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One-pion-exchange contributions to the differences between total cross sections of p and p on protons, as 
well as of 7r~ and ir+ on protons, are considered. It is found that the requirement of the correct sign for each 
difference determines the value of 52, the integration cutoff over momentum transfer. The calculated p— p 
difference is too small to explain the observed values in the range 10 BeV/c<P£<30 BeV/c, and short-
range contributions such as annihilation must still account for the difference. The x~—ir+ difference with the 
correct sign (for 52=ju2) is also too small, but for 52 = 4 ju2 and P^ = 4.5 BeV/c it is more than twice the experi­
mental value with the opposite sign. Since there is no annihilation effect for the ir~—ir+ difference, the process 
giving rise to the observed difference could even be twice as strong as previously suspected. Current notions 
concerning Regge poles indicate that one-p meson exchange should be most important. 

INTRODUCTION 

TH E Pomeranchuk theorem concerning the equality 
of high-energy particle and antiparticle cross sec­

tions is well known.1 However, all data to present, in­
cluding laboratory momenta as high as 28 BeV/c for 
proton-proton collisions, indicate that cross section dif­
ferences appear and are practically constant. Consider­
ing scattering on target protons, the differences oip—p, 
ir~— 7r+, and K~—K+ are all several millibarns.2 

I t seems reasonable that the strong, long-range in­
teractions might account for these differences. The ef­
fects of one-pion exchange have been investigated by 
various authors3,4 for several types of collisions. Similar 
considerations are here applied to determine the high-
energy differences. Requiring the predicted values to 
have the correct sign seems to imply the choice of the 
maximum value of the square of the momentum transfer 
A2

abs. max=52. Using 52= 4fx2 for the p—p case, the results 
indicate that the one-pion-exchange contribution is two 
orders of magnitude too small compared to the observed 
value. Thus it is concluded that short-range effects are 
needed to account for most of the difference in the 10-
to 30-BeV energy range. 

Carrying through similar calculations for the ir~—w+ 

difference depends on a knowledge of the pion-pion cross 
section. I t is found that the assumption of no pion-pion 
resonance explains approximately 10% of the observed 
value. When a pion-pion resonance is assumed, and the 
value of 52 determined by the p—p calculations is used, 
the result is a difference of more than twice that ob­
served but of the opposite sign. If this result is taken 
seriously, it indicates that the mechanism operating to 
produce the observed difference must, in fact, be twice 
as large as previously expected. Finally, however, if a 

* Supported in part by the U. S. Atomic Energy Commission. 
1 1 . Ya. Pomeranchuk, Soviet Phys.—JETP 7, 499 (1958). 
2 K. Winter, International Conference on Theoretical Aspects of 

Very High-Energy Phenomena, 1961, CERN Report 61-22. 
3 For theoretical treatments see F. Salzman and G. Salzman, 

Phys. Rev. 125, 1703 (1962); and E. Ferrari and F. Selleri, CERN 
Report 2845/TH 243 (unpublished). The latter also contains a 
bibliography of applications of the theory. 

4 S. D. Drell, Revs. Mod. Phys. 33, 458 (1961). 

value of 52=/z2 is used for consistency in the sign of the 
7r~—7r+ difference, the results are again only about 10% 
of the observed value. 

II. SHORT DERIVATION OF Aff^_„ 

In order to find the total cross section for nucleon-
nucleon scattering, first consider the process indicated 
in Fig. 1. Nucleon pi is incident on nucleon pi at rest in 
the laboratory system. A pion of four-momentum A is 
exchanged, and a group of particles m emerges from one 
vertex while group n emerges from the other. I t is, 
furthermore, assumed that m and n are always two well-
defined groups. In the center-of-momentum system, one 
group is contained in a small forward angular cone, while 
the other is in a small backward cone. Identical particle 
symmetry is only provided between particles of the 
same group. 

Using the Feynman rules we may write i}i~ c— 1) 

d*A 
-(27r)3(2o>A)(27r)8 

(2TT)4J ( A 2 + M 2 ) 

XKpl + A-pm)&(p2-A + pn) 

where MPI,A(M) is the invariant scattering amplitude 
for a pion and nucleon into the state m. MP2,-A(n) is 
similarly defined. 

