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leptonic isobaric spin, leptonic strangeness, and 
leptonic number through the operators Jz'+, Jz", and 
Sd—Jz+-jrJz~, the fundamental leptons corresponding 
to D'Qfi) and Z>'(0,f), namely e~, ve,jx~, and *v 

These proposals of Yukawa present the following 
advantages: 

(a) They explain directly the separate conservation 
of baryon and lepton numbers. 

(b) They establish a simple and beautiful corre­
spondence between the four "fundamental'' baryon 
states of Z>(J,0) and £>(0,|), namely n, p, A0, and V+, 
and the four fundamental lepton states of D'(^fi) and 
Z)'(0,i), namely e~, ve> ju~? and z>M. This symmetry can 
be utilized as the starting point of a modified version 
of the Sakata model in which one utilizes four basic 
particles instead of three. In our case, as seen in II , all 
higher baryon states of D(%,1) and D(l,i) can be 
obtained as products of the eigenfunctions of D(%fi) 
andZ)(0, |) . 

I. INTRODUCTION 

TWO energy-momentum tensors Ti3' and ®i3' (i, j , k, 
1=1, 2, 3, 4; %1 = %, x2=y, xz = z, x4=ict) are said 

to be equivalent if their difference is divergenceless: 

dy(jT^-0*0 = 0. (1) 

This entails that the three-fold integral1 

IJ I(TV-Wdu, (2) 

is zero when taken over any closed domain, but not zero 
when taken over an open domain (iceimdui=[dxldxjdxk~], 

1 To avoid confusion with the spin density <r{, Schwinger's 
notations d<x3- and a are discarded in favor of duj and S. 

. (c) This correspondence is strengthened by the recent 
discovery of a second neutrino (Brookhaven), and the 
existence shown in Berkeley, of a 1480-MeV backward-
scattering resonance in K~~+p=K°+n; since, as 
Yukawa and one of us (J.-P. V.) have remarked, the 
graph of Fig. 7 evidently implies backward scattering 
as a result of V+ or Y+ exchange. 

(d) They lead, following step by step (with the new 
group G) the work of Ohnuki,24 Ne'eman,25 and 
Gell-Mann,26 to an "n-iold way" which also introduces 
the co, p, K* vector mesons. Such bosons could also have 
been predicted directly from the fusion scheme of 
Sec. II , since, with every representation D(l+,l~) one 
can associate spin 0 or spin 1. 

The corresponding strong- and weak-interaction 
theories will be discussed in subsequent papers.22 

24 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys. 
(Kyoto) 22, 715 (1959). 

25 Y. Ne'eman, Nucl. Phys. 26, 222 and 230 (1961). 
26 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 

3-dimensional volume element; eijkl is Levi-Civita's 
indicator). 

One principal purpose of this note_is to show how this 
remark yields the principle of physical experiments 
where mathematically equivalent energy-momentum 
tensors will not have physically equivalent behavior, 
so that (in the case we will consider) one of them may 
be selected as being, physically, "the good one." 

The reason why such a fact has often been overlooked 
is that in a fairly large class of physical situations the 
values of the Tij tensors drop down at spatial infinity at 
a rate sueh that the integral (2), taken over any time-like 
domain at spatial infinity, is zero. When this is the case, 
the value of the integral (2) taken over any space-like 
domain1 S extending to infinity will be independent of 
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The following results are shown: (a) Contrary to widespread belief, two energy-momentum tensors T^ 
and ©*?" with a divergenceless difference are not necessarily physically equivalent; in fact, they will not be 
equivalent if the Qux Jiff (Tia — %ia)dsadt through the external surface of some test body between an 
initial and a final state is nonzero, (b) It follows necessarily from basic postulates of the Dirac one-electron 
theory that Tetrode's asymmetrical energy-momentum tensor is physically the good one, and that, in the 
circumstances mentioned above, use of the symmetrized %ij — {Tij~{-Tji)/2 tensor would yield a wrong 
result for the variation of the energy-momentum between states 1 and 2. (c) This being so, a macroscopic ex­
periment based on ferromagnetism or ferrimagnetism can be devised, which demonstrates these facts as a 
measurable "translational inertial spin effect." (d) It is highly plausible that the above predictions, based 
on the one-particle electron theory, would be valid in the framework of the many-particle electron theory 
obeying Fermi statistics (the argument is based on the so-called bound-interaction hyperquantized formal­
ism). The last point can be verified experimentally. 
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S, or conservative; thus, considering any two such 
integrals taken over nonintersecting Si and S2 domains, 
the relation 

