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The purpose of this paper is to investigate some consequences of the assumption that elementary particles 
are not pointlike, but are rather, extended structures in Minkowski space. 

In terms of the hypothesis that the internal quantum states of such structures correspond to internal 
"rotator" levels belonging to the Hilbert space containing all irreducible finite-dimensional representations 
of the group SOs* of three-dimensional complex rotations (isomorphic to the Lorentz group), we obtain a 
particle classification which recovers (including leptons) the Nishijima-Gell-Mann classification of elemen
tary particles. In this way, we justify the empirical Nishijima-Gell-Mann relation between isobaric spin, 
strangeness, baryon number, and charge. Moreover, as will be shown in a second paper, the new internal 
("hidden") degrees of freedom which correspond to isobaric spin, strangeness, and baryon number open up 
new possibilities for understanding qualitatively and quantitatively the elementary particle interactions 
and decays; while a simple extension of "fusion" theory yields possible external state vectors and equations 
associated with any given internal quantized states corresponding to known elementary particles. 

INTRODUCTION 

IN a series of preceding papers1 the idea, proposed by 
two of us (DB and JPV), of dropping the point-

particle model and of introducing new kinematical 
variables in Minkowski space-time in order to represent 
extended material distributions enclosed within timelike 
tubes, has been systematically developed. Briefly, the 
reasons for doing so are the following: 

(a) Recent high-energy collision experiments by 
Hofstadter and his collaborators2 suggest that particles 
are not points moving along timelike world lines, as 
assumed usually in quantum theory, but are instead 
material distributions extended in space. 

(b) The new quantum numbers, isobaric spin, 
strangeness, and baryon number, should be associated 
to new degrees of freedom, that is, to new "internal" 
collective kinematical variables. Now the usual point 

* This paper is a summary of the results of a common program 
of research on a particularly simple rotator model started three 
years ago in the Institut Henri Poincare in collaboration with 
David Bohm. Since then, starting from the same basic idea, the 
authors have investigated a wide range of more complex models 
which will be discussed and interpreted in subsequent papers. 
The contribution of each author is indicated as far as possible in 
the text itself. Notations are as usual: All Latin indexes vary from 
one to three, Greek indexes vary from one to four (with xi — ict)-, 
repeated indexes implying the classical summation convention. 

*D. Bohm and J. P. Vigier, Phys. Rev. 109, 1882 (1958); 
F. Halbwachs, P. Hillion, and J. P. Vigier, Nuovo Cimento 15, 
209 (1960). 

2 R. Hofstadter, Revs. Mod. Phys. 28, 214 (1958). 

of view is that such variables, if they exist, belong to a 
new abstract space (assumed, in general, to be 3 or 4 
dimensional with Euclidean metric) quite independent 
of Minkowski space-time. As a result, "external" and 
"internal" motions are absolutely disconnected and 
there is no relation between them. This at first sight 
does not seem satisfactory and it is tempting to inves
tigate the possibility that these "internal" variables 
correspond in fact to new "hidden" over-all internal 
motions of extended structures endowed with definite 
symmetries in physical space-time. In this case, one 
expects that there should appear a connection between 

^external space-time and internal isobaric spin space; 
and we find, indeed, that external and internal states 
belong to finite-dimensional representations of isomor
phic groups acting, as we shall see, on different mani
folds.3 (This was also assumed independently by 
Iwanenko.4) 

(c) Part of the divergence difficulties of present 
quantum field theory are bound up with the assumed 
pointlike aspect of particles and their representation by 
8 functions. The introduction of extended models as 
starting point is reasonable since they offer the possibil
ity of a natural "cutoff" if their dimensions are ~ to 
0.6X10-13cm. 

3 The external Lorentz group acts on Minkowski space while 
the internal group operates on the manifold of the three-dimen
sional complex rotation group. 

4 A. Brodski and D. Ivanenko, Nucl. Phys. 13, 447 (1959). 
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(d) Finally, several of the authors have further 
reasons5 for assuming that particles are indeed extended, 
since this notion is part of the scheme which they have 
proposed in the frame of the causal interpretation of 
quantum mechanics (in particular, the idea of the 
possibility of hidden variables). 

We shall attempt to develop the idea of extended 
particles in the following way. 

In the absence of any clear experimental indication 
concerning the new degrees of freedom^ we start from 
the indirect hint given by the Nishijima-Gell-Mann 
scheme of internal quantum number and try to discover 
a new "internal" group G which corresponds to possible 
internal invariance properties compatible with real 
space-time structures. The finite-dimensional irreducible 
representations of G should then yield the desired 
quantum numbers and suggest possible physical 
interpretations of the new degrees of freedom. 

More precisely, we consider the original extended 
model as an heuristic analogy which serves only to 
help us to discover the new internal mathematical 
structure. One proceeds at some stage to pass from the 
assumed—but as yet unknown—extended structure to 
an abstract model defined by its invariance under a 
suitable internal group (our new isobaric group G), 
maintaining, however, general requirements for a 
structure in Minkowski's space-time. This line of 
research was essentially proposed by Finkelstein in a 
very interesting paper6 which anticipates some of our 
results. 

I. NONRELATIVISTIC MODEL 

We start from the basic assumption that the isolated 
particle, described in first approximation by the 
ordinary pointlike picture, can be treated; in a second 
approximation, in terms of two kinematical frames 
(orthonormal relativistic tetrads) a^fj) and V € ) ( r ) 
centered on the same point #M(T), which latter coincides 
with the above pointlike picture. The parameter r is 
the proper time along the world line followed by x^. 
The index £ ( £ = 1 , 2, 3, 4) labels the vectors and n 
(fi= 1, 2, 3,4) their components; £ = 4 corresponding to a 
timelike vector and ju=4 to the time components, a^ 
and b^ will be called for short the L and T frames. 

This model may be called a relativistic rotator. I ts 
fundamental character is the localization, not only of 
the center #M, but also of the two sets of vectors, in the 
frame of Minkowski space-time, so that the supplement
ary "internal" parameters needed for the description 
of the various particles have a "realistic" meaning 
related to the relativistic world (unlike what happens 
in the usual theories implying some abstract "isobaric 

6 See L. de Broglie, Une tentative d'interprestation causale . . . 
(Gauthier-Villars, Paris, 1956); D. Bohm, Phys. Rev. 85, 166 
and 180 (1952); D. Bohm and J. P. Vigier, ibid. 96, 208 (1954); 
J. P. Vigier, Structure des microobjets (Gauthier-Villars, Paris, 
1957). 

6 D. Finkelstein, Phys. Rev. 100, 924 (1955). 

spin spaces"). Such a model is able to lead to many 
kinds of extended pictures, but all the latter ones have 
the common character that they are describable as 
structures in Minkowski space-time. This is indeed the 
basic characteristic the present theory. 

The complete treatment of the so-defined rotator 
needs two kinds of parameters: first, the "external" 
parameters which characterize the so-called "fixed," 
or L, tetrad, with respect to an arbitrary relativistic 
"laboratory" frame, namely, the relativistic coordinates 
Xp of the rotator center and the parameters defining 
the orientation of the tetrad (we have thus ten param
eters) ; second, the six "internal" parameters which 
define the relative orientation of the T tetrad with 
respect to the L tetrad. 

Now in addition, we shall make two supplementary 
assumptions which simplify the problem. 

First, the laws of evolution of the internal parameters, 
that is, the laws of the relative motion of both tetrads, 
are independent of the external parameters (of the 
global motion of the structure considered as a block) 
at least in the absence of interaction with external fields. 
Thus, the six internal kinematical parameters have an 
intrinsic character and define, as we shall see, the 
manifold on which operates our new isobaric spin 
group G. The two first sections of this paper are devoted 
to the separate study of this internal motion. 