The A integral may be performed and | SP1P2
mn \2 can 

be calculated. I t is then convenient to reintroduce the 
A integration with the minimum limit on A2 determined 

FIG. 1. One-pion-
exchange contribu­
tion for inelastic 
scattering to two dis­
tinct final groups of 
particles m and n. 

(m) 

Jfc- ~V(n) 
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by threshold singie-pion production at each vertex. At 
present we shall only assume that the upper limit on A2 

be small, or not too far from the unphysical pole at 
A2= —p2. I t will be shown that conservation of total 
energy fixes the remaining two limits. Using final-state 
phase space dpf—dpmdpn, and indicating the sum over 
final spins arid average over initial spins by a bar over 
each scattering amplitude, the partial cross section may 
be written 

(2TT) 6 d4A 
-dpmdpn(4:7rooA)2 

»pumJ (A2+/x2)2 

XL(2TYd(pL+A-pm)\Mpl,A(^)\2 

X (2TY8 (p2-A-pn) | M P 2 , _ A (n) | 2 ] , (1.2) 

where vplP2 is the relative velocity of the two nucleons. 
Since each vertex now closely resembles a meson-nucleon 
scattering process, it is convenient to define off-the-
mass-shell cross sections l 

(2TT)6 

0"PI,AO) = I dpm(2wy 
vv\A 

xKpi+^-pm)\MplA™)\\ 
(2TT)6 

^ 2 , - A W = / dpn(2wY 
^P2>—A 

(1.3) 

X5(p2-A-pn)\MP2,„A(n)\\ 

Summing over all possible states m and n and charges of 
the exchanged pion, and using apltA as a total pion-
nucleon cross section, the total nucleon-nucleon cross 
section is 

1 

(2^)4 

d*A 

(A2+/z2)2 

where X)c denotes the charge summation. Finally, 
multiplying through by EPlEP2vn the result is 

dAA 
A pi,A-l P2—A, (1.5) 

(2TT)4 C J (A2+/x2)2 

where TPltP2 is the Lorentz invariant nucleon-nucleon 
combination EPlEP2vPltP2(rPlP2, and the pion-nucleon 
vertices are similarly defined. 

I t is now to be assumed that rpifA is a weak function 
of A2 and can be well approximated by the experiment­
ally measured on-the-mass-shell values; i.e., at A2= — /A 
Thus the dominant A2 dependence in the integrand is 
attributed to the pole term. Further A2 dependence 
occurs in the integration limits and will be discussed 
later. Furthermore, Salzman and Salzman3 have shown 
for small A2 the exchanged pion appears in the center 

of momentum of each vertex as if it were an incoming 
particle with positive energy. Thus, a 7r+ incident on pi 
(in the rest frame of pi, A, and pm) also appears as a ir~ 
incident on p% (in the rest frame of p2, —A, and pn). 

In Eq. (1.5) the charge labels have been suppressed. 
If pi and p2 are both protons and the pion charge is 
denoted by a superscript on P , isotopic spin conserva­
tion allows the summation to be written as 

r =-
d±A 

(2TT)4 J (A2+M
2)2 

x[(5/4)rpl)A
+r2,2)_A-+(5/4)rpl>A-r^2,_A+ 

+4rpi,A+r332,_A++4rpi,A~ri?2>_A~]. (1.6) 

If pi is an antiproton, denoted by pi, while p2 is a proton, 
charge conjugation invariance allows the vertices to be 
written in terms of protons and charged pions as follows: 

rf4A 
( 4 I pi,A 1 p2,—A 

(2TYJ (A 2 + M
2 ) 2 

+i r^ 1 ,A- r P 2 , _A + +(5 /4) r p l ;A- t T P 2 i _A + 

+ (5/4)rpl,A-r^2)_A-). (1.7) 

Finally the antiproton, proton difference is found to be 

4 r J4A 
(AT)P1>P2 = -

(2TT)4J ( A 2 + M
2 ) 2 

X(r p i ,A
+ — Tpi,A~)(TP2t-A

+ — TP2,-A~)' (1.8)' 

III. KINEMATICS AND PHASE SPACE 

To be more general, let pi and ^2 now represent par­
ticles of different mass. Conforming to the notation 
introduced by Salzman and Salzman,3 we have 

X[^AVpi,ACrpi,A]i^AVpit-AOrpi,-A~]J (1.4) a i l d 

pi2=—w2, 

Furthermore, it is convenient to introduce as variables 
the energy of the group m in the rest frame of the pi 
vertex and the energy of the group n in the rest frame 
of the pi vertex. 

