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We use the Pade approximant method to investigate the nature of the singularity in the specific heat for 
some three-dimensional Ising model lattices and to investigate the nature and location of the singularity 
in the magnetic susceptibility for some three-dimensional Heisenberg model lattices. We find that the 
three-dimensional Ising model specific heat becomes singular like log] T-Tc\ with a different coefficient above 
and below the singular point. For the Heisenberg model we find that the magnetic susceptibility does not 
behave like the Curie-Weiss law, but tends to infinity more rapidly than 1/(T-TC). 

1. INTRODUCTION AND SUMMARY 

THE purpose of this paper is to investigate the 
nature of the singularity in the specific heat for 

the three-dimensional Ising model and to try to locate 
the critical point and determine the nature of the 
singularity in the magnetic susceptibility for the 
three-dimensional Heisenberg model. To this end we 
employ the Pade approximant method which has re­
cently been investigated and successfully applied to a 
number of problems.1-4 This method may be thought 
of as a procedure for obtaining the analytic continuation 
of a function defined by a Taylor series into almost all 
of the complex plane—in particular, for finding it 
beyond the radius of convergence of the Taylor series. 
In general, a Pade approximant is of the form of one 
polynomial divided by another polynomial. In the 
\_N,M~\ Pade approximant the numerator has degree 
M and the denominator degree N. The coefficients are 
determined by equating like powers of z in the following 
equations: 

f(z)Q(z)-P(z)==AzM+N+1+BzM+N+2+..., 

6(0)=i.o, 

where P{z)/Q{z) is the \_N,M~] Pade approximant to 
f(z). The Pade approximant method consists of ap­
proximating f(z) by the sequence of [N,N~\ approxi-
mants. For a fuller discussion of the method, see refer­
ences 1 and 2 and the references given therein. 

Although the full range of convergence of the [_N,N~] 
Pade approximants is not known, the method is as 
reliable as the familiar one of summing a presumably 
convergent Taylor series and justifying the procedure 
a posteriori by the apparent convergence of the first 
several terms. One can easily prove, following arguments 

* Work supported in part by the U. S. Atomic Energy Com­
mission. 

f On leave of absence from Los Alamos Scientific Laboratory, 
1961-62. 

1 G. A. Baker, Jr., and J. L. Gammel, J. Math, and Applications 
2, 21 (1961). 

2 G. A. Baker, Jr., J. L. Gammel, J. G. Wills, J. Math. Anal, and 
Applications 2, 405 (1961). 

3 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961). 
4 C. Domb and C. Isenberg, Proc. Phys. Soc. (London) 79, 659 

(1962). 

analogous to those of Wall,5 that the Pade approximant 
method never converges to the wrong answer. More 
precisely, if at least a subsequence of the [_N,N~] Pade 
approximants converge uniformly for \z\ <M, then the 
power series has a radius of convergence of at least M 
and the sum of the series is equal to lim.jv->oo Q/V,,iV]. By 
means of the transformations given in reference 2 and 
analytic continuation the domain of the z plane involved 
may be greatly extended. We remark that we have 
never yet found an example in which at least a subse­
quence of Pade approximants failed to converge every­
where except at singularities, outside natural bounda­
ries, or on branch cuts. 

We find that the specific heat for the Ising model for 
several three-dimensional lattices is proportional to 
log(l — T/Tc) for T<TC. This behavior is the same as 
for the two-dimensional Ising model.6 There are not 
sufficient Taylor series coefficients known in the high-
temperature expansion to make as definite a statement 
about the behavior in the disordered region. However, 
the coefficients are not inconsistent with the conclusion 
that here again the specific heat is proportional to 
log(l — Tc/T). In three dimensions the coefficient of the 
log is about 0.3 in the disorder region times that in the 
ordered region, in contrast to the equality found in 
two dimensions.6 This conclusion is in accord with the 
conclusions of Domb7 based on entropy calculations. 

