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The self-consistent field method of Cohen and Ehrenreich is used to obtain the macroscopic longitudinal 
dielectric constant that includes local field effects. The physical basis for the local field is discussed for 
nonlocalized electrons. In the limit of long wavelengths and low frequencies, it is shown that the dielectric 
constant can be split into an acceleration term that describes the motion of electrons from atom to atom 
and an atomic term that describes the motion of the electrons around each atom. It is proved that the 
acceleration term contains no local field correction whereas the atomic term does contain a local field cor­
rection. The local field correction is calculated explicitly for the weak binding limit and is found to be of 
the same order in the weak potential as the atomic term, but the coefficient is much smaller for most Fermi 
surfaces. This justifies, for most Fermi surfaces, the common practice of neglecting local field corrections. 
In the tight-binding limit, the Lorentz expression for the dielectric constant is obtained. 

I. INTRODUCTION 

TH E use of a dielectric constant formalism to 
describe the behavior of a many-electron system 

occurs in many areas of solid-state physics. The 
dielectric constant has served to describe the response 
of a crystal to an external electric field, to study 
electron-electron interactions,1 and to describe the 
valence screening of the core effective potential of 
Phillips and Kleinman2 in the investigation of band 
structure.3 In these and other treatments, the approxi­
mation has invariably been made of ignoring local field 
corrections to the dielectric constant. In some cases, the 
presence of local field corrections would merely affect 
numerical factors. In other cases, however, the contri­
bution of local field corrections that were large would 
completely invalidate even the qualitative results. 
This would be true, for example, of Cohen's4 use of the 
dielectric constant to determine the shape of the Fermi 
surface and of Biondi and Rayne's5 treatment of 
optical effects. Therefore, it is of interest to examine the 
validity of the approximation of neglecting local field 
corrections to the dielectric constant. The error intro­
duced by this approximation will be explicitly calculated 
and shown to be small or negligible under most 
circumstances. 

The dielectric constant can be calculated using a 
many-body approach6,7 or a self-consistent field ap­
proach.8,9 Cohen and Ehrenreich9 have shown that for 
many problems these two approaches may be regarded 
as rigorously equivalent within the random phase 
approximation. We use the self-consistent field ap­
proach. In this paper, the expression for the macro-
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scopic longitudinal dielectric constant of a many-
electron system in a periodic potential given by Cohen 
and Ehrenreich9 is generalized by the inclusion of local 
field effects (Sec. I I) . In Sec. I l l , the effect of the local 
field is considered in detail. In the limit of long wave­
lengths and low frequencies, the dielectric constant has 
the following form: 

€-ec-47riVoe2/WaCo2. (1) 

The second term is the usual acceleration term, iV0 and 
ma being an appropriate carrier density and an ap­
propriate average effective mass, respectively. In Sec. 
IV, it is shown that the acceleration term does not con­
tain a local field correction. The first term ec is the 
analog of the ordinary atomic polarizability and does 
contain a local field correction, which is calculated 
explicitly for the weak-binding limit in Sec. V. For the 
typical case of copper, we find that the local field correc­
tion to the dielectric constant is only 4 % of the atomic 
polarizability term, which in turn is small compared to 
another term (effective-mass correction) that is of the 
same order in the weak potential. In Sec. VI, we con­
sider the tight-binding limit and recapture the Lorentz 
formula for the dielectric constant, 

where aT is the total polarizability. 

II. GENERAL FORMALISM 

To calculate the macroscopic longitudinal dielectric 
constant, we use the self-consistent field method in 
which each electron interacts independently with a self-
consistent electromagnetic field. In this approach, the 
single-particle Liouville equation, 

ift(3P/aO = [ # , p ] , (3) 

can be used to describe the response of any particle of 
the system to the self-consistent potential V(r,t). Here 
p is the operator represented by the single-particle 
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density matrix. The single-particle Hamiltonian is 

H=Ho+V(r,t), (4) 

where Ho is the kinetic energy p2/2m plus the periodic 
Bloch potential, and V is the self-consistent potential 
consisting of Vo, the applied potential, plus Vs, the 
screening potential. The wave functions used as a repre­
sentation are the Bloch functions, | kl)=Qr1/2eik'TUki(r), 
which diagonalize the unperturbed Hamiltonian, Ho\kl) 
= $kj|k/). We expand the operator p in the form 
P=Po+Pi, where po is the unperturbed density-matrix 
operator having the property, po\bl)=fo(Sbi)\kl), 
where fo(&ki) is the Fermi-Dirac distribution function. 