(Pi+Ay=-w\ 
and 

(#2_A)2=-jr2. 
The four integration variables A= (Ai,A2,A3,A0) may 

now be changed to the new variables A2, W2, W'2, and 
</> the azimuthal. angle. If the Jacobian of the trans­
formation is evaluated in the laboratory system, the 
result is 

J4A= And^dAndA^dA^ (l/^pL)d4dA*dW*dW'2-, (2.1) 

where A12= (Ai2+A2
2)1/2 and pL is the magnitude of Pi 

in the laboratory system (J 1*2] —0 in this.system). The 
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limits of integration for A2 have already been mentioned. 
It is now necessary to discuss the limits of integration 
for W2 and W'2. It is possible to find relations between 
quantities in the several Lorentz frames mentioned. 
These are all listed by Salzman and Salzman and for 
the present purposes it is sufficient to merely quote the 
result: 

A2=i U2- (w2+w'2+W2+W2) 

(w2-w'2)(w2+w/2y 

COS0 

W2 
[_(U2-w2-w'2)2-kw2w'2~]112 

Xl(U2-W2-W'2)2-4W2W'2Jf2, (2.2) 

where U is the total energy and 6 the angle between Pi 
and Pm in the over-all barycentric system. It is then 
obvious that for given W2 and W'2, the minimum and 
maximum values of A2 are given by 0=0 and 6=w, 
respectively. In particular, it is possible to write the 
equation as 

sin2 (0/2) 
A2= A2

min(W
2,W'2) + [_(U2-w2-w'2)2 

U2 

-4:W2wf2J}2l(U2-W2-Wf2)2-^WW,2Jf2, (2.3) 

where A2
min(W

2,W'2) is given by Eq. (2.2) with 0=0. 
It is to be noted that the 0-dependent term in Eq. (2.3) 
is positive semidefinite in the physical range of 0, W2, 
and W'2. A closer inspection of A2

min(PP,IF/2) reveals 
that it is an absolute minimum if W2=W'2—w2—w'2. 
It then has the value A2

min=0. However, contributions 
from nonexcited vertices are fairly negligible.4 For the 
particular cases of interest (W2—W/2=m2), the mini­
mum value of W2 and of W12 is (m+fj)2 to just create 
a threshold pion at each vertex (w=nucleon mass; 
ix— pion mass). For nucleon-nucleon scattering the lower 
integration limit on A2 is thus 

A2
abs. m i n= HIP- 2m2- 2 (m+M)2] 

-hlU2-^m2Ji2lU2-^{m+ii)2Ji2. (2.4) 

The function A2
m{n(W

2,Wf2) has the further property 
that it is an increasing function of W2 if W'2 is held 
fixed. Furthermore, if W'2=Wmin'

2= (ra+ju)2, the maxi­
mum value of W2 is obtained from the maximum value 
of A2

min. Since the absolute maximum of A2 is to be 
chosen by the requirement that it be not too far from 
the pole-value of A2=-
W2 is found by 

£± abs . max 0 — ZX n 

~fx2, the absolute maximum of 

,{W2m^W'2min), (2.5) 

because the 0 dependent term in A2 is positive semi-
definite. In fact, the role of W2 and W'2 are quite sym­
metrical for nucleon-nucleon collisions and the equation 

also defines JFmax'2. Finally the values of W2 and Wf2 

which satisfy 
82=A2

min(W
2,W'2) (2.6) 

form a boundary [with the lines W2= (w+/x)2 and 
W'2— (m+fjL)22 in the W2, W'2 plane of integration. One 
should note that values of 82 under consideration are 
here implied to be, perhaps, as large as 9/x2, in sharp 
contrast to the value A2=0(U2) allowed by conserva­
tion of energy near 0=7r. Thus, although values of 
A2=0(Z72) are allowed, the fact that a large fraction of 
the cross section arises from a very small region of A2 

near the pole is really the basis of these calculations. 
Simple algebraic manipulation allows Eq. (2.6) to be 
written in a more convenient form for calculation. For 
the case of nucleon-nucleon collisions (with W2/m2=x, 
Wf2/m2=y, and A2

aba. max=52) the result is 

x2+y2+l(U/m)2-22xy-(U/m)2(m2-82)(x+y) 
+ (£//w)2[(w2+52)2-J7252]=0. (2.7) 