Our results on the magnetic susceptibility of the Heis-
senberg model for several three-dimensional lattices 
are not as accurate as our previous results3 for the Ising 
model. Since the Taylor series coefficients are harder to 
calculate, there are fewer of them available to form 
Pade approximants from. We find for the Heisenberg 
model that the magnetic susceptibility is proportional 
to (1 — Tc/T)~a, where a is about f for the loose-packed 
lattices, simple cubic and body-centered cubic, and § 
for the close-packed lattice, face-centered cubic. The 
values of a are not too well defined, but are definitely 
greater than ce=l—the Curie-Weiss law. That the 

6 H. S. Wall, Analytic Theory of Continued Fractions (D. Van 
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Heisenberg model should fail to give the Curie-Weiss 
law does not necessarily disagree with experiments, but 
even if it did, differences might arise from the approxi­
mate nature of the Heisenberg Hamiltonian8 and the 
neglect of such effects as lattice compressibility. 

2. SPECIFIC HEAT FOR THE ISING MODEL FOR 
SOMJE THREE-DIMENSIONAL LATTICES 

Previous work by Domb and Sykes7 has indicated for 
the disordered region for the face-centered cubic lattice 
that the specific heat, Cv, varies approximately as 
(l-Tc/T)-1^, where 6 > 4 . The specific heat is also 
found to diverge at Tc in the ordered region.7 

To investigate the behavior of Cv near the critical 
point, we first calculated the [iV,iV] Pade approximants 
(iV=3—7) to the low-temperature, simple-cubic-lattice 
series for (kT/J)2Cv(u), where w=exp(—4J/kT). For 
the convenience of the reader we have listed in the Ap­
pendix the coefficients of the series we have used. They 
are taken from Newell and Montr oil,9 and Domb and 
Sykes.7,10 Convergence was not obtained, but the value 
at the critical point (known approximately from refer­
ence 3), as expected, seemed to be tending to infinity. 
Next we computed the pV,iV] Pade approximants 
(N=2—5) to the logarithmic derivative of (kT/J)2Cv. 
If Cv were proportional to some power of (1—T/TC), 
then the logarithmic derivative would have a simple 
pole at Tc. No such simple pole appeared. If the behavior 
near the critical point were describable by a simple pole, 
our experience3 with the Pade approximant method leads 
us to expect to have obtained a better result by this 
degree of approximation. Therefore, Cv probably does 
not behave like (1 — T/Tc)~

a for any a. 
To pursue the question further, with particular 

emphasis on the possibility that Cv may be proportional 
to some power of log \1 — T/Tc\,we expanded the neigh­
borhood of the critical point into the neighborhood of 
infinity by means of the transformation u=uc(l — e~x), 
where uc is the critical value of u. We have taken this 
value from reference 3. Since this work was begun, an 
erratum11 appeared modifying one of the coefficients 
used in reference 3 to estimate uv for the simple cubic 
lattice. As the corrected coefficient modifies the value 
of uc in the sixth figure, which was thought to be un­
certain anyway, we have not redone these calculations 
but use the value of reference 3 consistently throughout. 
We mention that the Pade approximants computed in 
this paper were done on a CDC 1604 and about 21 
decimal places were carried to insure accuracy. After 
making this transformation, we computed the [./V,7V], 
[N;N+12, and [N, 2V+2] Pade approximants to 
(kT/J)2Cv[uc(l — e~x)~], which are appropriate1 to 

FIG. 1. Cyioge(l--wAO 
as a function of u/uG taken 
from the [7,7] Pade ap­
proximant for the simple 
cubic lattice. 
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Cv^x°, xl, x2 as x —* + oo. All three series converged to 
graphing accuracy out as far as x—vj. 3 although the 
[_N, iY+1] converged the best. In Fig. 1 we have graphed 
(kT/J)2Cv(u)/[loge(l — u/ue)1 based on these results. 
I t is to be noted that the resultant plot is reasonably 
well behaved near the critical point. On this basis we 
adopt the tentative hypothesis that Cv is proportional 
to the first power of log(l — u/uc) in three dimensions, 
just as in two dimensions.6 We mention that this is 
not necessarily in conflict with Domb and Sykes7 as 
h —> oo corresponds in some sense to a logarithmic 
singularity. 

