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A modification of Dyson's theory of a cubic ferromagnetic is proposed, based on a consideration of the 
smallness of the kinematical interaction of spin waves at low temperatures and leading to the introduction 
of Bloch's statistical function with Dyson's Hamiltonian or, equivalently, of the grand partition function. 
This approach makes possible the use of thermodynamical perturbation calculus according to Matsubara, 
whose formalism yields the logarithm of the grand partition function as the sum of Bloch's term and distinct 
parts of the connected ladder diagrams (Dyson's term). In the long spin-wave approximation (at low tempera­
tures), Bloch's term yields a contribution to the magnetization in the form of a series of 3/2, 5/2, and 7/2 
powers of the Kelvin/Curie temperature ratio. Dynamical interaction of the spin waves contributes to the 
magnetization at least as TA by means of the connected diagrams of all order. All coefficients in the magneti­
zation series obtained are identical with the corresponding quantities in Dyson's theory. 

1. INTRODUCTION 

IN the present paper, a spin-wave theory is proposed 
which is based on the highly effective and, at the 

same time, simple formalism of the grand partition 
function and thermodynamical perturbation calculus 
of Matsubara.1 Obviously, to apply this formalism to 
spin-wave theory would be a highly involved procedure, 
if it were not for the very interesting result obtained by 
Dyson2 that the contribution from kinematical interac­
tion of the spin waves to the free energy is less than 
exp(—2waTc/T), where a is a positive number of the 
order of unity, T is the absolute, and Tc the Curie 
temperature. Thus, at sufficiently low temperatures, 
the contribution from kinematical interaction to the 
magnetization is small. This provides the fundamental 
assumption for our entire investigation. 

We should mention that the earliest quantum theory 
of the magnetization in a one-electron ferromagnetic 
is that of Bloch3; this was subsequently generalized for 
many electron atoms by Moeller.4 Bloch's Tm law is 
satisfactorily justified by the experimental results. 
The same law has been derived by others; for example, 
the semiclassical treatment of Kittel.5 The earliest 
trans-Blochian contribution of order T2 to the mag­
netization in poor agreement with experiment, was 
derived by Kramers6 and Opechowski.7 Later, Holstein 
and PrimakofI8 calculated the magnetization, taking 
into account dipolar interaction between the electrons. 
Schafroth9 and van Kranendonk10 derived correctional 
terms of order T7/i with different coefficients. Exact 
calculation of the temperature dependence of the mag­
netization was first carried out by Dyson2, who proved 

1 T. Matsubara, Prog. Theoret. Phys. (Kyoto) 14, 351 (1955). 
2 F. J. Dyson, Phys. Rev. 102, 1230 (1956). 
3 F. Bloch, Z. Physik 61, 206 (1930). 
4 C. Moeller, Z. Physik 82, 559 (1933). 
6 C. Kittel, Introduction to Solid-State Physics (Academic Press 

Inc., New York, 1956), 2nd ed. 
6 H. A. Kramers, Commun. Kamerlingh Onnes Lab. Univ. 

Leiden, 22, Suppl. No. 83 (1936). 
7 W. Opechowski, Physica 4, 715 (1937). 
8 T . Holstein and H. PrimakofI, Phys. Rev. 58, 1098 (1940). 
9 M. R. Schafroth, Proc. Phys. Soc. (London) A 67, 33 (1954). 
10 J. Van Kranendonk, Physica 21, 81, 749, 925 (1955). 

that the trans-Blochian corrections are due to a more 
exact treatment of the energy spectrum (in addition to 
the quadratic term in the wave vector, higher power 
terms are taken into account) and to dynamical interac­
tion of the spin waves. An interesting theory of retarded 
and advanced Green functions was proposed by 
Bogolyubov and Tyablikov11 and applied by them to 
an isotropic ferromagnetic. I t proves to be valid within 
the entire temperature range. Opechowski12 perfected 
his theory, obtaining results which coincide with those 
of Dyson. Finally, recent papers by Oguchi,13 who 
takes up the Holstein-Primakoff theory in stricter 
form, and by Keffer and Loudon,14 who take into 
account spin wave interaction, lead to results almost 
identical with Dyson's. 