As pointed out by Salzman and Salzman, the curve 
defined by Eq. (2.7) resembles one branch of an hyper­
bola, especially for large values of U2. Figure 2 shows 
the results of calculating the defined boundaries at a 
fixed energy U2~20m2, which corresponds to pL=SA 
BeV/c. It is especially to be noted that for fixed U2, the 
enclosed area in the W2, W'2 plane increases with in­
creasing 52. Although it is not shown graphically, it is 
also true that for fixed 82 the enclosed area increases with 
increasing U2 in a similar fashion. 

IV. p-p CALCULATIONS 

Using Eq. (2.1) and doing the A2 integration, Eq. 
(1.8) may be written 

Aop-p, p(p>L) — 
1 

2(2wy(mpLy 

1 1 

.A2
abs. min+M2 82+fX2. 

X f dW2dW,2tfnpL(<T+-<rJ)2w* 

X[f»Mer+-er.-)V», (3.1) 

where a± are the total 7r±-nucleon cross sections. The 
combination (TPltA

h— TPl^~) is evaluated in the labora­
tory system for pion-nucleon scattering, and A2 is set 
equal to — /x2. A change of the energy variable is then 
performed to W2 which is, in fact, the total energy in 
the pion-proton barycentric system. Using the experi­
mental data,5-8 Fig. 3 shows the results of the change 

5 S. J. Lindenbaum and L. C. L. Yuan, Phys. Rev. 100, 306 
(1955). 

6 R. Cool, O. Piccioni, and D. Clark, Phys. Rev. 103, 1082 
(1956). 

7 M. Longo, J. A. Helland, W. N. Hess, B. J. Moyer, and V. 
Peres-Mendez, Phys. Rev. Letters 3, 568 (1959). 

8 G. von Dardel, R. Mermod, P. A. Piroue, M. Virargent, G. 
Weber, and K. Winter, Phys. Rev. Letters 7, 127 (1961); 8, 173 
(1962). 
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U = 20 m2 

8//*% 1.2,4,6,9 

TABLE I. Proton-antiproton cross-section differences for 
several values of 52. 

(M+£) h^K- - ^ — ^ ^ 

FIG. 2. Phase-space boundaries in the W2, W'2 plane for several 
values of 82. U2 = 20m2 corresponds to pL = SA BeV/c. 

of variable. Several features are to be noticed; in par­
ticular: (1) <T+— (7_ near threshold is practially zero, 
(2) the 3-3 resonance gives a large positive contribution, 
but it is somewhat diminished by the factor pL near 
threshold, (3) the second resonance is just as important 
as the 3-3 resonance because pL is further from thresh­
old ; furthermore,- it has the opposite sign. 

Due to the strong U2 dependence appearing in Eq. 
(3.1) as 

1 4 4 
— for large £72, 

(mpL)2 U2(JJ2-\m2) U* 

it is reasonable to do the calculations at the low values 
of TJ2\ A(Tp~p could only be predicted constant if the 
integral somehow showed a U2 dependence. Once more 
it is to be understood that 82 is presumably in the range 
^2^82<9fi2 if the model is to be plausible. In fact, pre­
vious calculations in other applications of the model 
have extended the integration for 52>50/x2.9 In most 
cases the weight function over which the integral is 
performed was positive definite, i.e., the product of two 
physical cross sections. However in the present calcula­
tion, Fig. 3 has indicated the large negative contribu­
tions possible in the integrals. 