In order to confirm (or negate) this hypothesis, we 
have computed [_N,Nr\ Pade approximants to 
— (kT/J)2Cv(u)/[\oge(l — u/uc)~}. The Pade approxi­
mants evaluated at uc are given in Table I for the simple 
cubic lattice (sc), the body-centered cubic lattice (bcc), 
the face centered cubic lattice (fee), the two-dimensional 
simple quadratic lattice (sq), and the function 
— #/[loge(l — x)]. The values of uc used in the prepara­
tion of this table are: 

sq, 0.17157287525; 
sc, 0.411940; 
bcc, 0.5326607; 
fee, 0.664658. 

The first thing one can note from Table I is that in 
the simple quadratic case where the tabulated quantity 
is known6 to tend to 8/ir we see apparent rapid converg­
ence to a value about one percent smaller than the true 
value. Several remarks can be made about this. First, 
the difference between the [5,5] and the [4,4] approxi­
mants is abnormally small and is caused by the pole of 
very small residue between 0 and uc. This phenomenon 
is quite common and has been discussed elsewhere.1-3 

I t invariably slows the convergence by causing the very 
near equality of two successive approximants. Leaving 
the [5,5] aside, it still appears that the Pade approxi­
mant is not converging to the right value. (That it 
should converge to the wrong value is precluded by the 
theorem mentioned in Sec. 1.) To investigate what sort 
of rate of convergence we would expect we note that 
there will be terms which tend to zero inversely as 
log(l — u/uc). This observation suggests considering the 
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convergence of — #/D°g(l~~#)] a t x=l. The converg­
ence of the [NjNTl Pade approximants to this function 
has been shown by Luke12 to be exponential everywhere 
in the complex plane except on the cut 1 < # < ° ° . At 
x=l Luke's arguments break down. We have listed in 
Table I the values of the Q/Y^V] Pade approximants at 
x=l for # = 1 — 12. We find that log(jV+l) times this 
sequence forms a monotonically increasing sequence and 
log (N-\-3) times this sequence forms a monotonically 
decreasing sequence. Thus the Pade approximants at 
x—\ apparently converge inversely as log (TV). This 
rate is the slowest we have so far observed. Of all 
functions studied previously,2 the slowest had converged 
at least as fast as (N)~112. This very slow rate of converg­
ence must be expected for all the lattices listed in Table 
I. Thus we see why the value obtained for the simple 
quadratic lattice is less accurate than might be expected 
in view of the closeness of successive approximants. We 
remark that the same slowness of convergence appears 
in the Taylor series expansion for 

x 

The partial sums here for x= 1 are only proportional to 
log(A0. 

The slow rate of convergence precludes the precise 
determination of the coefficient of log(l — u/uc). How­
ever, judging by the reasonably accurate results ob­
tained for the simple quadratic lattice and the agree­
ment with the graphical extrapolation for the simple 
cubic lattice we feel that the conclusion that Cv is pro­
portional to log(l — u/uc) at uc is confirmed and that 
the coefficients given by the last entry in Table I are 
more accurate than 10%. 