We Fourier-analyze the self-consistent potential V in 
the form 

7 ( r , 0 = E 7(q,K,0«r*<*+*>- (5) 

where q is restricted to lie in the first Brillouin zone and 
the K's are reciprocal lattice vectors. Finally, we 
linearize the Liouville equation to obtain 

i f t ( W d O = [ f fo ,p i ]+[7 , P o ] . (6) 

We now take the matrix elements of this linearized 
equation between the states (k/| and | k + q / ) . Assume 
that the applied potential VQ has harmonic time depend­
ence and is turned on adiabatically, i.e., Vo^eia}teat, 
a —> 0+ . We make the ansatz that all quantities have the 
same time dependence as the applied potential. This 
ansatz has been rigorously justified.10 We then obtain 

<k/|Pl|k+q,0 

/o(^k+q,Z' ) — /o(<§kz) 
Z%nq,K,) (?) 

£k+q,z' — Ski—noo+ina K 

^ K ^ A - 1 / dh uu*{Y)e-ilL-Tu^,i>{r). 

where 

Here Jo indicates that the integration is to be performed 
only over a unit cell whose volume is denoted by A. The 
induced change in electron density n (r) is given by 

»(r) = T r [ « ( r - r a ) P l ] = a - 1 E ^ q , r 

q 

X E Wk+q,z'*(r)^kz(r)(k/|p1 |k+q,/ /). (8) 
k,i,if 

We next combine Poisson's equation, 

V 2F s=-47re%, (9) 

with Eqs. (7) and (8) to obtain the desired result which 
relates the total self-consistent potential V to the 
screening potential Vs, 

F s ( q , K ) = - L K , r K K ' F ( q , K O , (10) 

where 

4xe2 /o(£k+<i,z') — /o(£kz) 
TKK, = - — • £ 77K*%'. (11) 

(q+K) 2 k,U ' St+^v — Sw—foa+iha 

We shall look upon the quantities TKK' as the elements 
of a matrix T whose rows and columns are labeled by 
the reciprocal lattice vectors. 

From this result, we can derive the macroscopic longi­
tudinal dielectric constant. We suppose that the applied 
potential is of the form 

Vo(r,t)=Vo(qyt)e-^ (12) 

where q is small compared to a reciprocal lattice vector. 
We define a macroscopic quantity as the average of the 
corresponding microscopic quantity taken over a unit 
cell. Consider any quantity / ( r ) . We denote its macro­
scopic average by / (R) , where the bar indicates an 
average taken over the unit cell whose location is given 
by the macroscopic position variable R. We have 

/ ( R ) = L / ( q , K ) A - i 
q,K / . 

(Pr g-i(q+K)T 

« £ /(q,o)e- i"-R, (13) 

provided that / ( q , K ) ^ 0 for only those values of q 
which are so small that e~l^'T is essentially constant over 
a unit cell. Comparing Eq. (13) with the Fourier trans­
form of / (R) , we see that 

/(q) = /(q,0), (14) 

and so the q-Fourier component of any macroscopic 
quantity is just the q, K = 0 component of the corre­
sponding microscopic quantity. Further, we can easily 
prove (see Appendix A) that the derivative of an 
averaged quantity with respect to the macroscopic 
variable R (taken to be continuous on a macroscopic 
scale) equals the average of the derivative of that 
quantity, i.e., 

VR/(R) = (V r/(r))aT . (15) 

This shows how the microscopic field equations lead 
directly to the macroscopic field equations of Maxwell. 

The macroscopic dielectric constant e is defined 
through the relation11 

n(q)/e(q,a,) = F(q) . (16) 

Recalling that V==VQ+VS and F 0(q,K)= F0(q)5Ko, we 
obtain from Eq. (10) 

F(q,0) = [( l+T)-1]ooF0(q). (17) 

Here ( 1 + T ) - 1 denotes the inverse of a matrix whose 
matrix elements are explicitly known. From the defini-

' M. H. Cohen and H. Ehrenreich (private communication). 

11 This definition is equivalent to the usual definition, P(q) 
= (47r)-1[e(q,a))-l]^(q). 
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tion of e given in Eq. (16), we see that the dielectric 
constant is given by12 

1A=C(1+T)- I]oo. (18) 

Thus far, the treatment has included local field effects 
and has resulted in Eq. (18). In the next section, we 
shall see how the neglect of local field effects modifies 
the dielectric constant. 