Second, the internal structure is assumed to possess 
spherical symmetry; that is, the T frame, considered as 
a simplified description of the structure, can be chosen 
arbitrarily, at least as for its spacelike vectors, in the 
same way that for the description of the classical motion 
of a sphere all the systems of orthogonal axes rigidly 
bound to the sphere are equivalent. 

As a first step, let us consider the nonrelativistic limit 
and assume that the particle structure is represented by 
two kinematical three-dimensional frames ak

{r\ bk(r), 
the internal configurations corresponding to the relative 
orientation of bk

{r) with respect to a^r) expressed by 
three independent parameters. This means the particle 
geometry is the form of the material distribution 
carried along by the parameter transformations through 
which we denote the chosen internal motion. Whatever 
shall be the chosen parameters, it is clear that the 
internal state of the nonrelativistic model is represented 
by a definite element of the rotation group SO%. 

We now recall well-known considerations about the 
rotation group in order to particularize the manifold 
of the group. 

For the unit vector and the rotation axis having the 
components: 

Y\ = sin/3 cosa, F 2 = sin/3 since, r 3 = cosi# (1) 

(where a and (3 are its spherical coordinates), one takes 
the point with measure siny on this vector (2y is the 
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rotation angle) and one defines the point P: 

y i = siny sin/3 cosa, y% = siny sin/3 since, 
^ 3 =sin7 cosj6. (2) 

Evidently, there is a bicontinuous correspondence be
tween the points P which fill the bowlwith radius 1, and 
the elements of the rotation group SO3. But this corre
spondence is neither one-to-one in the one sense nor in 
the other, since the different rotations 7 and IT—7 
around the same axis correspond to the same point P. 
On the other hand, the points (yh y2, yz) and (—3>i, —y^ 
—yz) correspond to opposite rotations around opposite 
axis, which are identical. The first ambiguity is removed 
by considering the space R% to be inside a four-dimen
sional Euclidean space RA, and by endowing the point P 
with a fourth coordinate, COS7: 

yi= sin7 sin/3 cosa, yi— siny sin/3 sina, 

Xy3=siny cos/3, y0= COS7. (3) 

As a consequence, P now lies on the hypersphere S% 
with radius 1 in the four-dimensional space R4. This 
hypersphere is the Riemannian manifold of the rotation 
group and the configuration space of the internal 
theory, provided two opposite points are regarded as 
identical (the hypersphere is the covering manifold of 
SOz). In other terms, to each point y» of Sz (all the yM 

are real and we have y$?=}), corresponds a 3X3 
rotation matrix Qy=£l-y which carries a^r) on bk{r): 

fefe(r) = Qy
nak<

r\ %rsttyrt= &st, 

or in matrix form 

(6*) = Otf(a*), W = l . (4) 

The internal motion of the particle is thus represented 
as the motion of a point on this hypersphere in the same 
way as the "external" motion of a pointlike particle 
is represented as the motion of a point in a Euclidean 
space R%. 

The theory is invariant under the rotations independent 
of time acting on the fixed triad, owing to the general 
rotation invariance of the nonrelativistic physics, and 
on the other hand under the rotations independent of 
time acting on the moving triad, owing to the arbitrary 
choice of the latter implied by the assumed spherical 
symmetry. With respect to the group SOz, these trans
formations are, respectively, the right and the left 
translations on the group. More precisely, let us 
designate by tty the rotation from fixed to moving frame, 
related to the moving point y(t) on Rz, and by Qyi 
the rotation of the (aM) frame, related to the point yh 

and by tiy2 the rotation of the (#M) frame, related to the 
point 3̂ 2. We pass from the frames ( a j , (#M), to the 
transformed frames (a / ) = ft^i• (aM),. (b/)=tiy2* {by). We 
then have ( V ) ^ ^ ' ' (#/)'> w ^ h the new rotation Qy> 
from new fixed to new moving frame, related to the 
new moving point y'(t) defined by the fundamental 

formula: 
£ly'—Qy2'Q,y'Qlyl~. (5) 

Such a transformation acting on the elements of a 
group is referred to the following general conception due 
to J. M. Souriau. If G is some group with elements A, 
B, C • • •, we call bilateral transformation on G that 
operation which transforms each element C into 

C' = FB
A(P) = AC&-\ (6) 

Each transformation FB
A is thus labeled by two definite 

elements A, B of G. I t is easily shown that all these 
transformations form a group, called the bilateral group 
on G: Bil(G), with the rules 

FBA-FB>A' = FBB>AA', (FB*)-i = Fr**-\ (7) 

Of course, two transformations FB
A, FB'A' associated 

with two different pairs of elements of G are not 
necessarily different. More precisely, let us consider 
the direct product G?=GXG composed with the 

elements f R J with the rules 

(X>C> 0"'=C) « 
the unity being, of course, f . J. We can obviously 

associate with each element ( ^ ) of G2 the element FB
A 

of Bil(G) with the same multiplication rule, but in 
general this correspondence is not an isomorphism. 
Indeed, the unity of Bil(G) is defined by 

IB*(0 = ACB-l=C (9) 

for any C. In particular, for C= 1 we have AB~l= 1, so 
that A and B are identical. Now the condition 

ACB-^ACA-^C (10) 

for any C means that A commutes with all the elements 
of G, and belongs to the center 6 of G. Thus all elements 
of Bil(G) expressed by FAA, A being any element of 
the center 6, are identical to the unity of Bil(G); this 

unity corresponding to the different elements ( J of G2. 

The set ( J with A(E® builds the nucleus of the 

homomorphism between G2 and Bil(G). In other words, 
the bilateral group is isomorphic to the quotient group 
G2/Q. In the case of the group SC^ we have simply 

Bil(S0z) = S0zXS0z=S04/<3 (11) 

(g is the two-element group 1, —1), so that our con
figuration hypersphere admits as invariance group the 
whole four-dimensional rotation group in R4. 

The algebra of our internal group G is easily estab
lished. The infinitesimal left and right translations can 
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be expressed, respectively, by 

y,, - » ( l + a ' Z * ) / ^ , y» -> ( l + a ' ^ ) ^ , , (12) 

where a1 and aH are arbitrary real infinitesimal param
eters (i= 1, 2, 3), Li and Ri are six 4X4 matrices which 
are the infinitesimal generators of the left and right 
translations on SO3, respectively. Li and Ri are indeed 
left and right quaternion bases as we have: 

L i L ^ - R i t f ^ - l , (13) 

and the same holds for the other indices. Also 

L^Lr^-U, (14) 
and 

L1L2=-L2L1=Lzy (15) 

with cyclic permutation. The same relations are valid 
for the Ri. 

Finally all the Li commute with all the Rk. We have 
then : 

5yM= (aiLi+a'iR^y,. (16) 

Let now F(y) be any function defined in R±', we have, 
by putting d^d/dy^: 

di=dp(Li)i„,yP9 di-=dll{Rt)liVyv, (17) 

8F(y)=(aidi+a'idi')F(y). (18) 

The operators di and 6/ obey the relations: 

a^=a/d/=a2, * (19) 

[d< A' ] = — lUjkdk, [di,d/~] = —2eijkdk, 

[ M * / ] = 0, [a < > d 2 ]=[d/ ,d a ] = 0. 

According to the ordinary procedure, we deduce from 
these infinitesimal generators of the invariance group 
acting on the configuration manifold, the corresponding 
(Hermitian) quantum operators by multiplication with 
h/i, namely, 

Jk=(h/i)dki Jk'=(h/i)dk'9 P=-m\ (21) 

with the commutations rules 

These commutation relations imply evidently the 
existence of three commuting operators, such as, for 
example, J2 , Jz, Jz, and a corresponding series of 
corresponding eigenfunctions Y(l;m,m') (generalized 
spherical functions) satisfying 

JW(l;fn,m')(y)==hn(l+l)Y(l;m,m')(y), 

JzY(l;mJm
f)(y) = hmY(l; m,m')(y), (23) 

Jz'Yil] m,m')(y) = hm'Y(l; m,m')(y), 

where I can take all possible values 0, ^, 1, • • • while m 
and m1 take independently all values — I, — Z+1 • • • 
1-1,1. 