The high-temperature expansion of (kT/J)2Cv is in 
terms of w2 for the loose-packed lattices, simple cubic 
and body-centered cubic and w for the close-packed 
lattice, face-centered cubic, where w=tajoih(J/kT). We 
have again listed the series expansions used in the 

TABLE I. Results derived from (kT/J)2Cv(u)/[\oge(l-u/uc)J 

N — x/[loge(l — x)2 sq sc bcc fee 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
OO 

0.4 
0.3 
0.2553 
0.2290 
0.2113 
0.1983 
0.1883 
0.1803 
0.1737 
0.1681 
0.1633 
0.1592 
0.0 

2.58817 
2.51469 
2.51857 
2.51576 
2.51567a 

2.54648 

2.4012 
12.0669 
12.1906 
11.6193 
11.6207 

8.8835 
14.7564 
20.2049 
21.6414 
20.7962 
20.3615 

-299.28 
33.4795 
33.2534 
44.6989 
42.2747 
43.0475 
43.0834 

a Pole a t 0.10405212 wi th residue of - 2 . 0 9 X10~8. 

12 Y. L. Luke, J. Math, and Phys. 37, 110 (1958). 

TABLE II. Results derived from (kT/J)2Cv(w)wv/ 
log c[ l -(w/w c)Y] . 

N 

1 
2 
3 
4 

sc 

2.9714 
3.3294 
3.7769 

bcc 

5.9203 
6.7303 

fee 

10.5072 
11.3066 

-0.2030a 

(12.9526)b 

* Pole a t 0.979wc. 
b " [ 3 . 5 , 3 . 5 ] " = ( [3 ,4 ] X[4,3])*/2. 

Appendix. They are derived from the results quoted by 
Domb13 and Rushbrooke and Eve.14 We first computed 
the [-/Y,iV] Pade approximants to Cv and while the 
series were short the appearance of poles and zeros on 
the real axis directly beyond the critical point indicates1 

that it is likely to be a branch point. The Pade approxi-
mant method simulates a cut as a line of poles and 
zeros. We next computed the [_N,N~] to wyCv(w)/ 
loge[l— (w/wc)

y~], where 7 is 2 for loose-packed lattices 
and 7 is 1 for close-packed ones. The values of the pV,iV] 
approximants at wc divided by wc

y to wyCv(w)/ 
loge[l — (w/wc)'

Y~] are given in Table I I . At the present 
time one may only say that the behavior is consistent 
with the hypothesis that there is a logarithmic singu­
larity on the high-temperature side as well as the low-
temperature side. The best results of Table I I are re­
markably close to 0.3 times thta for the corresponding 
low-temperature result. This is remarkable in that one 
cannot reasonably ascribe an accuracy of better than 
twenty percent to the results of Table II . 

3. HEISENBERG MODEL MAGNETIC 
SUSCEPTIBILITY 

Since the Heisenberg model for ferromagnetism is 
widely considered to be a good approximation to a real 
ferromagnet and some of its predictions, especially at 
low temperature, seem to be in agreement with experi­
mental results, it is natural to ask if the Curie-Weiss law 
for magnetic susceptibility can be obtained as a conse­
quence of the Heisenberg model for a three-dimensional 
lattice. If, in fact, the Heisenberg model did predict 
that the magnetic susceptibility became infinite in a 
manner inversely proportional to (T— Tc) as required 
by Curie-Weiss law, then the magnetic susceptibility 
series should be easily summed by the method of Pade 
approximants. We have used the coefficients as given 
by Domb15 from the work of Sykes,16 Rushbrooke and 
Wood17 and we have tabulated them in the Appendix 
for the convenience of the reader. 

We computed the C^AQ Pade approximants 
( iV=l — 3) for sc, bcc, and fee lattices to the magnetic 
susceptibility, x (actually the reduced susceptibility, 

13 Reference 7, p. 276. 
14 G. S. Rushbrooke and J. Eve, J. Math. Phys. 3, 185 (1962). 
15 Reference 7 p. 329. 
16 M. F. Sykes, Oxford thesis, 1956 (unpublished). 
17 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958). 
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TABLE III. Location of the first pole of the pvyV] 
Pade approximant to %m(iT). 