III. LOCAL FIELD 

The microscopic field is the total electric field due to 
all the charges in the system plus the applied fields. If 
the electrons are well localized, the microscopic field will 
have a singularity at the position of every electron. In 
this case, the local field acting on any particular electron 
is the electric field due to all the other electrons plus the 
applied fields, i.e., it is the microscopic field evaluated 
at the position of the electron minus the singularity 
caused by the electron itself. This is the definition of the 
local field introduced by Lorentz. However, if an 
electron is represented by a charge cloud that is appre­
ciably spread out in space, then the definition of the local 
field introduced by Lorentz no longer has meaning since 
there is no single position of the electron at which to 
evaluate the microscopic field. Therefore, we shall have 
to extend the definition of the local field to handle this 
case. Obviously, our extended defintion must reduce to 
the Lorentz version of the local field in the case of well-
localized electrons. 

Since the local field enters dielectric theory through 
the equation p=aEioo, where p is the dipole moment 
associated with the electron cloud and a is its macro­
scopic polarizability, we shall use this relation to guide 
us in constructing our definition. Thus, the generalized 
local field will be that quantity which determines the 
polarization of the electron. I t will be obtained by 
averaging the microscopic field over the region occupied 
by the electron, the contribution to the average being 
greater from those parts of the unit cell where the 
electron is more easily polarized.13 We emphasize that 
the local field will be different from, for example, that 
electric field which determines the force acting on the 
electron. The latter electric field must be defined to 
satisfy F—qE\ where F is the force acting on the elec­
tron having charge q. The fields E\oc and E' will differ in 
that different weighting factors are necessary in the 
averaging process employed in the two cases. However, 
for localized electrons, where both E\oc and Ef reduce to 
the Lorentz local field, these quantities will be equal. 

A further quantity, the macroscopic field, is obtained 

12 This equation has been obtained independently by S. L. Adler 
[Phys. Rev. 126, 413 (1962)]. 

13 In the Bloch scheme, each electron is spread throughout the 
entire crystal. Therefore, the field of an electron is no longer 
singular and, in fact, makes a negligible contribution to the total 
microscopic field and hence need not be subtracted. But, contrary 
to Nozieres and Pines (see reference 1) and others, this does not 
imply that there is no local field correction. However, the term 
"local" field is clearly a misnomer for nonlocalized electrons. 

by simply performing a spatial average of the micro­
scopic field over the unit cell. This unweighted average 
field will in general differ from the local field, which is a 
weighted average field. Only for a spatially uniform 
charge distribution, viz., a free electron, where all parts 
of the distribution are as easily polarized, will the 
weighted and unweighted average fields be the same. In 
the present case where we use Bloch functions, there will 
in general be some degree of nonuniformity of the elec­
tron cloud within the unit cell, and so the local field will 
differ from the macroscopic field. 

To develop this in detail, we introduce the micro­
scopic polarizability a (r,rr) which is expressed in terms 
of the polarization P(r) by 

P(i)=NQ fdV a(r , r ' )£(r ' ) , (19) 

where No is the density of unit cells. The quantity 
a(r,r ') measures the ease with which the electron cloud 
responds to the electric field. Therefore, we shall use the 
polarizability as the weighting factor in determining the 
local field. Fourier-analyzing Eq. (19) yields14 

P(q,K) = N0 I r a(q,K,K')£(q,K'). (20) 

We see that a given Fourier component q (in the first 
Brillouin zone) of the microscopic field gives rise to 
polarization of the same Fourier component; moreover, 
it is this same q component of the polarizability a(r,r ') 
which determines this response of the electrons. In our 
case, the microscopic field contains only one Fourier 
component q. Therefore, we shall write 

« ( ' / ) = E «(q ,K,K , )e-^•^- r , ) ^ K • ^ e+ i K , • r , 

<1,K,K' 

= 2 > ( q , r , r ' ) , (21) 
q 

and use a(q,r,r') as the appropriate weighting factor. 
The local field will then contain only the same Fourier 
component q. We define 

# l o c(R) = # l o c (q ) e^ - R 

s f <Pr[ dV a(q,r,r ')£(r ') / f' d*r f dV a(q,r,r'), 
Jo Jo ' Jo Jo 

(22) 

where we obtain the local field 2£i0C(R) by weighting the 
microscopic field E(x') with a(q,r,r') and then nor­
malizing. Again, R is the macroscopic position variable 
locating the unit cell over which the average is taken. 
We emphasize the macroscopic character of the local 
field by placing a bar over 2£i00(R). Combining the 
Fourier transform of Eq. (22) with Eq. (20) yields the 
equation 
. . i>(q) = i\r0a(q).EIoc(q), (23) 

14 The Fourier transform of a(r,r') is written as indicated 
in Eq. (21). The periodicity of the crystal, requiring that 
a ( r+R m , r'-j-Rm) =a(r,t'), where Rw is any lattice vector, permits 
us to write the Fourier transform in such a form. 
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which shows that the weighting factor used in the 
definition of J^ioc(R) was chosen correctly. Here a(q) 
=a (q ) = a(q,0,0), and we no longer bother to write out 
the bars explicitly. 