As one knows, any function F of y can be developed 
on the set of the functions Y(l;m,m')(y). These func
tions span the whole Hilbert space of the functions of y. 
As Wigner has shown, the F with fixed values for I 
and m' span an invariant subspace which transforms 
under the irreducible representation D(l) of SO%. 

II. RELATIVISTIC MODEL 

According to our program we now pass to the 
relativistic theory of extended particles. In the frame 
of the first line of research let us assume that extended 
classical relativistic particles can be represented 
schematically by two kinematical frames a/^ and b^ 
centered on a moving kinematical point %(r ) . These 
new internal variables form two frames called, respec
tively, L and T frames. Their relative orientations which 
correspond to the elements of the homogeneous Lorentz 
group, will define the configurations of our system. 

As was shown by Cartan and by Einstein and Mayer, 
if one introduces the following set of skew self-dual and 
antidual tensors associated to a^ and b^ by 

a^W±=€"^W^^« ± ( f l M (r ) f l F (4 )_ f l F (r ) a | | (4 ) ) j 

(B|WW±= e" V'>6,<»± (V r ) fc C 4 ) -k ( r ) fc ( 4 ) ) , 

one can form their three independent components: 

The Ak
ir)+ constitute a triad of complex orthonormal 

fixed vectors and the Bk^
r)+ a triad of complex ortho-

normal moving vectors, which span a three-dimensional 
complex Euclidean space Ez

+. In the same way Ak^
r)~ 

and Bk
(r)~ span a complex conjugate three-dimensional 

Euclidean space Ez~. Now, if the relativistic tetrad 
a/® undergoes any special Lorentz transform A, which 
carries it onto the tetrad &/*>, the corresponding 
complex triad Ak

(r)+ undergoes a definite three-dimen
sional complex rotation which carries it onto Bk

(r)+ and 
the correspondence between the connected Lorentz 
group S&4 on a^) and the complex rotation group 
SO3* on Ak

{r)+ is an isomorphism. Of course the same 
isomorphism happens for the three-dimensional rotation 
group on Ak

{r)~ in the space £3~. 
This important statement allows us to introduce the 

hypersphere S%+ in the four-dimensional complex 
Euclidean space E±+ as the manifold of the group 503*, 
that is, as configuration space for our internal states, 
and to extend the preceding nonrelativistic theory to 
the relativistic case by Cartan's "complexification" 
procedure. 

Indeed each relative orientation of the T frame with 
respect to the L frame, that is, each internal configura
tion of the structure, may be expressed by the two 
(conjugate) three-dimensional complex rotations which 
correspond to the Lorentz transform under considera-
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tion; that is, finally by a pair of opposite points (sM, — 2M) 
on the complex hypersphere £3*. 

As regards the invariance of the theory, we shall 
first assume, as an abstract generalization of the above 
nonrelativistic treatment, the formalism to be invariant 
under independent Lorentz transforms acting on the 
fixed and moving tetrads. This amounts to consider as 
invariance transformations the right and left transla
tions on the three-dimensional rotation group, that is 
the bilateral group Bil(,S03*). In the same way as above, 
this bilateral group is isomorphic to SO^XSOz*. 

We have thus the infinitesimal transformations: 

<5^= (aiLi+a'iRi)^,, (26) 

where a\ an are independent infinitesimal complex 
parameters, with the same meaning as above for Li and 
Ri. Any function F(z) defined in 64 depends both of 
Re (2) and of Im(V). But we can also consider as in
dependent variables the two complex conjugate vari
ables Zp and z^*, which we may write zM

+ and zf~, 
which lie, respectively, in the spaces E^~ and £4~. We 
have thus: 

bz± = (a^U+a'^R^z^. (27) 
If we pu t : 

d i ± = d i l
± ( i < ) ^ , ± , d/± = d»±(Ri)»vzv±, (28) 

we get 

dF(z+,z-)= (a»+a»++ai-dr+a^a/+ 

+afi~d/-)F(z+,z-). (29) 

We then introduce the quantum operators: 

/<*= (h/i)d& / / ± = (h/i)d/±, 
J2±=Jt±Jj*==Ji'±Ji'±, (30) 

with the relations7: 
7 See reference 6. 

C/<
±^i±]= (ftAK*/**, C//V/±]= (V*k,W7± 

C/2V^]=C/2V/±]=C/2V/F]=C/2V/ :F]=o. 
(31) 

As a consequence, we can consider six commuting 
operators, namely J2±, J?^, J^, and seek their common 
eigenfunctions. As the manifold is not compact, we know 
we get first a continuous spectrum corresponding t o the 
infinite-dimensional representations of the group. Mak
ing the plausible assumption these representations will 
play no role in our theory which considers only stable 
quantum states, we shall exclude these functions. This 
entails the drawback that the remaining discrete 
eigenfunctions no longer constitute a complete set for 
all the functions F(z+,z~). But it can be shown that they 
do form a complete set for the functions of the form: 

F(2+,2-) = P(s+) .P ' (s - ) , (32) 

where P and P' are polynomials. In the present theory, 
we shall restrict ourselves to such functions. Now the 

discrete eigenfunctions have the form: 

£7(Z+,Z~; m+,m/+,nr,mf~) (z+,z~) 

= F (/+; m+,m'+) (*+) -YQr; mr.m1-) (sr), (33) 

where Y(l±;m±
Jm

,±) have exactly the same form as 
the generalized spherical functions Y(l;m,m') con
sidered in the nonrelativistic case. One knows, moreover, 
that l+ and l~ take independently integer or half-integer 
values, m± and mf± lying in the sets 

- J ± , - / ± + l , • • • , / ± - l , / ± . 

The construction of a Hilbert space with these 
functions raises some difficulties, as the configuration 
space 53*^ is not compact and therefore allows no 
converging integration. Nevertheless, Souriau and one 
of us have recently suggested an indirect way of 
computing an invariant measure for the polynomials in 
z^.8 Let us consider the functions of the rotation, 
defined on 83*, and extend them analytically to the 
whole space 64. The eigenfunctions of 72+ , which are, 
in fact, the spherical functions on £3*, then appear as 
the trace on 6*3* of the harmonic polynomials P(zfl

+) in 
64. Moreover, each combination F(zlx

+) of these 
polynomials P(zfl

+) defined on 53* may be endowed in 
an unique way with a harmonic extension F(z}X

+). This 
extension satisfies 

A+F(z+) = 0, (34) 

in the whole space 64, and 

F(z+) = F(z+) on S3*. (35) 

Now if we consider the value F(0) of P(2M
+) at the 

center of the sphere, we know it provides a measure of 
F(zfx

+) which is invariant under the rotations in (B4, so 
that we can write by definition: 

(F(z+))=F(0). (36) 

This is immediately generalized to the eigenfunc
tions common to J2+ and P~ which are products of 
polynomials: 

F(z+,z-) = P(z+)-P'(z-), 

each of them being harmonic, respectively, with respect 
to the two operators: 

A+=dydvf-dvf, A-=d2/dzlrdzlr, 

so that the product is harmonic with respect to A = A+ 

+ A~. We thus can define the harmonic extension 

F(z+,z-)=P{z+)-P{z-), (37) 

and consequently the invariant measure 

(F(z+,z-))=F (0,0). (38) 

I t is now easy to see that : 

(P(z+) • P' (r-)>= (P(z+)) • (P' («r)>. (39) 

F. Halbwachs and J. M. Souriau (to be published). 
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This measure coincides in the real case with the ordinary 
measure obtained by integration of F(y) over the 
compact sphere 6*3. This leads to a definition of scalar 
product in our functional (pseudo-Hilbert) space, 
namely, the invariant measure: 

(Fi,F8) = <Fi*.F2>=<F1*>.(F2>. (40) 

The use of the complex conjugation, which, of course, 
acts both on the functional and on the variables, is 
justified by the fact that the complex conjugation is the 
only operation which commutes with the complex 
rotations. With respect to our eigenfunctions, we get: 

{U*(l+Jr\ m+,m,+,m~,mr~) \ 

= (U(Jr,l+; —m~, ~ni'~, —m+ *'+' ) l , (41) 

so that the bra-ket transition transforms the poly
nomials in z+ into polynomials in z~\ so that certain 
eigenfunctions have their norm equal to zero. 