AP = f f I T^duj= f f f Q^'duj (3) 
J J J S2-S1 J J J S2~Si 

will be true. In other words, when the integral (2) 
taken over any time-like domain at spatial infinity is 
zero, and when the total energy momentum is calculated 
over a space-like domain extending to infinity, then the 
two mathematically equivalent energy-momentum 
tensors are also physically equivalent, as yielding 
the same value for the variation of the total energy 
momentum. 

But this will no longer be true if (I) the significant 
space-like domain is finite, as is the case with, say, a 
finite piece of matter; and (II) the integral (2) taken 
over the time-like wall generated in space-time by the 
contour of the piece of matter differs from zero: 

Qi = (T^'-^duj^O. (4) 
s3 

Then (see Fig. 1), according to the general property 
of equivalent energy-momentum tensors, Eq. (3) is 
replaced by 

-Ql= I I I ( r*-0*)&^o, (5) 
' s2~sl 

or equivalently 

AP = T^dur-
J J J S2-S1 

©^duj-Q1. (6) 
S*-Si 

As the physical variation in energy momentum 
between states 1 and 2 is measurable, this amounts to 
say that in the case under consideration the two 
"mathematically equivalent'' Tij and &i3' tensors are 
not physically equivalent; eventually, one of them may 
be selected as "the good one." If, in Eq. (6), AP1 

represents the true, measurable, variation in energy* 
momentum between states 1 and 2, Tij' is a "good" and 
©*> a "wrong" energy-momentum tensor. 

I t is clear that the cause of the difference of behavior 
between Tij' and ©*' is the energy-momentum flux 
through the time-like S3 domain, i.e., the integrated flux 
on a time interval through the external surface of the 
body. We will come back to this point later. 

The case of interest for us is that of the family of 
energy-momentum tensors defined, in the Dirac electron 
theory, from Tetrode's2 asymmetrical tensor 

Tv^-lcfap^d^ty+ieASPyty (7) 

2 H. Tetrode, Z. Physik 48, 852 (1928). 

FIG. 1. Time-like world tube with 
two space-like cross sections. 3 

by the linear combination 

©*'"= aTV+bT'*, a+b=l; (8) 

where h=2irfi is Planck's constant; — e is the electron 
charge in emu; the 7 ' are spin matrices; i f=^ , t74 ; 

[a i]=3 i-pS (9) 

in the Jauch-Rohrlich3 notation; and A1 is the electro­
magnetic potential. 

Among the 0^ 's , the symmetrized tensor 

®^'=HTij'+T^) (10) 

has often been recommended as physically "the good 
one" (by Tetrode2 and by Pauli4). On the other hand, 
the author5 and Weyssenhof6 have produced physical 
arguments in favor of using the asymmetrical Tetrode 
tensor (7). 

The idea of an experimental test was presented 
earlier.7 

According to Tetrode's well-known formula, 

Tii-Ti>'=dk*
i''k = %icei>'kl(di(rk--dk<ri), (11) 

which is a consequence of the Dirac equation, the ©** 
family is, of course, a class of mathematically equivalent 
energy-momentum tensors; ai3'k= eimai denotes the 
Dirac spin density, 

rijk- •• cfi\j/yij'k\p; (12) 

yii'-'=yiyi... 7 if i^j^...^ a n d is zero if two or 
more indexes are equal. 