2. THE GRAND PARTITION FUNCTION 

We shall consider a cubic crystalline lattice of N 
atoms of one kind, to each of which is related the spin 
operator Sy in coordination with the spin quantum 
number S. As shown by Dyson,15 this system is described 
by the Hamiltonian 

3C = EQ-\-HO-{-HI, 

E0=LSN-±JNS2yo, 

Ho = Ex (L+ e\)ax*ax, 

Hi= —IJN-1 £xp<r rp(T
xa<r+x*ap_x*Q:pa(T, 

e\ = JS(y0—y\), 7x = ]L5 exp(i5-^), 

rp(r
x = 7x+7<r+x-P—7<H-X—7P-X, 

(i) 

(2) 

(3) 

(4) 

(5) 

(6) 

where L=mH/S, and m is the magnetic moment of 
each spin, H, the magnetic field strength, J, the 
exchange integral for nearest neighbors in the lattice, 
and 70, the number of nearest neighbors. Summation 

11N. N. Bogolyubov and S. V. Tyablikov, Doklady Akad. 
Nauk S.S.S.R. 126, 53 (1959). 

12 W. Opechowski, Physica 25, 476 (1959). 
13 T. Oguchi, Phys. Rev. 117, 117 (1960). 
14 F. Keffer and R. Loudon, Suppl. J. Appl. Phys. 32, 2S (1961). 
15 F. J. Dyson, Phys. Rev. 102, 1217 (1956). 
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over 5 runs over all lattice points nearest to the one 
under consideration. X is the vector of the reciprocal 
lattice: 

1 = 2^-^ Z A M X ^ 
A 7 1 ' 3 - ! 

(7) 

where A; are integers and b* are three reciprocal vectors. 
The oscillator operators of annihilation and creation 
of ideal spin waves a\, «x*> satisfy the well-known 
commutation rules 
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operator S(fi) is given by 

<SG8)>=« P ( f ; r i ) , (16) 
1 

where T» is the sum of all distinct parts of the connected 
diagram of order i. Hence, 

[ax,aM] = [>x*,aM*] = 0, [>x A**] = 5X?M. (8) 

Z=Z 0 -expCT Ti). 
i 

3. MATSUBARA'S FORMALISM 

(17) 

Invoking the fact that, at low temperatures, kinemat-
ical interaction is negligible, we shall treat the spin 
waves as a weakly imperfect Bose-gas with energy 
spectrum (5) and interactions (4). Accordingly, we 
write the statistical function as 

Z=Spur[exp(-/33C)] = i;a(a|exp(~/33C)|a), 

0 = ( « T l , (9) 
with 

k)=nx[(ax!)-1 / 2(ax*)<\] |0); (10) 

ax is a positive integer, and |0), the ferromagnon 
vacuum-state vector. On the other hand, accord­
ing to Matsubara1, we have 

exp(-/55C) = exp(-/3E0) • e x p [ - / 3 ( # 0 + # i ) ] 

= exp(-/9£o)-exp(-j8ffo)-508), (11) 
with 

S(0) = P e x p ~ / drHrir) = £ / dr 

In computing the mean value (S(fi)) we apply the 
formalism developed by Matsubara. By Eq. (3), it is 
easily verified that 

«x (r) = exp (rH0)a\ exp (— TH0) 
= a x e x p [ - ( I + € x ) r ] , (18) 

ax* (r) = exp (r#0)ax* exp ( - TH0) 

= ax*exp[(L+ex)T]. (19) 

We now split the operators «X(T), ax*(r) into negative 
and positive parts : 

«x(r)=ax ( - ) ( r )+«x ( + ) ( r ) , 

ax*(r)=ax*W(r)+ax* ( + )(r) , 

«x(-) (T) = *"x«x exp[— (L+ ex)r], 

Q=x(+)(r)= (l-wx)ax e x p [ - (L+e x ) r ] , 

ax*(~}(r) = coxax* exp[(Z,+ €x)r], 

«x* ( + )(r)= ( l -cx)ax* exp[(L+ex)r] . 

(20) 

(21) 

(22) 

X / drn. 
Jo 

PLHl(T1)---Hl(Tn)l, (12) 

where the dynamical operator 

HT (r) = exp (THO) ' Hi • exp (— r # 0 ) (13) 

has been written in Matsubara's representation. P 
is Dyson's16 ordering operator in arguments r. In the 
derivations that follow, P is replaced by Wick's17 

ordering symbol T as, for the Bose field, we have P=T. 
With the notation 

Z 0 = exp(—I3E0) • J2a(a\ exp(—/3H0) \ a), 

we have, by Eqs. (9), (11), and (14), 

Z _Za(a\exp(-(3Ho)'S(l3)\a) 

Z0 Z a ( # | exp(—j8flo) | a) 

(14) 

= <5W>. (15) 

The coefficients ir\ and cox will be computed later. 
As usual, we define the normal product (N product) 

of a certain number of field operators as a product in 
which all negative operator parts stand to the right of 
the positive ones: 