With respect to this indefinite metric, our basic 
operators are "pseudo-Hermitian"; they do not obey 
the usual Hermiticity conditions 

{F*,AG)=({AG)*,F). (42) 

Nevertheless, they have real eigenvalues. 
On an other hand, one can consider the set of common 

eigenfunctions of the Hermitian conjugates of our basic 
operators, which form another set of functions V(l+,l~; 
m+,mf+

7m~,m,'~)(z+,z~). Now we can check by forming 
the scalar products (U,V) that each function U(l+,l~; 
m+,mr+,m~,m,~) associated with given values of l+, l~, 
m+, tnr, ra'+, m'~, is orthogonal to all functions V 
associated with other values of these quantum numbers, 
so that the splitting of any function F(z+,z~) = P(z+). 
Pf(z~) on the set of functions U is unique. All the 
questions related to this pseudo-Hilbert space are 
treated in detail in a paper to be published by Souriau 
and one of us.8 

The functional space 3C of the polynomials of the 
form F(z+,z~) = P(z+). Pf(z~) is then spanned by the 
set of "pseudo-orthogonal" functions £/(/+,Z~; m+,ra /+, 
m~Jm

/'~). Moreover, it is obvious, if we consider all the 
functions U with the same given values of l+, l~, that 
they span inside 3C a subspace H (l+,l~) which is invariant 
under BiLS03* and transforms under the irreducible 
representation D(p-Jlr) of SO 3* X SO 3*. 

Finally, if we consider more rigorously the set of 
functions U with the same given values of l+, l~, w / + , 
mf~, they span inside H(l+,l~) a subspace, called the 
level E(l+Jr,mf+,ni,~), which is invariant under the 
left rotations SO3* and transforms under the irreducible 
representation D(l+,l~) of the group SO3*. 

Naturally, the assumption that transformations from 
the a/^ to the b^ frames are related to real possible 
motions restricts us to proper Lorentz transforms. On 
the contrary, as regards the transformations on the 
tetrads leaving the formalism invariant, we are allowed 
to make inversions acting on both tetrads together. 

Such an inversion transforms the proper Lorentz trans
form A2 into another proper Lorentz transform. 

Let us first consider the space inversion, which 
applies to both tetrads the matrix: 

- 1 

We have: 
A (P«)-

= gA2g~-

(43) 

(44) 

The external automorphism z—>Pz is not included in 
the group BiLSOs*. I t is easy to show tha t : 

Pz++z~y Pz-=z+. (45) 

The inversion P induces in the functional space 5C of 
the polynomials the transformation defined by : 

PU(l+,l~; m+,m/+,m~,mf~) 
= ( - i ) i + +r+« '++» ' - . U(t,l+', nr,m'-,tn+,m'+). (46) 

The factor ± 1 is chosen for reasons to be explained 
later, (the P conjugated functions being defined to an 
arbitrary constant coefficient). 

Further, the time reversal employs the matrix — g, and 
thus gives the same transformation TV" —» z~, Tz~ •—>• z+. 
But it can be shown that the correct quantization leads, 
as regards the derivatives, to 

T(d/dz±)=-d/dzT, (47) 

so that the T conjugation transforms J^ and Jk
;± into 

— Jk* and —Jkf=f and induces in the space 3C the trans
formation 

TUQ+Jr) m+,mf+,m~~,mf'~) 

XUQr,l+;-rnr: -m W+ — Wl/+' mf+). (48) 

Finally the total inversion, that is the P-T operation, 
which simply changes the sign of z±, induces in the 
space 3C the transformation (C conjugation): 

CU(l+,l~; m+,nif+,nt~,nif~) 
— C _ \\l++l~+1 m / + + m'-~m+-m~\ 

XU(l+J~', ~m+, ~mf+, -tnr, -m'~). (49) 

Thus the P conjugation, and also the T conjugation, 
transfer us from the subspace H(l+,l~) to the subspace 
H(l~,l+), while the C conjugation leaves the subspace 
H(l+,l~) invariant but transfers us from the level 
£(/+,/- ; tn'+,tn'-) into the level EQ+Jr\ -m .'+ — mf~). 

Let us now come back to our invariance statement. 
We intend to generalize in a suitable relativistic way 
the invariance assumed for the nonrelativistic model. 
The general nonrelativistic rotation invariance gives 
rise in relativistic physics to the Lorentz invariance, so 
that we allow all Lorentz transforms acting on both 
tetrads together. But the spherical symmetry of the 
nonrelativistic structure cannot be extended in four 
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dimensions, since the vector 6M
(4) plays a particular role 

as a four-velocity and cannot be chosen arbitrarily. 
Consequently, we have to deal with arbitrary Lorentz 
transforms on both tetrads considered as a block, and 
in addition with arbitrary three-dimensional rotations 
on the spacelike vectors of the moving tetrad. Or, 
equivalently, we have Lorentz transforms on the left 
and spatial rotations on the right: If Az designates a 
Lorentz transform related to the point z on £3*, we 
have the transformation 

/ l 0 x-1 

A,, = A. rAJ ) , (50) 

where Q,y is any 3X3 spatial real rotation matrix. 
Thus we deal in fact not with the bilateral group 

BiLScC4= B1LSO3* studied above, but with a subgroup of 
it, obtained by restricting the right translations on the 
group to spatial rotations. This is finally our actual 
invariance group G which is isomorphic to S£>AXSOZ, 
or equivalently to SO$*XSOz. 

The condition for a Lorentz transform A22 to be real, 

that is to restrict to the form ( ], with 0 real, is 

equivalent to taking 

Z2+=Z2~=h(Z2++Z2~). (51) 

Now our infinitesimal transformations become 

/ aH++aH- \ 
&M±= lai±Li+— ftW, (52) 

5F(s+,s-)=[^+ai++^-ar+«,i(a/++a/-)] 
XF(z\z~\ (S3) 

whereV*=\(a,%+-\-at%~) is real. 
We are thus led to introduce, instead of Jk'

+ and Jk~ 
the operators 

5* , =J* , ++/ f c ' - , (54) 

and consequently the operator 

S'2=Sk'Sk
f. (55) 

We have: 

[ 5 / , 5 / ] = (fi/i)eijkSk\ C5 / , /*±]=0 , (56) 

and S'2 commutes with 7 2 ± , J^, Sk. We can consider 
once more six commuting operators: J2±, Jz±, S'2, and 
Sz and seek their common eigenfunctions which will 
have the form Z(l+,l~\ sf; m+,m~,m,r), with 

/ 2 ±Z=/±( /±+l) f t 2 Z, S,2Z=s'(s'+l)h2Z, 

J^Z^m^Z, Sz
fZ=m%Z. 

sf lies in the series / + + / ~ , l++l~—l, • • • \l+—1~\ and 
m' in the series —/ , — s'+l- • -sf— 1, sf. 