I t will be shown in Sec. I I that, Ti] being Tetrode's 
tensor defined by (7) and 6*3 the time-like wall generated 
by the external surface of a ferromagnetic or ferri-
magnetic solid, physical circumstances can be defined 

3 J. M. Jauch and F. Rohrlich, The Theory of Photons and 
Electrons (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1959), p. 53. 

4 W. Pauli, in Handbuch der Physik, edited by S. Fliigge (Verlag 
Julius Springer, Berlin, 1933), Vol. 24, pp. 3, 235. 

5 0 . Costa de Beauregard, Compt. Rend. 214, 904 (1942); 
J. math, pures et appl. 22, 131 (1943). 

6 T. Weyssenhof and A. Raabe, Acta Phys. Polon. 9, 7 (1947). 
7 O. Costa de Beauregard, Cahiers Phys. 99, 407 (1958) and 

105, 200 (1959). 
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such that 

J J J s3 

(T^-T^du^ d^du^O; (13) 
#3 

thus the various &i3' tensors, though mathematically 
equivalent, are not physically equivalent in such 
circumstances.8 

More specifically, (a) we shall deduce from the basic 
postulates of the Dirac electron theory that Tetrode's 
tensor is the real physical energy-momentum tensor, 
and that the finite energy momentum must be calculated 
according to Eqs. (6) and (7), with a dummy index for 
the 7's ; (b) this being so, we shall show that under the 
circumstances we shall define, the real physical energy-
momentum 4-vector P* is not collinear with the kinemat-
ical 4-velocity; (c) we shall propose a macroscopic 
experiment based on ferromagnetism (or ferrimagnet-
ism) where a measurable translational inertial spin 
effect should appear as a consequence of (b). 

Of course, if the true, physical, energy-momentum 
tensor Tij is asymmetrical, then the left-hand side of 
Einstein's equation in general relativity, 

must be generalized so as to become asymmetrical 
also.9,10 Thus, a skew-symmetric part, yet unexplored, 
should exist in the gravitational potential, as generated 
by the very existence of spin. Our idea, which we 
intend to develop in a subsequent paper, is to explain 
the energy-momentum flux (13) as radiated in the skew-
symmetrical gravitational field. 

II. DEDUCTION OF THE EFFECT IN THE FRAME 
OF THE DIRAC ONE-ELECTRON THEORY 

In solid-state physics, where, rigorously speaking, one 
is dealing with a many-electron problem subject to 
Fermi statistics, the one-particle theory often yields 
experimentally sound results, together with a clear 
(though simplified) insight in the phenomena. For this 
reason, we shall also use the one-particle electron theory 
in the basic deduction of the translational inertial 
spin effect, postponing to a later section (IV) what can 
be said from the more rigorous point of view of hyper-
quantized theory.11 

8 A quite analogous situation occurs with the Dirac and the 
Gordon 4-currents, j { and k{, the difference of which is divergence-
less : the two integrals f f fpdui and f f f&dtH are not neces­
sarily equal when taken over on open domain. In Sec. II a situation 
shall be considered where the physical nonequivalence of the two 
"mathematically equivalent" vectors j i and ¥ will be quite ob­
vious—and also closely connected with the energy momentum 
problem. 

If, following Dirac, we take/*" as the true or physical probability 
density current, then k* will be a "wrong" one, i.e., only part of 
the "good" one. 

9 A. Papapetrou, Phil. Mag. 40, 937 (1949). 
10 D. W. Sciama, Proc. Cambridge Phil. Soc.54, 72 (1958). 
11 As we are using Dirac's covariant wave equation, a covariant 

treatment of the many-particle theory is also needed. 