Due to the possibility of large negative contributions 
to the integral, a self-consistent determination of 52 is 
suggested. The calculations of A<r^PtP must yield not 
only the correct magnitude but also the correct sign. 
A study of Fig. 4 should indicate the situation more 
clearly. This is a reproduction of Fig. 2 with additional 
information about the weight functions. Along each axis 

(S/W2 
lA<r^lP(pU

2 = 20m2)2 
(mb) 

0.0001 
0.102 
0.148 

-0.247 
-0.617 

the three regions of pL(<r+—cr-) to be noted are: (1) the 
threshold strips, (2) the positive 3-3 resonance strips, 
and (3) the predominantly negative strips of the higher 
resonance. On the W2, W'2 plane are indicated the re­
gions of positive and negative contributions from the 
product of the two factors. I t is to be noted that the 
two negative wing areas contribute appreciably for 
d2>4fi2. Thus, the graph should indicate that 52=/x2 

would give the correct sign but would not give the maxi­
mum value, while 52=9/x2 will certainly contain too 
much negative contribution. 

The results of the actual calculations for the several 
values of 52 are shown in Table I. I t is thus found that 
52~4ju2 allows a maximum difference in the cross sections 
with the correct sign. Further increase in 82 quickly 
produces a change in the sign and an increase in magni­
tude. The value of 0.15 mb at U2=20m2 is, however, 
quite inadequate to explain the large values observed 
(order of 10 mb). Furthermore, once 52 is chosen equal 
to 4/x2, the calculations at U2>20m? will quickly turn 
negative. This is simply a consequence of the fact noted 
above that the boundary curve moves outward in the 
W2, W2 plane for an increase in U2 just as in b2. In 
addition, the l /£/4 dependence outside the integral 
serves to rapidly dimmish the magnitude of Aap-P,p. 
Calculations with 52 fixed at 4^2 and U2= AOm2' (pL~17.8 
BeV/c) indicate that Aap_PtP is approximately equal to 
- 0 . 0 5 mb. 

As a final calculation for the p—p difference, 52 can 
be assumed to be a function of U2 such that the area 
in the W2, W'2 plane remains constant and equal to that 
which gives the positive maximum found for U2=20m2 

>.5 5.0 5,4 

9 For example, seel. M. Dremin and D. S. Chernevskii, Soviet 
Phys.—JETP 11, 167 (1960); 12, 94 (1961). 

FIG. 3. The difference of the invariant Ti^-nucleon scattering 
combinations as a function of the square of the total barycentric 
energy. 
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(W/m) 

FIG. 4. Figure 2 is reproduced indicating the regions of positive 
and negative contributions from the product of the two ir—N 
invariant weight functions. 

and 52—4/x2. This function is most easily approximated 
by using Eq. (2.6) fitted for W2=W/2= 2.1m2; this point 
lies on the boundary for U2=20m2 and 52=4ju2. The 
result of this substitution is 

d2(U2) = -3Am2+^\V2- (U2~±rn2)112 

X(U2-8Am2)l'2l, (3.2) 

for U2>8Am2. As U2—»co, this equation implies 
d2(U2) —> 0. Table I I indicates several values of d2(U2) 
computed from Eq. (3.2). 

Using the value of the integral computed at U2= 20m2 

and S2=4/z2, the cross-section difference can be scaled 
as a function of U2 to yield 

^P-P,P= (20.7) 
(U/m)2[(U/2m)2-

52(C/2) 

V52(E/2)+M2 
J mb, (3.3) 

where A2
abS. mm has been set equal to zero. The results 

of calculations with Eq. (3.3) are also shown in Table I I 
(rounded to two decimal places). I t is obvious that the 
U~A dependence is overwhelming; using 82 as a function 
of U2 to- maintain the maximum positive phase space 
integral serves only to keep the correct sign, but the 
magnitude still decreases rapidly. 