These results are established by a well-known 
procedure on the addition of the spin operators, which 
yields the Z functions as linear combinations of the 

above U functions, with the aid of Clebsch-Gordan 
coefficients, namely,9 

9 C. van Winter, thesis, Groningen, 1957 (unpublished). 

Z (l+,l~~,sf; m+,tnr,m') = ]£ (l+
il~,m,^,mf~ | sf,mf) 

m'+, m'~ 

XU(l+,l-]?n+,ni-,ni'+,ni'-). t (58) 

The Z functions with the same given values for /+ 

and /~~ lie in the same invariant subspace H(l+Jr) as 
the corresponding U functions. But the Z functions 
with the same given values for l+, l~, s', m' split this 
subspace into new kinds of levels <§(/+,/-,/; mf) invar
iant under the left rotation group £03*, which transform 
under the irreducible representation D(l+j~) of this 
group. 

On these new functions, we have the inversions: 

PZ(l+,l~,s') m+,m~,mf) 

= (-l)*+r—'Z(l-,l+/; nr,m+,m'), (59) 

TZ(l+,l~,sr'}m
+,m~,mf) 

= ( - l ) T O + + « " - w ' Z ( / - , / V ; ~™~, -m+, -m'), (60) 

CZ(l+,l~/; m+,m-ym
f)= (-iy++i--s'+\™++™r-rn>\ 

XZ(l+,l-,sf; ~m+, -wr, ~mf), (61) 

so that we have: 

PH(l+,l-)=TH(l+,l-) = H{l-,l+), (62) 
and 

C ( g ( ^ - / ; m O = ( § a + , / - / : -ml). (63) 

As stated before, let us now classify our internal 
eigenstates in connection with the experimental elemen
tary particle classification. 

Following three of us,10 we accept the usual assump
tion that the two charges conserved in all interactions, 
namely, the baryon number N and the electric charge q, 
are related to two operators B and Q (acting on each 
eigenfunction Z(l+,l~,sf; m+,m~,mf) associated with two 
gauge transforms 

BovZ(l+Jr,sr) m+jmrjn') 

= eiN°Z(l+,l-,s';m+,nr,m'), (64) 

QovZ(l+,l~ys
f;m+

ym~,mf) 
= eWZ(l+,t-,s'; m+ynrym'\ (65) 

Na and q/3 being real quantities. 
This assumption facilitates the identification of the 

quantum numbers. We have three operators which 
perform such gauge transformations, namely, Jz

f+ 

+JY~, which is equivalent, as we have seen, to a real 
rotation of the Bk

w± frame, and Jz++Jz~, which is 
similarly equivalent to a real rotation of the Ak

ir)± 

frame, and naturally their sum or difference which 
both correspond to multiplication by exp(iX), with 
X real. 

10 D. Bohm, P. Hillion, and J. P. Vigier, Progr. Theoret. Phys. 
(Kyoto) 24, 701 (1960). 
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TABLE I. Classification of particles (levels). 
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Representation 

2?(i0), » ' - J 

D(i,0),tnf~-i 

W,$),m'=i 

D(0,$),m'=-l 

D(1,0), m'=0 

D(U), *'=0 

2>(iD, *'=§>»'= • 

D(l,i), s'=i, » '= 

—$ (particles) 

—J (particles) 

-m'=iN 

-i 
-i 

i 
i 

-i 
-i 

i 
i 
0 
0 
0 

0 
0 
0 
0" 

i 
i 
i 
1 
2 

i 
i 
i 
i 

* 

i 

m+=Is 

- * 
1 
2 

i 
- 1 

0 
0 

0 
0 

1 
0 

- 1 

- 4 

i 
- J 

i 
-i 

i 
-J-

i 

l 
0 

- l 
l 
0 

- 1 

m'^iS 

0 
0 

0 
0 

-1 

i 
i 
2 
0 
0 
0 

- J 
i 

-i 
i 
1 
1 
0 
0 

- 1 
- 1 

§ 
i 

-i 
-i 
-i 

Q=tn+-\-nr-\-in' 

- 1 
0 

1 
0 

- 1 
0 

1 
0 

1 
0 

- 1 

- 1 
1 
0 
0 

2 
1 
1 
0 
0 

- 1 

2 
1 
0 
1 
0 

- 1 

Particle 

e~ 

e~—e¥ 

Ve 

7T+ 

7T~' = 7 r + 

K-
K+ 

X++ 
X+ 
P 
n 
S° 

F++ 
F + 

F° 
2+ 
2° 
IB-

Levels 

£( i , 0 ,* ; - i ,Q , i ) 
2(i,0,J; J,0,t) 
Z(hO,bhO,-i) 
Z(h0,i;-i,0,-i) 

2 ( 0 , 4 , * ; 0 , - i i ) 
^(0,i,|; 0,i,J) 
Z (0> 5? 2 > 0 , ^, 2) 

£ ( 0 , * , i ; 0 , - | , - j ) 

2(1,0,1; 1,0,0) 
Z(1,0,1; 0,0,0) 
Z ( 1 , 0 , 1 ; - 1 , 0 , 0 ) 

z(i,i,0;-h-i,o) 
Z(hifl; i,i,0) 
2 ( | , i , 0 ; i , - f , 0 ) 

Z(h, 1, J; |, 1, - i ) 
Z(h 1, J; -i, 1, -i) 
£ ( * , U ; J , o , - j ) 
2 ( J , 1 , | ; - J , 0 , - J ) 
z(i,i,i;i,-i,-i) 
2 ( i , l , i ; - f , - 1 , - | ) 
^(1, *, i; 1, *, - § ) 
2 ( i , i , i ; 0 , j , - j ) 
Z ( l , i , J ; - l , | , - J ) 
^ d , i l ; i , - i , - i ) 
-Z(i, *, *; 0, -*, - » 
Z ( 1 , | , J ; - 1 , - J , - J ) 

Now we can tentatively identify the operator 73
/+ 

+73
/""=,Sy with — J-Sop, and the operator / 3

+ +7 3 ~ 
— 5*3' with ^oP, as two of the three operators providing 
gauge transformations exp(iX), where X is a real 
argument. 

With these conventions we see that the baryon 
gauge corresponds to —Sz, with integer (or half-integer) 
eigenvalues —mf=N/2, the integer N being the usual 
baryon (fermion) number. The Pauli electric gauge is 
then obtained by the action of: 

Qop = Jz++Jr-Sz', (66) 

whose eigenvalues (always integer) are 

— mf-\-m++m~=q. (67) 

As we shall see later, these operators J3
+, Jz~, Sz, and 

Q commute with the internal Hamiltonian and are 
constants of the motion. 

This leads us very naturally to identify 73
+ with 

/3op and Jf with %S since we know that their eigen
values must be constants of the motion. This identifica
tion yields the expression 

Qo^h+^S+^B, (68) 

which justifies the Nishijima-Gell-Mann formula, and 

we see that the corresponding "level" or "particle" 
classification recovers the Nishijima-Gell-Mann empir
ical scheme. (See Table I) in which each line gives the 
quantum numbers associated with a given "level" and 
its corresponding element in the Nishijima-Gell-Mann 
empirical table.lla 

At this stage, we shall only stress the following 
features of Table I : 

(a) It ascribes isobaric spins and strangeness to 
leptons, thus extending the Nishijima-Gell-Mann 
scheme. 

(b) It contains two kinds of neutrinos associated, 
respectively, with e~ and ju~, the existence of which is 
presently assumed by Pontecorvo11 and various authors. 

(c) It contains an (as yet) unobserved doublet in 
Z>(|,1) and triplet in Z)(l,§). As we shall see later, the 
fact that these multiplets are the only ones which 

l la Note added in proof. If one accepts instead of this scheme the 
proposal of Yukawa (see Appendix of Paper II) one shouldlwrite 
p, n, v, and A instead of e+, re, /x

+, and ?M (in Z>(J,0) and Z)(0,§)) 
in Table I ; N of Z>(§,1) becoming a resonance. The four basic 
leptons e", re, pT, and r^ are then introduced in the representations 
D'dfl) and Z>'(0,|) of the group G'«SO«XSO«'+XSO«'-^>btained 
by interchanging the role of L and T. 