The four postulates we shall use are: 

(A) The probability density of the electron's spatial 
location is ^ty> an equivalent statement is that the 
space-time electron flux is — 1/e times the Dirac current 

ji— —iefiyty, (14) 

(B) The mean value R at time t of any Hermitian 
operator (ft is 

R= ^(Rxf/dxdydz. (15) 

(C) The energy-momentum operator of the electron 

P^iW+eA1^ (£V-2)[d\]+e4\ (16) 

(D) Standard interpretation of various densities in 
the Dirac theory. 

From these four postulates, and through the eight 
following theorems, we shall deduce the existence of 
the new translational inertial spin effect. Boldface 
characters will denote 3-vectors in the ordinary x, y, 
z, space. 

(1) The Dirac 4-current associated with the electron 
cloud inside a solid runs in space-time tangent to the 
tube generated by the external surface of the body. 

This follows from postulate A and the conservation 
of the electric charge associated to the electron cloud 
inside the body. 

Thus, the direction of the space average of the Dirac 
4-current must be close to that of the body's 4-velocity. 
A case (among others) where the relation 

]dxdydz=0 (17) 

holds exactly is that of a body at rest in some Lorentzian 
frame where the whole physical situation has an axis 
of symmetry in the ordinary x, y, z, space; this will be 
true in the experiment discussed below. 

(2) If we introduce the Gordon current 

2K %K 
(18) 

(K, electron's mass term) and the electromagnetic 
polarization density (M,P) 

ma= (ie/2K)\hi]'}l/, (19) 

then, from Gordon's formula 

ji=kl+dkm
lk, (20) 

j = k+cur lM, (21) 

there follows, in the symmetric case considered above, 
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the (noncovariant) formula 

kiu= I I MXds, 

is 

(22) 

where du and ds denote the ordinary volume and surface 
elements. 

(3) In the local rest frame of the Dirac current the 
magnetic polarization vector M and the spin density c 
[defined by (12)] are collinear.12 

This follows from one of the identities13 arising from 
the algebra of y matrices,14 that is, 

Ei-y*(2ip7*ty foY-fo^ $$) = 0. (23) 

(4) The physical density associated by postulates B 
and C with the energy-momentum operator (16) is 
necessarily Tetrode's2 asymmetrical tensor (7). 

This is seen by substituting in (15) \j/y4 for ^ f , 
replacing the constant-time integration by an inte­
gration over a space-like surface S,1 and writing down 
the covariant product yldui instead of the degenerate 
form y*du= {—i/c)yHu\ {du1 is the volume element 
4-vector on S). 

(5) In the case of a static solution ^(x)=<p(x) 
Xexp(iWt/%), the "wrong" energy-momentum4-vector 

U- • i l l T^duj (24) 

is, in each volume element, collinear with the Dirac 
4-current. 

This is evident in a constant-time integration: [d4] 
will be the only differential operator present, and it 
will yield a quantity proportional to \pyty. 

Thus, by virtue of theorem 1, Ll may well be called 
the longitudinal energy-momentum. 

(6) In the low-velocity limit, the true or physical 
energy-momentum 4-vector 

x-fffl**, (25) 

is, in each volume element, nearly collinear with the 
Gordon 4-current (the angle between the two being of 
order v2/c2). 

This is easily seen by using the so-called low-velocity 
representation of the 7's, where 74 is diagonal with the 
signature ( + 1 , + 1 , — 1 , —1), and the \j/ has two large 
(i/'i and ^2) and two small ($$ and ^4) components. 
The additional statement is seen, as usual, by inspection 
of the expressions of the components of the Dirac 
current (and, in our case, the use of theorem 5). 

(7) According to Tetrode's formula (11), an expres­
sion for the transverse energy-momentum 4-vector 

Ti^Pi—Li (26) 
12 The same is true of o* and the electric polarization vector P. 
13 W. Kofink, Ann. Physik 30, 57 (1937). 
14 W. Pauli, Ann. Inst. Henri Poincare 6, 109 (1936). 

2^= djca^du^i <Ti3kdsjk, (27) 

where the surface integral is over the contour of the 
volume integral domain. 

