in terms of K0 and simpler integrals. 

We conclude this appendix by listing the results for 
Im/o, neglecting terms of 0(A) and higher.8 

Im/o= 
2p(v~l)2 

•In 
\\2J(p2-l2)2J (p2-l2)2 

The usual substitutions relate J0 to IQ. 

APPENDIX C. THE DIVERGENCES 

In order to avoid the difficulties associated with the 
infinite range of the Coulomb potential we have intro
duced the usual exponential cutoff factor e~Xr in Eq. 
(2.1), and pointed out that we would be interested 
eventually in the limit X —» 0. However, in Appendix B 
we saw that all of the integrals involved contain a 
term of order logX, which, of course, diverges in this 
limit. In Sec. 2 it was pointed out that these divergences 
correspond to zero-momentum insertions into external 
electron lines, and, therefore, lead to some phase 
modification. Physically, it would be unfortunate if 
interference effects depending on X should survive. For 
the case of Coulomb scattering, Dalitz1 has shown that 
these phase modifications are actually unobservable, at 
least through the third Born approximation. Kacser3 

has proven that the X-dependent terms cancel in brems-
strahlung to the order which we calculate here. Since 
we have neglected certain terms in the calculation, it 
expedient to separate off explicitly the divergent part 
of each term we retain. In order to do this we shall 
find it convenient to repeat Kacser's proof. 

As mentioned above, the divergences arise from zero-
momentum transfers to the nucleus, which correspond 
to the neighborhoods q = p , s, or 1 in the integrals of 
M ( 3 ) . The treatment of Jo below is typical. From Eq. 
(B5), we have 

TTP r2r r1 

I m J o = — / <k> d»[2p2(\-v)+K~]-l{p2+l2+K 

-2pl[ji cos(p, l )+(l-M2)1 / 2 sin(p,l) cos^]}-1 . 

The divergent part arises from the neighborhood of 
ju= 1. We can separate off a region of the y integration, 
say from 1 — 6 to 1, where p^>8, p^>\. Then we have 

Trip r2ir r1 

dWJQ= / d<t>\ ^ ^ ( l - ^ + X 2 ] - 1 

2 Jo J 1—5 
X[^ 2 +/ 2 +X 2 -2p . l A t ] - 1 , 

or 
TH U2 

divJ0= In \~0(8) 
2pr2 X2 

The 0(5) terms are independent of the limit A—> 0, so 
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that we have the expected result 

wH 4p2 

d i v / 0 = In—. (CI) 
2pr2 X2 

This term corresponds to r = 0 in Fig. 2(b), so that the 
insertion is into an electron line of momentum p, and 
X is compared to p. The form (CI) is that for which the 
cancellations occur, and is the most convenient for the 
subtractions. Similarly we find 

d iv / 0 = (ir2i/2sr2) ln(4?2/X2), 

d iv I=sd iv /o , ( C 2 ) 

d i v J = p d i v / o , 

divK0= ( 1 /P 2 ) d i v / o - (Vr 2 ) div/o. 

Thus for the divergent part of Ma®\ we have 

divM 0
(3) = czv(s)[{sa4-\-im) div/0— Y• s d iv / 0 ] 

X[2p,e,+ ek2p~2u(p) (C3) 

= 2sAr2C2~1c3Mam div/o. 

Similarly, 
divlf&

(3) = 2p±c<r1czMh™ div/o (C4) 

In M"c
(3) we have two divergent terms from q = p and 

q = l , respectively. 

divikfc
(3) = Czp~2vy4{p— k+im)e(p+irn)y4U div/o 

— £8P-2«fy4(l • r— k+p4j4+im) 
X e(l - y+pA7i+im)yAU div/o. 

As above, we find 

dwMc^
) = 2cdpip~2v(s)y4[(2p' e+ek)u(p) d iv / 0 

~2c3S4T-2v(s)yA(2s- e+ek)u(p) div/0. (C5) 
Whence, 

divMc™ 

= 2czc<r\2\_pMa?) divJo+S4Mbw div/o]. (C6) 

Collecting these results we have 

divM <3> = 2c8c2-
1r2M^lsi div/o+^4 d i v / 0 ] . (C7) 

Here the square bracket is real, and c%ci~x is imaginary. 
Therefore, 

div2 ReM<2)*M(3) 

= divlM^*M^+M^M^2 
= 2T%C2-

1 ( J 4 div/o+^4 div/o) (C8) 

= 0. 

I t is worth mentioning that even if only the lnX 
terms are kept in (C7), as opposed to In (X2/momenta) 
terms, that div|Jkf(3)|2 survives. The conjecture is that 
those lnX terms surviving in |M ( 3 ) | 2 are cancelled by 
the cross term 2 ReM^*M<4>. 

We also see that our expression for the asymmetric 
part of the^cross section may be written in a divergence 
free form by omitting the terms in ln(X2/momenta), as 
they stand, in the expression for the integrals in 
Appendix B. 