11 B. Pontecorvo, J. Exptl. Theoret Phys. (U.S.S.R.) 37, 1751 
(1959). 
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contain a charge 2 particle may account for their 
instability. 

(d) The A0 does not appear in this table, but, as we 
shall discuss in a following paper, it can be identified 
with a isobaric spin singlet in the £>(0,§) subspace, pro
vided that some external property differentiates it from 
leptons. 

(e) The table is not exclusive. Even if we limit 
ourselves to representations with / ^ l , we can find 
"levels" belonging to £>(1,0), D(0,1) or D(§&) with 
w' = ± l . This yields the possibility of highly excited 
states, some of which could correspond to recently 
observed resonances. 

CONCLUSION 

We wish to conclude this first paper (which is based 
essentially on pure group-theoretical considerations) 
with some remarks on the geometrical meaning of the 
variables and operators. 

As was shown by Synge,12 van Winter,9 and the first 
approaches of the authors,13 the Lorentz transform 
from fixed to moving frames can be performed by a 
series of elementary transformations, namely: 

(1) spatial rotations which are represented by real 
Euler angles <ph 6h # i ; 

(2) pure Lorentz transformations which can be 
represented by hyperbolic rotations from one spacelike 
vector to the timelike vector, and which use imaginary 
arguments i<p2, id2j ifc-

I t is possible to perform these six transformations in 
a suitable order, such as to realize any particular 
Lorentz transformation. These six generalized Euler 
angles are then a special kind of parameters labeling 
the Lorentz transform. Now it can be shown that, if we 
consider the complex conjugate combination 

<£>*= < P I ± ^ 2 , e±=6i±iei, ^ ± = ^ ± # 2 , (68) 

the three parameters p+, 0+, \j/+ represent the complex 
three-dimensional Euler angle of the rotation of Bk(r)+ 

with respect to Ak{r)+ in E3
+ , so that they can be con

sidered as coordinates of the figurative point P on the 
complex hypersphere S$*. The same holds for the three 
complex angles <p~, 0~, \f/~ in the space Ei~. 

Now in the above formalism each coordinate y^ of 
point P splits into a real part related to a real rotation 
and an imaginary part related to a pure Lorentz 
transform. In particular each of the basic operators J^ 
is related to an infinitesimal space-rotation and Lorentz 
transform in a perpendicular direction. 

More precisely, it can be shown the chosen third 
operators are related in a very simple way to the 

12 J. L. Synge, Relativity, the Special Theory (North-Holland 
Publishing Company, Amsterdam, 1956). 

13 F. Halbwachs, P. Hillion, and J. P. Vigier, Ann. Inst. Henri 
Poincare 16, 115 (1959). 

complex Euler angles, namely, 

/ n ± = ( * A W e ^ , J Y ^ (h/i)d/ty±, (70) 

so that, for instance, Js± represents together two 
infinitesimal transformations, namely, a rotation in the 
plane aM

(1), a^2) and a pure Lorentz transform along 
the vector a/3 ) . In the same way J%f± implies a rotation 
in Z>M

(1), &M
(2) and a pure Lorentz transform along b^K 

The quantization introduced simultaneously on the 
real and imaginary parts of the complex Euler angles 
is therefore quite natural. I t can evidently be interpreted 
as expressing the very plausible statement that elemen
tary particles correspond to internal motions in which 
the T and L frames come back periodically to the same 
relative orientation. In another form, as indicated before 
by one of us (L. d. B.) this is just a concrete representa
tion of the " clock" attached by wave mechanics to 
every material element. 

APPENDIX I 

As stated in our introduction, we shall briefly 
discuss in this Appendix the question of the interpreta
tion of our model from three different points of views. 

(A) The first point of view considering elementary 
particles as extended structures starts from a classical 
extended model and quantizes it along the usual lines. 
When we do this, however, a well-known stumbling 
block appears immediately: The transition from a 
classical pointlike particle to an extended structure 
necessarily introduces an infinite number of new 
"internal" degrees of freedom corresponding to the 
extension of the particle in space. In order to treat 
mathematically such an internal fieldlike structure one 
must therefore, as was proposed by some of us in a 
detailed study of the classical level,14 abstract out of 
this infinity a finite number of average collective 
kinematical variables (which correspond to essential 
characteristics of the internal motion) and determine 
the internal energy. Such a procedure, however, 
raises many difficult problems (especially in the 
relativistic domain); and it will be discussed in another 
paper. 

Now one way around this stumbling block exists, 
which has already been introduced by the authors15; 
namely, to describe a priori this average internal motion 
by a finite number of new kinematical variables q(r), 
which are added to the usual kinematical position 
variables #M(r) (r being the proper time along the 
world line followed by the particle's center Xy) associated 
with the classical point particle. In this procedure, 
which we shall now develop in some detail, one must 
keep in mind two essential points: 

(a) I t is necessary to be very careful to use only 

14 D. Bohm, P. Hillion, T. Takabayasi, and J. P. Vigier, Progr. 
Theoret. Phys. (Kyoto) 23, 496 (1960). 

15 F. Halbwachs, J. M. Souriau, and J. P. Vigier, J. Phys. 
Radium 22, 393 (1961). 
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independent kinematical variables since, after quantiza
tion, the existence of a total wave function ^fe ,g , r ) 
describing internal and external motions implies the 
existence of a representation in which xM and q are 
simultaneously diagonal. This point has been stressed 
in particular by Pryce16 and one of us.17 

(b) All these new variables q are assumed to be 
functions of the proper time r of a single point %(r) , 
so that we avoid all causality troubles and many-time 
problems occurring in preceding theories. 

As indicated in Sec. I, in the nonrelativistic domain, 
where r reduces to the ordinary time t. one can add to 
the classical external point Lagrangian 

Lie) = ^mxdk (71) 

(where A denotes dA/dt), an internal Lagrangian: 

L(t-) = iIQfcG*, (72) 

where / is a moment of inertia and 

0*=*€**&,<'V'> ( " ) 

represents the instantaneous rotation of the T frame 
bk

{r) with respect to the L frame ak
(rKls The motion of 

the extended particle thus represented by two frames 
(L and T) centered on a moving point can be quantized 
by the usual method. 

If we start from the classical point of view, we know 
that the evolution of our internal state can be rep
resented as the motion of a point P along a line <£ on 
the Riemannian manifold S$. Now, as a calculation 
shows (the Riemannian metric being taken into 
account), the internal rotation kinetic energy 

r=i/o*ofc=§/^(r)i*(r)i (74) 
if expressed in terms of the coordinates yM of P on Sz} 

is simply: 
T= 2IyM=2I(ds/dty, (75) 

where ds is the element of the line £ on the hypersphere. 
This is highly analogous to the usual expression for 
the translation kinetic energy, T=^m(ds/dt)2, where ds 
is the element of trajectory in Euclidean space. 

From this analogy the mechanical quantization* is 
easily deduced. We have the internal canonical momenta 

p^dT/dy^AIy, (76) 

and the classical Hamiltonian 

H ( 0 = ( l / 8 / ) M „ . (77) 

The quantization replaces p^ by (h/i)(dfdyy). Finally 
the quantum Hamiltonian is 

ff<oop= - (*V87)Wdyifiy*), (78) 
16 M. H. Pryce, Proc. Roy. Soc. (London) A195, 62 (1948). 
17 T. Takabayasi, Progr. Theoret. Phys. (Kyoto) 25, 901 (1961). 
18 D. Bohm, P. Hillion, and J. P. Vigier, Progr. Theoret. Phys. 