We now write down the fundamental expression for 
the dielectric constant, 

6(q,co) = l+47rP(q)/E(q) , (24) 

and use Eq. (23) to introduce the local field explicitly. 
This gives 

e(q,o>) = l+47riY0a(q)£ioo(q)/E(q). (25) 

The dependence of the dielectric constant upon the local 
field is now clear. 

If we wish to neglect local field corrections, we merely 
replace £ioc(q) by E(q) and then obtain 

€(q,co)«l+47r7VoQ;(q,co), (26) 

where the co dependence of a is made explicit. Using 
Eq. (20) and the Fourier transforms of the well-known 
equations15 

V - P = m , (27) 

VWs=-4we2n, (28) 
and 

eE=VV, (29) 

we find that 4tirNoa (q,w) = Too- Thus, we see that had we 
ignored the local field corrections, we would have 
obtained 

e= l+Too , (30) 

in place of the considerably more complicated Eq. (18). 

IV PROOF THAT THE ACCELERATION TERM 
HAS NO LOCAL FIELD CORRECTIONS 

We shall now examine the complete dielectric con­
stant that contains local field effects in the limit of long 
wavelengths and low frequencies. Take o> to be less than 
any band gap uu> (k) and let q —•» 0. This corresponds to 
the semi classical case. In this limit, the present 
formalism enables us to split T K K ' conveniently into 
two terms, each of which has a simple physical 
interpretation: 

TKK' = TKK' (acceleration) 

+ r K K ' (atomic), (31) 

— e2q2 r 
TKK.' (acceleration) = J2 I d?k 

7r2(q+K)2(fe)2 i J 

d2Skl 

X/o(Skz) % V (32) 
________ dk2 

15 We will always use e as a positive quantity; thus, the elec­
tronic charge is — e. 

2e2q r 
TKK> (atomic) = £ ' (P / d*k 

7r2(q+K)2 w J 

Xfo(Su) , (33) 
COj'z2 — C O 2 

where <P indicates that the principal part of the integral 
is to be taken and the prime on the summation means 
that the terms V=l are to be excluded. The acceleration 
term describes the motion of the electrons from atom to 
atom in the presence of the applied field. I t is similar in 
form to the acceleration term for free electrons with the 
free-electron mass replaced by an average effective 
mass. The atomic term describes the motion of the 
electrons around each atom and contains the contribu­
tion to the dielectric constant from polarization effects. 
The acceleration term should thus exhibit no local field 
corrections whereas there should be a local field correc­
tion to the atomic term. I t will be seen that this is 
precisely what occurs. 

We can easily show that for q—> 0, the imaginary 
part of TICK' vanishes and all the matrix elements of the 
acceleration term are of higher order in q than the 
corresponding matrix elements of the atomic term 
except for K = K ' = 0 . Therefore, in the long-wavelength 
limit, we may neglect all acceleration terms except Too. 
By using standard expressions for the inverse of a 
matrix, we may rewrite Eq. (18) as 

«= i+roo+E' roK[(i+T)°7(i+T)00], (34) 
K 

where the superscript denotes the cofactor of the 
matrix element and the prime means that the K = 0 term 
is excluded from the summation. By comparing this 
expression with the form of the dielectric constant in the 
absence of local field effects, Eq. (30), we see that the 
last term of Eq. (34) contains all the local field correc­
tions. The important feature of this last term is that it 
does not contain Too and hence contains only atomic 
terms and no acceleration terms, Thus, we see that in 
the limit q —» 0, there are no local field corrections to the 
acceleration term. 