Briefly, there are two viewpoints to interpret these 
. calculations. If it is assumed that the cutoff value 
52^ 4/x2 a t U2= 20m2 is determined by requiring the cor­

rect sign in Ao-p-p,p, then the resulting magnitude is 
quite inadequate to explain the observed values. If, on 
the other hand, values of A2~9/*2 or larger but still not 
extremely far from the pole at —M2 are allowed, the 
calculations indicate that the peripheral contributions 
are nearly one millibarn of the opposite sign. Thus, the 
actual mechanism accounting for the measured values 
of A<Tp-PrP would have to be slightly stronger than 
previously supposed. If a mechanism were found to ac­
count for a difference of 10 mb, it is not difficult to 
imagine it could equally well account for 11 mb, or a 10% 
increase. Such a process is usually thought to be the 
strong, short-range annihilation effect. If annihilation10 

is assumed to explain only the major part of the dif­
ference in the cross sections at 8.4 BeV/c, then the 
remaining, undisclosed mechanism would have to be 
stronger than previously suspected in order to cancel 
the negative peripheral contributions. In the case of the 
ir~—7r+ difference, which will now be treated, the an­
nihilation channel does not exist, and the necessity of a 
stronger but yet undisclosed channel is perhaps more 
clear. 

V. * - - * + CALCULATIONS 

A derivation following that schematically presented 
in the p—-p case may now be performed for pions inci­
dent on protons. In Fig. 1, pi is to be considered a pion 
with incident laboratory momentum equal to pL> The 
result may again be written as in Eq. (1.5) where 
rPiP2

=C0Pi£p2^i,P2°>iP2> a n ( i rpi.A is a pion-pion inter­
action. If the two pion charges at the pi vertex are 
indicated by a double superscript on rPl,A, the charge 
summation for an incident TT+ leads to 

d'A 
-{(rpl)A

+-+frpl,A
+0)rP2,_A+ 

(2TT)4J ( A 2 + M 2 ) 2 

+ ( r p l , A 4 + + i r p l , A
+ 0 ) r P 2 ) _ A - } . (4.1) 

After the summation for an incident ic is performed, 

TABLE II. Table of "optimum" 82 and resulting proton-anti-
proton cross-section differences for various total energies. 

(U/m)2 

20 
30 
40 
50 

100 
200 
500 

LW2)M2 

4.0 
2.8 
1.8 
1.3 
0.6 
0.3 
0.1 

(,Ao*p—pt p) 

(mb) 

0.15 
0.06 
0.04 
0.02 

<0.01 

10 An estimate of the annihilation cross section at 2 BeV/c is 
as high as 25 mb.; see R. Armenteros, C. A. Coombes, B. Cork, 
G. R. Lambertson, and W. A. Wenzel, Phys. Rev. 119, 2068 
(1960). 
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NON-RESONANT <T, 

FIG. 5. 
resonant 
energy. 

The invariant TT—X weight function for nonresonant and 
ci as a function of the square of the total barycentric 

the 7r~—7r+ difference is found to be 

( A l )pr—pi+,p2 
(2TY J 

d*A 

(2wyJ (A2+M
2)2 (fr Pi,A 

(2 ) . 
P1.A 

(1) 

3 1 PI,A 
(0) ) ( r P 2 f _ A

+ - i v _ A - ) , (4.2) 

state of isotopic spin T by or, Eq. (4.2) becomes 

1 

2(27rY(mpLy 

1 1 

• A2
abs. m i n + M

2 52+M2J 

|72(^2_4) v l /2 
dW2dW'2\ f J (1^2 —Jcri"-3°"o) 

4 / J * - ' 

X[wMer+-(r - - ) ] i r ' v (4-5) 

where the Lorentz invariant -n—w combination is most 
easily considered in its own center of mass, and the ir—p 
combination has already been discussed. 

In order to proceed further, the TT—TT cross sections 
must be known. Referring to the work by Anderson 
et ah,11 it will be assumed that o-o^a-2= 70 mb at thresh­
old. Also it is assumed that all <JT asymptotically ap­
proach 35 mb at high energy; in particular <J% and <ro 
monotonically decrease to 35 mb. The present calcula­
tions are not sensitive to possible high energy differences 
of a few mb compared to 35 mb. I t is then possible to 
use the results of Anderson et ah to infer the resonance 
form of o"i. For comparison a nonresonant form for ai 
was also used. The pion-pion weight function appearing 
in Eq. (4.5) is shown for these two cases in Fig. 5. Note 
that the nonresonant curve is everywhere positive, but 
the resonant curve is almost everywhere negative except 
near threshold. 