(Kyoto) 24, 701 (1960). 

the relation y/iyM= 1 being taken into account, and it is 
immediately shown it has just the expression 

Bli)0Jt=(l/2I)J*, (79) 

so that we immediately recover all the preceding 
group-theoretical treatment. 

Replacing moreover the "external" canonical mo
menta 

Gk = dL/dxk by (h/i)(d/dxk)y (80) 

we see that the generalized Schrodinger equation, 
associated with the Lagrangian 

L=L(e)+L(i) , (81) 
becomes 

-ifid$>/dt=Hop<J>= - (h2/2m)A^~- (l/2I)J2$y (82) 

where $ is a function of xk, y^ and t. The internal 
stationary solutions of (82) are evident. Writing 

$ 0*k,:)W) = exp ( - iE(i)t/fi) <pe (xk9t)F (yM), (S3) 

<Pe(xk,t) and F{y^) being external and internal state 
functions associated to the internal energy £ ( i ) , we 
see that relation (82) splits into an external equation 

(-ihd/dt+ (h/2m)A) cpe(xk,t) = 0, (84a) 

and an internal equation 

( / * / * - 2E(i)I)F (y,) = 0, (84b) 

invariant under our internal group G=Bil(,503). Rela
tion (84b) is evidently the internal counterpart of the 
external Schrodinger equation (84a) (which is invariant 
under the Galilean group) and defines stationary 
internal waves which determine internal quantum 
states of the structure of the particles. Moreover, any 
solution F can be developed in terms of the functions 
Y(l; m,w!) (yM). We shall have F(yM) =Y(l; m,mf) only if 

2E(i)I=ftH(l+l). (85) 

The corresponding relativistic model proposed by 
one of us (JPV) also rests on the idea that the extended 
particle can be represented by two kinematical frames 
Lia^V) and Tib^) centered on a moving point XM(T). 

Let us first recall certain well-known results of the 
relativistic point-particle theory. If we define the 
particle's position in Minkowski space by four kine
matical parameters ^ ( r ) , r being as before the proper 
time along the world line followed by xM, we can define 
its path by the "line" Lagrangian 

L (e) = \m (xllpbfl+c2) (86) 

(m being a Lagrange multiplier corresponding to the 
constraint #„#„=— c2), and the external relativistic 
action function W(e) with 

WM=f L{e)dr, (87) 
J n 
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the real motion corresponding to the path 

« F W = 0. (88) 

The corresponding classical and quantum motions are 
evident. Classically, we introduce the canonical 
momenta by 

G^dL^/dx^mx^ (89) 

The scalar relativistic Hamiltonian then becomes 

HM = G&-LW = iM2m)Gfi,-\mc\ (90) 

The corresponding equations of motion then yield 
immediately 

(?^=0 and Gfi^-c2^ const; (91) 

so that m corresponds to constant rest mass. As a 
consequence, we see that H(e)——mc2 is also (as it 
should) a constant of the motion. 

The quantization can be performed along the usual 
lines. We introduce a general wave function $ ( ^ , r ) , 
replace H(e) by — ifid/dr, and G> by —ifid^ and thus 
obtain the generalized Schrodinger equation: 

- ih (dcfr/dr) = [ - (ft2/2m) • - \mc2^, (92a) 

Introducing then stationary solutions of the form 
exp(—imc2r/fi)<pe{xy) into (8), we see that <pe(oCy) 
must satisfy the usual Klein-Gordon equation : 

(D-/*2) *>•(#„) = () with M 2 = * A 2 - (92b) 

The factor exp(—imc2r/h) is just the "beat" of the 
"clock" associated by one of us (L. de B.) with every 
particle since the very beginning of wave mechanics. 
We know, moreover, that the field <pefe) must evidently 
be invariant under transformations of the Lorentz 
group £4, and, therefore, associated with its finite 
dimensional representations. We shall discuss this point 
later in paper I I . 

Now, as indicated in Sec. I, the transition from 
pointlike to extended particles can be performed by the 
introduction in the Lagrangian of new internal variables 
^ a

( ^ ( r ) . As a consequence one discovers, in general, 
that 

G^BL/dx, (93) 

is no longer parallel to scM, so that the rest mass 

G^-mc2 (94) 

is no longer equal to the inertial mass 

Gfit=-M*<?. (95) 

Moreover, the point XM defined by 

X^x,= (l/M2c2)S^Gv (96) 

describes, in general, a straight world line parallel to 
G>> Sv"> indicating the internal angular momentum: 

S„=l(dL/dfrt>)q,™- (dL/dq^q^J (97) 

One can show, finally that x^ spirals around XM in a 
motion constituting the classical counterpart of Schro-
dinger's Zitterbewegung; X^ and #M playing, respectively 
the part of Miller's center of mass and of the center of 
matter density defined by two of us.19 Evidently20 the 
WeyssenhofT equations,21 

G>=0 and SfiV=Gfixv—Gvxfi, (98). 

correspond to the invariance of L under the displace
ment and Lorentz groups. 

As proposed by one of us,22 a first group of internal 
variables appears immediately. If we assume with two 
of us (D. B. and J. P. V.) the existence of an internal 
conserved current density: 

jn^pu,, (with dMjM=0), (99) 

we can introduce, if the particle is small enough, a 
frame b^ representing its instantaneous rotation 
around #M. This Takabayasi frame, or T frame, is 
defined by the well-known relations: 

b^b^^u^d^-d^. (100) 

Another frame appears immediately if we consider, 
besides the internal current density, the internal con
served energy-momentum density: 

• t^ (with 0 , ^ = 0 ) , (101) 

for we can take its values at the point x^ /,*„(#«) defines 
a frame a/& studied in particular by Lichnerowicz23 

(called L frame for short), defined by the relations: 

W * > = *«V*>, (102) 

where s^ denote the usual dilatation coefficients. These 
two frames a^ and 6M

(S) we tentatively introduce as 
new internal kinematical variables. 

Now the basic physical assumption made here is to 
assume that the internal Lagrangian depends only on 
the relative orientation of the T and L frames through 
the expression jIooa^a^ where cott/3 expresses the relative 
instantaneous rotation of T with respect to L: a rotation 
which can be expressed in terms of the complex variables 
Vtj V on the sphere 6*3*. This means that in the L 
frame we have (writing 6M

(*} as functions of z^ so that 
the orthonormality is automatically satisfied): 

L=L (e)+L (»•> = \m (x^+'(?) 

where m and a ( r ) are Lagrange multipliers (variable in 
principle) which imply the relations 

x^x^-c2 and b^r%=09 (104) 
19 D. Bohm and J. P. Vigier, Phys. Rev. 109, 1882 (1958). 
20 T. Takabayasi, Progr. Theoret. Phys. (Kyoto), 23, 915 (1960). 
21 J. Weyssenhoff and A. Raabe, Acta Phys. Polon. 9, 8 (1947). 
22 T. Takabayasi, Nuovo Cimento, 13, 532 (1959). 
23 A. Lichnerowicz, Ann. 6cole normale supe'rieure 60, 247 

(1943). 
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so that 

x^icb^iz). (105) 

Introducing then the canonical momenta 

G^mx^+a^b^iz), (106) 
and 

nz*=dL/dz±, (107) 
we get 

<?/?,=w%VH* ( r )<* ( r ) = -M2c2=const, (108) 

and (with H=pq—L): 

R^\mxllxv.—\mclJrE^') (109) 

- (l/2m)(GflGtl-a^a^)-^mc2+Hii) 

= -tnc2+H(i). (110) 

Now Ha), containing only z^, evidently has a 
vanishing Poisson bracket with H and is a constant of 
the motion. Relation (109) therefore implies that 
\miGfifl—a(r)a(r)) — \mc2 is also a constant of the 
motion, so that if we note that it is equal to — mc2 

[as a consequence of the squaring of (106)], we see 
that the rest mass G ^ = —mc2 and a ( r ) a ( r ) are separate 
constants of the motion. The existence of the supple
mentary constant m results from the invariance of L 
under the one-parameter Abelian group of pure Lorentz 
transforms along icb^4\ All the other constants dis
covered are evidently related (as they should15) to the 
invariance of L under the translation and G trans
formations. 