Thus, in the symmetrical case considered above, the 
physical momentum 3-vector of a body endowed with 
a spin density cr has, in the rest frame, the nonzero value 

P = T = - J J J airladu= I jvXds. (28) 

The compatibility of (28) with (22) through theorems 
(1) and (3) should be noted. 

In the cases where the surface integral differs from 
zero, the translational inertial spin effect will follow 
from (28). 

(8) Our last theorem will establish the connection 
between the contents of this section and the intro­
ductory one. 

Consider (Fig. 1) an initial and a final state of the 
test body represented by finite nonintersecting space­
like surfaces Si and S2, and also the time-like wall Sz 
generated by the contour surface of the body. 

The variation, between states 1 and 2, of the true or 
physical energy momentum is, according to (25), 

APi = TVduj. (29) 

while that of the longitudinal energy momentum is, 
according to (24), 

AZ/= f f J TWUJ. (30) 
J J J S2-S1 

The difference between the two is, according to (26), 
the variation of the transverse energy momentum and 
it reads, according to Tetrode's formula (11), 

J J J Si-Si 

= - / / / dtaMduj. (31) 
J J J S2-S1 

But, due to the identity 

did^'^O, (32) 

the last integral can be successively transformed as 

AT*= III dkaWdu^iA I faWdsjk, (33) 

or, in a pre-relativistic fashion, 

AT=A J I <rXd$. (34) 

file:///pyty
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The conclusion is that, if the expression ffaXds 
has varied between states 1 and 2, then the expressions 
(29) for AP{ and (30) for AIJ are not equivalent for 
calculating the variation of the experimentally measur­
able energy momentum. 

I t follows from the basic principles of quantum 
theory that the true, operational, energy momentum is 
the "oblique" (comprising a "transverse" component) 
energy momentum Pl defined by (25), and not the 
"longitudinal" energy momentum Ll defined by (24). 

I t should be noted that if one accepted the symmet-
tized tensor ©i?' defined by (10) as the real physical 
energy-momentum tensor, there would follow then not 
a zero effect as is usually tacitly assumed, but half the 
effect predicted here. 

III. THE PROPOSED EXPERIMENT 
s 

The idea is to use ferromagnetism or ferrimagnetism, 
as due to the electron spin, to display our translational 
inertial spin effect. 

The essential point is to find a body shape and a 
magnetization procedure such that in the final, mag­
netized, state, the surface integrals in (22), (28), 
and (34) will be nonzero; the initial state is taken as 
unmagnetized. 

We shall take (Fig. 2) as a macroscopic test body a 
small ferrite or iron-cobalt ring of cylindrical shape, and 
magnetize it to quasi-saturation15 by means of a short 
current pulse in a rectilinear wire along its geometrical 
axis. According to classical electromagnetism, the 
switching on of the current will not entail^the applica­
tion of any force or torque on the test body.16 

Now, the appearance, in the final state 2, of a 
macroscopic magnetic polarization M2 will imply that 
of a macroscopic spin density <T2 and thus, by virtue of 

magnetizing wire. 

15 The points we are working with in a "rectangular" hysteresis 
cycle are the points dbPo corresponding to H = 0; our experimental 
parameters are such that Po is practically constant inside all the 
ring-shaped test body. 

16 Even if the ferrite test body were electrically charged, a 
short current pulse would cause no artifact; the electric field 
E = —dA/dt is parallel to the wire, and the momentum imparted 
to the body of total charge Q during a time interval At comprising 
the pulse would be QfEdt= -AA = 0. 

formula (28), that of a "transverse momentum" T2. In 
the laboratory frame of reference the equations 

P i = P 2 = 0 , (35) 

L i=0 , L 2 + T 2 = 0 , (36) 

will hold. These refer to space projections of space-time 
vectors; the kinematical situation in the final state is 
schematized in Fig. 3, from which it is clear that the 
words longitudinal and transverse refer to space-time, 
not to space vectors. 