V. WEAK-BINDING LIMIT 

We now calculate explicitly the local field corrections 
in the weak-binding limit. We proceed by expanding the 
periodic Bloch potential, 

FBioch==ZKFKe- iK-r, (35) 

and treating the VK as expansion parameters in ordinary 
second-order perturbation theory. We could obtain 
EioC(q)/£(q) directly from the Fourier transform of Eq. 
(22) and we would find that Eioc(q) = £ ( q ) [ l + 0 ( F K

2 ) ] . 
However, it is easier to turn to Eq. (34) and merely 
evaluate the last term. We easily find that, to lowest 
order in VK, all diagonal matrix elements of 1 + T are 
independent of VK and all off-diagonal matrix elements 
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are proportional to FK. Then, by writing out the matrix 
1 + T , it is easy to see that, to lowest order in FK, 

nr 

( 1 + T ) » K = — — Y [ ' ( i + T w . ) (36) 
( i + r K K ) *> 

and 
( i + T r = n ' ( i + ^ K ' K 0 , (37) 

K' 

where the prime denotes that the K ' = 0 factor is 
excluded from the product. Thus, in the weak-binding 
limit to second order in F K , Eq. (34) becomes 

^ O K ^ K O 

e=i+roo-Z/ m 
* 1 + ^KK 

Evaluation of the matrix elements is straightforward 
and leads to 

4TTAV2 2e2W 1 
e(0,a>) = l + E ' ^ K | 2 ( ^ M ) V 3 K 

mcc2 w2m2 (fico)2 K 

2e%4 

+ E'|FK|2(^MW 
7r2m2 K 

/2e2fi\2 | F K | 2(K^/K)2(I,K)2 

— I ) ]T' (39) 
\w2mJ K l+(2e2I-iK/T2K2) ' 

where K^ is the projection of K in the direction of 
propagation of the wave q, No is the electron density, 
and the integrals In

K and Jn
K are defined as follows: 

In^ fd*k / o (k ) (A£K)- t (A£K) 2 - ( M 2 ] " 1 , (40) 

and 

J w * s /d«*/o(k)(ASx)-», (41) 

where 
h2(k+K)2 fi%2 

ASK^ . 
2m 2m 

In Eq. (39), the first two terms represent the free-
electron result, the third term is the effective mass 
correction, the fourth term is the atomic polarizability, 
and the last is the local field correction to the atomic 
polarizability term. To estimate the relative magnitudes 
of the various terms, we may actually perform the 
integrals using the physical constants of copper and a 
typical infrared wavelength of 12 000 A. In this case, 
hox^ASja for all K, implying that In

K~Jn+2K and so the 
last two terms are independent of wavelength. The 
effective mass correction is almost 50 times as large as 
the atomic polarizability, and the local field correction 
is only 4 % of the atomic polarizability. Examination of 
the integrals occurring in the last two terms of Eq. (39) 
shows that the local field corrections may be neglected 
for almost all Fermi surfaces. However, peculiar cases 

must be looked into on an individual basis, a matter 
which can easily be done. 

VI. TIGHT-BINDING LIMIT 

While the expression for the dielectric constant given 
by Eq. (18) is completely general, it is cumbersome to 
use it in the tight-binding limit. There are two reasons 
for this. First, we have used Bloch functions as a basis 
in our expression for the dielectric constant. These 
functions are not convenient to describe the localized 
electrons wrhich characterize the tight-binding limit. 
Second, the matrix ( 1 + T ) - 1 is in the K, K' representa­
tion. Evaluation of the matrix in the present case 
requires making two complicated transformations.16 

Only then is one able to reproduce the Lorentz expres­
sion for the local field correction to the dielectric 
constant. 

I t is simpler and physically clearer to derive the 
Lorentz result using an approach that is more in keeping 
with the spirit of Lorentz' work. We shall use Wannier 
functions, \lm) — \pi{x— Rm), which are related to the 
periodic part of the Bloch functions by 

h{r-Km) = N-lA-li2 E k **k-<^R«>«w(r) (42) 
and 

ww(r) = A"1/2 Em e - ^ r - R ^ ( r - R m ) , (43) 

and which satisfy the orthogonality relation 

/ " r f V ^ * ( r - R « ) ^ ( r - R m O = «K'«m«'. (44) 

Again, A is the volume of a unit cell and N is the 
number of unit cells in the crystal. In the tight-binding 
limit, the Wannier function \pi(r— Rm) is centered in the 
wth unit cell, labeled by the lattice vector Rw, and is 
similar to an atomic function. Because of this localiza­
tion property, these functions, rather than Bloch func­
tions, are appropriate to the problem. As before, we 
shall dea] with an applied potential of the form 

F o ( r , 0 = F 0 ( q , 0 ^ ' q - r . (45) 

Then, the total microscopic potential F(r) , as well as all 
other quantities, will contain e~iq-'T multiplied by a 
q-dependent periodic function representing the influence 
of the lattice. We can write all such quantities in the 
convenient Wannier-like form17 

7 ( r ) ^ ^ q - r £ m Z ) ( r _ _ R m ) ^ q . ( r - R w ) ) (46) 

where the time dependence is not explicitly stated. 
Because the v(r— Rm) arise from the response of the 
electrons to F0 , in the tight-binding limit each of the 
v(r— Rm) is centered in its respective unit cell m. 