The quantization of internal motion is now straight
forward. Writing 

H= — ihd/dt, GM = — ifidp, 
and (111) 

T[z±—~ihd/dz±> 

we get, introducing the total wave field ^(X^Z^T) 
(representing simultaneously the % distribution and 
the L—T frame orientation), 

d<j> ( 1 \ 

dr \ 21 J 

Relation (108) and this general internal equation (112) 
yield, if we insert the form 

^ = exp(-iMc2r/h)<Pe(xli)F(z+
)z-)J (113) 

the two fundamental relations: 

[ • - ( M V / # ) > , ( * M ) = 0 (114a) 
and 

(H ( i )++ff ( < r - W)F (z+,z~) = 0, (114b) 
with 

ff «>*= ( l / 2 / ) / 2 ± 

W=a<rW>/2m 

being a constant of the motion. Consequently we write 

(J2++J2-)F(z+,z~) = WF{z+,z~). (115) 

Relation (115) is evidently the internal counterpart 
of the second order Klein-Gordon equation, relation 
(114a) describing the radial motion of #M. As to the 
symbolical substitution n > = —ihd/dz±, we know that 
the correct quantization must be performed by the 
substitution of commutators to Poisson brackets, but 
one sees easily that this procedure leads to the same 
results. 

We shall not discuss this model here in more detail. 
(B) Now it is clear that the preceding interpretation 

still contains many unsatisfactory aspects (though it 
follows step by step, the usual presentation of quantum 
theory) since it leaves open, for example, the problem 
of the justification of the quantization procedure. In 
the opinion of two of the authors (D.B. and J.P.V.) a 
much deeper physical interpretation, which incorporates 
immediately all results obtained in paper I, can be 
obtained by starting directly from a field point of view 
Indeed one can represent the vacuum of subquantum 
mechanical level by a space-time net of points related 
by 0-length light rays. Each vertex of such a net has 
three incoming light rays (equivalent, as Synge12 has 
shown, to a four-frame L), and three outgoing light 
rays in the forward time direction. Since these outgoing 
rays are also equivalent to a four-frame T, see that 
such a model can be assumed to be invariant under the 
external group L4(xM) defined at each vertex #M, which 
rotates L and T as a block with respect to an arbitrary 
laboratory frame, and also under our internal group G 
of relative L—T motions. Since we further know that 
if the vertex system is dense enough, Z^Ofy) is, as 
Coish24 has shown, physically equivalent to the usual 
Lorentz invariance, such a model, if endowed with 
chaotic "vacuum" or background fluctuations, carries 
regular quantized excitations which can be classified 
according to the results of paper I. 

The development of this point of view will be 
published later. Preliminary investigations of one of us25 

show that such a theory can justify the quantization 
procedure. 

(C) Finally the authors, following an idea of Profes
sor Geheniau, have recently discovered that their new 
isobaric group G can be introduced within the frame of 
the line of thought initiated by Pauli26 and Heisenberg,27 

as a possible gauge group for a generalized nonlinear 
Heisenberg equation. To show this, let us briefly recall 
Heisenberg's ideas. 

Let us start with a wave field Xst which transforms 
as £)(J,0) under SL4, and as Z>(4) under 50 3 , and 
satisfies Heisenberg's equation: 

< ^ X ^ V x ( x * < ^ x ) , (116) 

24 H. R. Coish, Phys. Rev. 114, 383 (1959). 
25 D. Bohm, in Quantum Theory, edited by N. R. Bates (Aca

demic Press Inc., New York, 1962), Chap. 6. 
26 W. Pauli, Nuovo Cimento 6, 204 (1954). 
" W. Heisenberg, Revs. Mod. Phys. 29, 269 (1957). 
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where <rv are the four-dimensional Pauli matrices. The 
introduction of parity in the theory can be obtained by 
the introduction of a new index r = l , 2, namely, the 
substitution of Xstr to Xstj that is Xstl transforming as 
£)(i,0) under 6X4, and Xst2 transforming as £>(0,|) 
under 6X4. Relation (116) is then replaced by the 
system 

cr*d,Xi=ZVXi(Xi*dl,Xi), (117a) 

avdvX2=l2avX2(X2*avX2)3 (H7b) 
with 

A further generalization is finally obtained by 
replacing Xstr by i/w, where r is an index in isospace 
which enables \f/ to transform like a Dirac spinor in 
isospace. ypSTr thus transforms according to D(%,0) or 
D (0,^) in isospace and satisfies the relation 

T ' d ^ / V ^ G f o W , (118) 

where $—\l/*(3 and rv are the Pauli matrices in isospace. 
One sees immediately that the new gauge group 
coincides with G so that by the usual "fusion" procedure 
one obtains all internal states of our classification. 

APPENDIX II 

In this paper we have used as an invariant internal 
isobaric group the four-dimensional complex rotation 
group SO* acting on the complex sphere S3* taken as 
the configuration manifold. Moreover we have utilized 
simultaneously as independent variables the two 
complex conjugate points z and z* on this sphere. This 
raises the following well-known difficulties. First, two 
conjugated variables are not independent. Secondly, 
any complex rotation performed on the sphere destroys 
the complex conjugation between two conjugated points 
z and z*. The formalism used in Sec. I I is nevertheless 
correct and can be justified in the following way.8 

Let us consider the direct product of two independent 
four-dimensional complex spaces C4

+ and C4~ and the 
direct product of two spheres taken in each space, 
namely Sz+XS%~. This will be a six-dimensional 
complex configuration manifold, the fundamental 
variables being represented by the column 

Z=Q, (119) 

composed with two independent complex vectors. We 
shall now submit this manifold to the transformation 

Z'^&Z, (120) 
with 

/co 0 \ 0 = = L J> (121) 

\ 0 CO*/ 

co being any elements of SO* acting on C44" and co* the 
complex conjugated transformation which acts on Cf~. 
We now see that the variables z+ and z~~ are truly 
independent so that we can use partial derivatives with 
respect to z+ and z~ and consequently the two independ
ent operators J+ and /"". Now we can build without 
ambiguity the functional space of the functions F(Z) 
defined on Sz+XS$~. However, the variables Z with six 
complex degrees of freedom do not represent a Lorentz 
transform, unless z+ and z~~ are mutually conjugated. 
We must therefore consider the intersection of the 
manifold S%+XSf~ with the surface a defined by 

z+= (2-)*? (122) 

and take the traces of the functions F(z+,z~) on this 
intersection, Sz+XSz~/(r, which is now our genuine 
configuration manifold. This manifold is obviously 
invariant under the transformations £2 (which build 
our invariance group) so that the above-mentioned 
difficulties no longer arise. 

This result can be interpreted physically in the follow
ing way. The general point Z on the manifold Sz+XSf~ 
represents a transformation of the group SO±* which 
contains the Lorentz group as the subgroup correspond
ing to the product of two conjugate complex three-
dimensional rotations, that is to the preceding intersec
tion Sz+XSz~/a. As Einstein and Mayer28 first pointed 
out, the transformation from one sphere to the other 
corresponds to the transition from covariant to con-
travariant tetrads in real Lorentz space (or i —» —i 
transformations in Minkowski space) as they are 
related, respectively, to self-dual and antidual skew 
tensors. Independent motions on both spheres would 
amount to independent variations of covariant and 
contravariant quantities, something that never happens 
in real physical space. 

28 A. Einstein and M. Mayer, Sitzber Preuss. Akad. Wiss. 
Physik.-Math. Kl. 522 (1932). 