N 

1 
2 
3 

sc 

0.61538 
0.61541* 
0.59359 

bee 

0.4 
0.39109 
0.39154 

fee 

0.25 
0.25466 
0.25134 

« Pole at -0.013986 with residue 4.3 XIO -". 

X=kTxo/tn2). The hoped-for rapid convergence was 
not obtained and although the series of approximants 
was short, there seemed to be evidence, as explained 
above and in reference 1, that the critical point was a 
branch point. To investigate the nature of this branch 
point, and to obtain evidence from a viewpoint inde­
pendent of the Pade approximant method such as was 
provided for the Ising model case by the work of Domb 
and Sykes18 we have proceeded as follows. If % is pro­
portional to some power, — (1+g), of (T—Tc) at Tc 

then18 

an/a^cs'tt+g/nyKe, (3.1) 

if the an are the coefficients in the series expansion of 
X as a function of K—J/kT and Kc is the critical value 
of K. 

We have used (3.1) by fitting an/an_i to a straight 
line in (1/n) by the usual method of least squares.19 

We obtained for Kc and g 

sc: £0=0.581±0.011, 
(3.2a) 

g=0.301±0.133, 

bcc: Z"c-0.392±0.002, 
(3.2b) 

£=0.362=1=0.034, 

fee: i£c=0.255d=0.001, 
(3.2c) 

g=0.541=1=0.027. 

The errors quoted are the standard statistical ones for 
the errors in the coefficients of a fit. It is to be noted 
that the result for the simple cubic lattice is much more 
inaccurate than for the other two lattices. From (3.2) 
it looks likely that g=f for the loose-packed lattices 
and g—\ for the close-packed one. We have, therefore, 
computed the [_N,N~\ Pade approximants to %m where 
m—\ for sc and bcc and m=f for fee. The agreement 
between the results of Table III and Eq. (3.2) is quite 
good. We consider, therefore, since we have consistent 

18 C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1962). 
19 See, for instance, R. L. Anderson and T. A. Bancroft, Statistical 

Theory in Research (McGraw-Hill Book Company, Inc., New York, 
1952). 

evidence from two points of view, that the exact power 
series coefficients definitely do not support the conclu­
sion that the Heisenberg model implies the Curie-Weiss 
law. They also seem to imply that for the Heisenberg 
model, in contrast to the Ising model, the lattice struc­
ture may be important in determining the nature of the 
transition. 

APPENDIX 

(kT/J)2Cv(u)} Ising Model, Low Temperature 

sq: 64^2+288^3+1152^4+4800^5+21504^6 

+101920^7+502016^8+2538432^9 

+ 13078720^10+68344496^11, 

sc: 144#3+1200^5- 2016^6+11760^7- 33792^8 

+135216^9- 448800w10+1643664**11 

-5671872^12+20239440^13-70668192^14, 

bcc: 256^4+3136^7-4608^8+44800^10- 123904^n 

+111360#12+551616^13- 2464896**14 

+4190400^15+3779584w16-40506240^17, 

fee: 576u*+116l6un-14976^12+28800^15 

+172032^16- 554880w17+374976^18 

+138624^19+ 787200^20+ 889056^21 

-12568512^22+20465952w23-4564224w24. 

(kT/J)2Cv(w)> Ising Model, High Temperature 

sc: 3+33w2+564w4+8976w6+155124w8 

+2791300w10+51395172w12, 

bcc: 4+ 140w2+4056w4+ 129360w6+4381848w8, 

fee: 6+48w+390w2+3216w3+26844w4 

+229584w5+2006736w6+ 17809008w7. 

x(K)> Heisenberg Model, High Temperature 

165 1561 33013 
sc: l+3K+6K2+llK*-\ KH K5+ K&, 

8 40 480 

104 575 
bcc: 1+4Z+12Z2H Z 3 + K* 

3 6 
2627 16993 

H KH K\ 
10 24 

fee: 1+6K+30K2+13SK3 

2445 53171 914601 
H i£4+ KH K\ 

4 20 80 