16 S. L. Adler, see reference 12. 
17 Any q-dependent function ^q(r) can be written in the form 

of Eq. (46) if it has the following properties: F^(r) = e~l(i'T 

Xperiodic function and Fq+K(r) = /?,q(r). Both conditions are 
satisfied by F(r). 
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We now introduce the approximations that character­
ize the extreme tight-binding limit. First, we ignore any 
k dependence of the energy, Si(k) = Si. Then, the 
Wannier functions diagonalize the unperturbed Hamil-
tonian (which is not true in general), 

H0\lm)=Si\lm). (47) 

Second, we neglect overlap of the wave functions. We 
now proceed exactly as in Sec. I I , starting with the 
linearized Liouville equation, Eq. (6), and taking 
matrix elements between the Wannier states (lm\ and 
\l'tn), (not \Vw!) because we are neglecting overlap). 
This leads to 

{lm\Pl\l
rm)^FVi(lm\V\lfm), (48) 

where 

Fi>i=(fv--fi)/(Si>--Sl--hc*+iha), a - > 0 + , 

since we again assume that the applied potential has 
harmonic time dependence and is turned on adiabati-
cally. The matrix element of V in Eq. (48) is integrated 
only over cell m. Within cell m, we can split V into two 
parts, 

F(r) = ^-*^'F«tm(r)+e-£ , i- rFintm(r), (49) 
where 

Fext™(r)= £ ' *(r-R,)tf-*-<^*>, (50) 

and 
F i n r ( r ) = H r - R m ) ^ q - ( r - R - ) . (51) 

The interpretation of these two terms is clear. We use 
the subscript " int" to denote that part of the micro­
scopic potential in cell m resulting from the polarization 
within cell m itself, and the subscript "ext" denotes 
both the potential arising from the rest of the medium 
and the applied potential. We can rewrite the matrix 
element of V by recalling that v(r— Rt-) is centered in 
cell i and hence is relatively flat in cell m and that we 
are dealing with q small compared to a reciprocal lattice 
vector. Therefore Fextw is a slowly varying function 
throughout cell m and we may expand 

Fext™(r) « F « t m ( R « ) + ( r - I L ) • VRwF«tm(Rm). (52) 

This gives 

{lm\V\Vm) 

= e~^^lXw • VRwFextM(R™) + (lm\ F i n t-1 Vm)\ 

/ V / , (53) 
where 

Xw = (lm\r—Rm\rm). 

The induced change in electron density n(t) is given 
by 

«(r) = T r [ 6 ( r - r e ) P l ] 

= E ^ * ( r - R m ) ^ ( r - R « ) ( t o | p i | / ' w ) . (54) 
l,l',m 

Using Eqs. (48) and (53), we obtain 

»(r) = *-*-' £ ^ * ( r ~ R m ) ^ ( r - R m ) e - ^ ' ^ - R ^ ^ 
1,1' ,m 

X[X„, . VRMFextm(RJ + ( M Vmtm\l'm)J (55) 

We now average over a unit cell, say cell m, to get 

nm=e-^RmiAj^q'XriFri 

VI 

' * V R m F e x t m ( R m ) + ( t o | F i n t - | r m ) ] , (56) 

where the bar means average taken over the indicated 
unit cell. To obtain Eq. (56), we again expanded 
gr-iq-cr-Rm) a n ( j r e tained terms to lowest order in q 
(semiclassical case). 

The next step is to introduce the local field in a way 
similar to Lorentz. As with the potential, we shall split 
the microscopic field into two parts (but here it is con­
venient to incorporate the factor e~~ici'r into the parts 
of E), 

E(r) = JSB r t*(r)+E i n t"(r) . (57) 

We note that £extm is just the local field of Lorentz, i.e., 
the field in cell m caused both by the polarization of all 
unit cells other than cell m and by the applied field. 
From Eq. (52), we have 

eEe^(r) = e-^VRmVe^(Rm). (58) 

Thus, we see that the local field is essentially constant 
over a unit cell and we can equivalently use a macro­
scopic local field. Therefore, we define 

^ l o c M = ^ e x t m . ( 5 9 ) 

Then, the macroscopic average field is given by 

E™=E6xtm+Eint™==EloG™+Eint™. (60) 

The quantity Eint
m is the macroscopic field at cell m 

caused by the polarization of that cell itself. Hence, 
letting - ^ i n t m ( r ) = 6- iq-rFintm(r), we have 