Assuming that 52=4/z2, as determined for the p—p 
case, is characteristic of the one-pion exchange in 
general, Fig. 6 indicates the region on the W2, Wn plane 
over which the integral is to be performed for U2= 10m2 

( ^ L = 4 . 2 BeV/c). Also shown are the regions of positive 
and negative contributions from the product of the 
pion-nucleon and resonant pion-pion factors. Even be-

where the superscript (2), (1), and (0) on TP1,A now 
indicates the iso topic spin of the two-pion system. 

Kinematic and phase-space calculations are quite 
similar to those for the p—p case; however, they are 
not as symmetrical. In particular the two variables W2 

and W2 are again to be introduced. Equation (2.1) 
remains valid, and Eq. (2.2) is to be used with w2=fj,2 

and wf2=tn2. Exactly the same arguments presented 
in Sec. I I lead to 

A2
abs.min(£/2) 

= A2[J72, 0 = 0, W2= (2M)2, W'2= ( W + M ) 2 ] , (4.3) 

and the boundaries in the W2, W2 plane are 

A ^ s . ^ ^ ^ ^ A ^ i n ^ 2 , ^ 2 ) , 

W2=(2fx)2, \ 

W'2= (m+fx)2. 

(4.4) 

ir=IOnT 

2 1.3 1.4 

FIG. 6. Phase-space boundaries in the W2, W'2 plane for 52 = 4̂ u2, 
£/2=lGm2 (^L = 4.2 BeV/c). Regions of positive and negative 
contributions from the product of the x—N and resonant TT—TT 
invariant weight functions are indicated. 

If we denote the total pion-pion cross section in the 
11 J. A. Anderson, Vo X. Bang, P. G. Burke, D. D. Carmory, 

and N. Schmitz, Revs. Mod. Phys. 33, 431 (1961). 
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TABLE III. ir~—7r+ cross-section differences in mb for two 
values of 52 and for two models described in the text. 

Case 

Resonant 
Nonresonant 

5 2 = V 

- 6 . 5 
+0.03 

Aov" 
Threshold 

+0.2 
+0.3 

fore the calculations are performed, Fig. 6 strongly sug­
gests that 52=4ju2 allows too much negative contribution. 
Thus, the maximum positive contribution due only to 
the 7T—7r threshold and w—N (3,3) resonance is also 
considered. This positive contribution corresponds 
roughly to an integration cutoff of S2=/z2. The results 
of these calculations are shown in Table III. 

The observed value of Aov-_7r+,:p=2.6 mb at ^ L = : 4 . 5 
BeV/c cannot be fitted by these calculations. As in the 
p—p problem, the maximum positive value is not ade­
quate to explain the difference in the cross sections. 
However, if 82 is increased to only 4/x2, which is still 
quite near the pole, the resonant T—T cross section 
implies a value more than twice the observed magnitude 
but of the incorrect sign. Since there is no short-range 
annihilation process in this case, the situation is now 
even more puzzling. If the one-pion-exchange contribu­
tions are to be seriously considered for 52^4/x2, the 
mechanism sought to explain the large observed value 

of Aa7r--ir+,p must, in fact, be two or three times 
stronger than previously expected in order to cancel the 
peripheral contributions. 

VI. CONCLUSIONS AND ACKNOWLEDGMENTS 

The above calculations have indicated that by con­
sidering the high-energy difference of particle and anti-
particle cross sections in the one-pion-exchange model, 
a self-consistent determination of the sign implies too 
small a magnitude for the difference. Although this 
result seems rather discouraging, it is, in fact, in agree­
ment with the current notions concerning the im­
portance of Regge poles in high-energy cross sections. 
Udgaonkar12 has listed the Regge pole trajectories 
entering in various combinations of cross sections. In 
particular, the pion trajectory does not contribute to 
any of the particle, antiparticle differences. Since the 
T~~—TT+ difference involves only the p-meson trajectory, 
it would be interesting to further investigate the peri­
pheral model for one-p-meson exchange. Should this 
channel be effective in fitting the observed values, it 
would also indicate the consistency of our choice of 52 

in the above calculations. 
The author wishes to thank Professor Ernest M. 

Henley for suggesting the problem considered and for 
several very helpful discussions while the work 
progressed. 

12 B. M. Udgaonkar, Phys. Rev. Letters 8, 142 (1962). 