As, between states 1 and 2, the longitudinal energy 
momentum Ll undergoes a transition of value — Tl from 
its initial value P\ the test body will recoil with the 
momentum T. T is easily calculated as parallel to z'z 
with the value (see Fig. 2) 

T—2irab(j. 

The mass 9U of the ring of mean radius r and specific 
mass p is 

<3\l=2irrabp, 

so that the recoil velocity is 

v = a/pr. (37) 
Writing 

a/p=(a/M)(M/p) (38) 
will exhibit a universal constant, the ratio of the 
electron mass to the electron charge: 

a/M= electron spin/electron magnetic moment 

= m/e, (39) 

and the specific magnetic polarization strength17 

o-* = Af/p. (40) 

Equation (37) can thus be rewritten as 

v=(m/e)(p*/r). (41) 

As w/e=5 .7Xl0~ 8 emu, one finds, for f=0 .1 cm and 
or* = 70 (manganese ferrite case) or 210 (iron-cobalt 
case), 

^ 3 . 9 X 1 0 ~ 5 or 1.17X10~4 cm/sec, 

respectively. The sign of the effect is predicted to be 
opposite to that of the Einstein-de Haas effect, in the 
sense that while the Einstein-de Haas rotation follows 
the (conventional) exciting helix current, our translation 
should be opposite to the direction of the (conventional) 
exciting linear current. 

Reversing the direction of the excitation current will 
double the effect, and mechanical resonance should 
amplify it (as in the Einstein-de Haas experiment). 
With an amplification coefficient of the order of 10 and 
a resonance frequency of the order of 10 sec-1, the 
effect should be detectable by interferometric methods. 

Ch. Goillot is constructing an apparatus following the 
scheme outlined in this section. 

17 Usually denoted by a in magnetism literature. 
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IV. HYPERQUANTIZATION 

Physically, when going from the atomic scale up to 
the macroscopic scale of the test body, different averag­
ing processes will occur in succession: atoms inside 
magnetic domains, domains inside individual crystals, 
crystals inside the macroscopic body. A detailed analysis 
of any one of these averaging processes would be a very 
formidable task. Fortunately, different kinds of general 
arguments, of a plausible rather than rigorous character, 
may be given in favor of maintaining the validity of the 
above conclusions. The main one is drawn from the 
hyperquantization technique. 

If we ignore all particular details, our problem can 
be schematized as that of distributing, according to 
Fermi statistics, a large number of electrons among a 
set of orthogonal states. Moreover, it is sufficient for 
our purpose to consider the initial and the final state of 
our test body, which, macroscopically speaking, are 
stationary in the center-of-mass frame. 

In Sec. I I we have used the Dirac equation with an 
external potential. The obvious hyper quantized trans­
position is the so-called bound-interaction picture,18 

where the electron's \p is an operator, and the state 
function <£ varies according to the electron's interaction 
with the radiation field. 

As the macroscopic states we are considering are 
stationary, <£> will fluctuate in time around some mean 

18 See for instance J. M. Jauch and F. Rohrlich, reference 3, 
p. 306. 

TIME 

A 

FIG. 3. Longitudinal, transverse, 
and total-energy momentum, with 
their space projections. 

value $o. To find the observable mean value of such 
quantities as Tetrode's energy-momentum tensor, 
Dirac's spin density, etc., we will have to use expressions 
of the form 

22 = <$o|#W|$o>, (42) 

where the operators \p obey the same equations as in 
Sec. I I and where <£0 is constant. Thus, all the differen­
tial relations which are consequences of the Dirac 
theory, and among them Tetrode's and Gordon's 
formulas, which we have explicitly used, will still be 
valid in terms of the mean values (42). 

In other words, the deduction of Sec. I I may be 
extended to the more physical picture of hyperquantized 
theory. 

Another consequence of formula (42) is 

(curla)av= curl(cr)av, 

where { )av denote mean values; this relation has been 
tacitly assumed in Sec. I I I . 