Eiat™=-A-i[ J V V ^ i n t - ( r ) 
J 0,m 

= - A - x f ^ „ 0 i » t " ( r ) , (61) 
J A,m 

where /x denotes the projection in the direction of 
propagation of the wave q. The second form of Eq. (61) 
has the advantage of requiring values of the integrand 
only at the surface of the unit cell. There, one is justified 
in using the dipole approximation for tightly bound 
electrons, and we can write 

0int™(r) = p-rA3 , (62) 

where p is the dipole moment of the atom in cell m. The 
integralfis then easily performed for cells of cubic 
symmetry and we get 

•Bintw=-frnPm . (63) 
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Combining Eqs. (63) and (57) gives Lorentz' relation­
ship between the local field and the macroscopic field in 
cases of cubic symmetry, 

Ei0G
m=Em+iwPm. (64) 

We now return to the induced electron density, 
Eq. (56), and, exactly as in Sec. I l l , we relate nm to 
Pm and Fext™ to Ee^

m=Eioc
m. 

This gives the relationship 

P™=N0aElo™-N0e
2 £ ' FvlXvfe-^^ 

VI 

X{lm\ -e~Wint
m\lrm)=NQ{a-a^)Eioc^ (65) 

where 
a = (^2 /w2)E / Fvl\Pvf\ W f 2 . (66) 

VI 

We have introduced 

Pi^=(l'm\--ihVtl\ltn), 

noted that Fu=0, and used the well-known result 

~Pi'i=itnai>iXi>i. (67) 

The quantity a~asp is shown in Appendix B to be just 
the atomic polarizability of an isolated atom in an 
applied field. The quantity asp is the contribution to the 
polarizability that arises from the field caused by the 
self-consistent response of the electrons. We may call 
cesp the self-polarization part of the polarizability. 

Equations (64) and (65), together with the definition 
of the dielectric constant, 

Pm= (4TT)-1(€ -l)Em, (68) 

are sufficient to obtain the desired result, 

4c7rN0(a — a s p) 
e - l = . (69) 

l — %irNo(a—asp) 

Thus, the tight-binding limit in the semiclassical ap­
proximation does indeed lead to the Lorentz expression 
for the dielectric constant. 

VII. CONCLUSIONS 

In the semiclassical limit, the expression for the 
dielectric constant has been conveniently split into an 
acceleration term and an atomic term. The acceleration 
term has been shown to contain no local field corrections. 
Therefore, whenever the acceleration term dominates 
the dielectric constant, neglect of local field corrections 
is rigorously correct. Moreover, in the weak binding 
limit, the local field correction is of the same order in the 
weak potential as the atomic polarizability term, but 
the coefficient is much smaller (usually less than 5%) 
for most Fermi surfaces. However, peculiar cases must 
be examined individually. Therefore, in the core effec­
tive potential of Phillips and Kleinman, for example, 
when one wants to use the dielectric constant to write 

down the self-consistent Hartree potential,3 neglect of 
local corrections usually introduces only a small error. 
I t is also felt that the definition and physical interpreta­
tion of the local field given in Sec. I l l is generally useful 
in making qualitative estimates of the effect of local field 
corrections for various situations. 
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APPENDIX A 

Consider the quantity f(t). We want to show that 

VR/(R) = (V r/(r))av , (Al) 

where the bar indicates an average taken over a unit cell. 
We use R to denote the macroscopic position variable 
locating the unit cell over which the average is taken. 
We start by Fourier-analyzing / ( r ) , yielding 

/ ( r ) = E / ( q , K ) ^ ^ ) - (A2) 

and we again assume /(q,K) = 0 unless q is so small that 
e~^'T is almost constant over a unit cell. If we first take 
the derivative of Eq. (A2) and then average, we get 

<V r/(r))av= E - * ( q + K ) / ( q , K ) A - 1 f dh e-^+V-* 

~E-* 'q/(q,0)<r '"-R . (A3) 
q 

On the other hand, if we first average Eq. (A2), we get 

/(R)=E /(q^A-1 f dh e-^
+^'* 

q.K J0 
~ E / ( q , 0 ) < r ^ R . (A4) 

q 

Taking the derivative of Eq. (A4) with respect to the 
macroscopic variable R yields Eq. (A3) directly. This 
proves Eq. (Al), as desired. In this proof we have 
actually carried out the averaging process, i.e., we 
evaluated both sides of Eq. (Al) and showed that they 
are equal. The usual method of proof is merely to trans­
form one side of Eq. (Al) into the other without actually 
evaluating. 

APPENDIX B 

We wish to show that the expression a—asp, defined 
in Eqs. (58) and (66), is indeed the atomic polarizability, 
with asp being the contribution due to self-polarization 
effects. Consider an isolated atom in an applied field. 
Then, the Wannier functions become atomic functions 
and 

F ( r ) = Fo<r*-'+7int(r)<r*-' , (Bl) 
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where Foe - ' ' -1 is the applied potential and Fint(r)e-il»-r n to P and Vo to Eo gives 
is the screening potential. Proceeding as before, we get 
, , l n , , , v ^ = P A = ( « V * » , ) E i ? i ' i P i ' i ' ' W i - ' f t 
</|pilO=^i'^I^IO »'• 

*FP ,«-*'-»C-tq-X,p7o+</| Vint\l')l (B2) 
and 

»(r) = r^*WI(r)</|Pl|0 

-e2 £ FPIXV,"er-*-*<Z| - e - i F i n t | / ' > , (BS) 

where p is the dipole moment of the atom. Use was 
again made of Eq. (67). 

By definition, the ratio of the dipole moment to the 
macroscopic applied field is just the polarizability. The 

v ^ (r p^n r • v xr . ti\Tr im-i /T^O\ n r s t t e r m m E q- 0*5) arises directly from the applied 
X ^ - ^ F r l C - « q - X , r F 0 + < / | 7 t a t | / ' > ] . (B3) M d , s h o w i n g that 

Next, we average n(t) to obtain 

= ^ ' r 2 > i ' * ( r ) * i « 
VI 

a = ( « 2 / f » a ) E i ' * ? r i l ^ ' i M l ^ i ' r a . (B6) 

The second term arises from the field caused by the self-
consistent response of the electrons, showing it to be a 

X[—iq*Xw'Fo+(/| F i n t l O l 0*4) self-polarization effect. In our linear treatment, the 
, ^ , , , , , matrix element of Vint must be proportional to Eo 

where the bar here denotes an average taken over the - - +y> A ' A lit 
region occupied by the atom, whose location is given by _ 
the macroscopic position variable R. Finally, relating aBVEo=e2 J^m FinXyfer^-^l] —e~lVint\V). (B7) 
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The exciton spectrum of Agl, Cul, CuBr, and CuCl is discussed and various peaks attributed to several 
coexisting crystal modifications. The shift of the peaks with alloy concentration in the pseudobinary systems 
formed with these compounds is reported and interpreted. The absorption and reflection spectra of these 
materials and their alloys for energies between the energy gap and 10 eV is reported and the structure at­
tributed to transitions between regions of the valence band lying below the highest maximum and parts of 
the conduction band higher than the lowest minimum. These spectra are compared with the corresponding 
spectra of other zincblende- and wurtzite-like materials. 

I. INTRODUCTION 

TH E silver and cuprous halides are members of a 
family of semiconductors which has received 

much attention: the semiconductors with four valence 
electrons per atom. Among these semiconductors are 
the elementary semiconductors of the fourth group of 
the periodic table (diamond, Si, Ge, and gray tin) which 
crystallize in the diamond lattice. The next members 
of the family are the so-called III-V semiconductors 
whose unit cell has one atom of the third group and one 
of the fifth group. Most of these semiconductors crys­
tallize in the zincblende lattice at normal conditions, 
but a few (among those of high band gap and high 
melting point) crystallize in the wurtzite (A1N, GaN, 
and InN) and other more complicated structures (BAs, 
BN). The next members in the direction of increasing 
polarity are the II-VI compounds which crystallize 

ordinarily in the zincblende or the wurtzite structures. 
Some of these compounds may exist at room tempera­
ture in both forms, one of them metastable. 

The intrinsic reflection and transmission spectra of 
all these semiconductors with zincblende structure ex­
hibit a striking systematic similarity.1-4 The lowest-
energy direct absorption edge, due to transitions at 
k = 0, shows a splitting which can be correlated with 
the spin-orbit splitting of the constituent atoms. The 
next absorption edge has been attributed to direct 
transitions at a point in the [111] direction of k space: 
This edge has a splitting which is approximately two-

1 M. Cardona, Suppl. J. Appl. Phys. 32, 2151 (1961). 
2 M . Cardona and D. L. Greenaway, Phys. Rev. 125, 1291 

(1962). 
3 H. Ehrenreich, H. R. Phillipp, and J. C. Phillips, Phys. Rev. 

Letters 8, 59 (1962). 
4 M. Cardona and G. Harbeke, Phys. Rev. Letters 8. 90 (1962). 