Atax(ri)a,*(T2)] 

= ax(-} (ri)a.*<-> ( T 2 ) W + ) (nK*<+> (r2) 
+<*,*<+> (r2)ax^ (n ) W + ) (n)a,*<-> (r2) 
= a x ( n ) a , * ( r 2 ) - [ax<-> (n ) , a„*<+) (r2)] 
= a/(T2)ax(ri) + [ax(ri), a<r*(r2)] 

- C a x ^ C r i ) , ^ * ^ ^ ) ] . (23) 

We define the T product as in quantum-field theory: 

r[ax(ri)a f f*(r2)] = ax(ri)Q!(r*(T2), r i > r 2 , 
=a f f*(r2)ax(ri), r i < r 2 . 

(24) 

The brackets (• • •) indicate averaging. 
Moreover, from Matsubara,1 the mean value of the 

16 F. J. Dyson, Phys. Rev. 75, 486 (1949). 
17 G. C. Wick, Phys. Rev. 80, 268 (1950). 

Thus, the r contraction of the two boson operators is 
of the form 

= ^Cax(r1K*(r2)]+ax(r1)«a,*(r2)«. (25) 
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Hence, by Eqs. (20)-(24), Similarly, we obtain 

ax(ri)ca^(T2)
c=hl<T e x p [ - (L+ex) • (r1-r2)'] ax*(Ti)Mr2) c=5x t , exp[(L+ex) • ( r i - r 2 ) ] 

X { 7 r x ( l ™ ^ ( r i - T 2 ) X p ( r i - T 2 ) » x + « ( T 2 - r i ) - ( » x + l ) ] (32) 
+ [ » x ( l - « x ) - 0 ( r 2 - r i ) } , (26) and 

with - ^ ( 1 - ^ ) = ^ . (33) 
6(x) = l, x>0, m s . 

= Q . ̂  Q ^Z' / In the special case of coinciding arguments r, we have 

nr • +u , ax(r)%,*(r)c=5x,<r(^x+l) (34) 
We now require that A W w ' v ' y 

and 
<AT>x(nK*(r2)]> ax*(T)caff(T)c = 5x ffWx. (35) 

^ L a ( ^ l e x p ( - ^ o ) A l a x ( r i ) a q * ( r 2 ) ] l < x ) _ Q F r o m E q s > ( 2 9 ) ? ^ a n d ( 3 3 ^ w e o b t a i n 

Za(a\exp(-f3H0)\a) i r x = » x + l ± [ n x ( » x + l ) ] ^ , _ 
(36) 

From Eqs. (10), (18), and (19), we have cox= -nx±lnx(nx+l)J/2. 

(ax«x*) = 7rx(l—cox), (29) By a theorem derived by Thouless,18 we have quite 
with generally 

£ ax exp[-/3(L+€X)ax] <AT[aXi*(Ti)ofxa*(T2) • • •axn*(Tn)^(Tn+iK2(Tn+2) • • • 
«x=° X ^ ( r 2 n ) ] ) = 0, » = 1,2,3,.-.,00. (37) 

(/v\/v\ 7 = /yi\ —J— 1 * %\ = ——— 

00 By the last equation, the mean value of the T product 
£ exp[—p(L+e\)a\] is obtained as the sum of all possible contractions. 

ax~° Since these are c numbers, they can be put outside the 
= {exp\j3(L+ e x ) ] - l } " 1 . (30) operation of averaging. 

Thus, Eq. (26) becomes 4. GRAPHICAL INTERPRETATION19 

ax(r i ) ca f f*(r 2 ) c=5x, f fexp[-(L+€x)-(r i - r 2 ) ] Returning to the mean value of S(fi), we have, by 
X [ 0 ( T I - T 2 ) - ( » X + 1 ) + 0 ( T 2 - T I ) » X ] . (31) Eqs. (4) and (12), 

< W = E f drr" [ dr^TlHj^)- • . f t ( r n ) ] > = 1 - [ d^LH^r)-]) 
»=o w! Jo Jo JO 

A O O A Q Q Q 

+ - [ dTl [ dr^TlHj^Hi^y]) [ dn [ dr2 [ dr%{TlHI{ri)HI{r%)HI{r%)'])+ • • •, (38) 
2! Jo Jo 3 ! Jo Jo Jo 

where 

ft(r)= -UN'1 Lxp. r p /a f f +x*(r)a p_x*(r)a p(rK(r) . (39) 

Examples of distinct parts of connected ladder diagrams up to the fourth order inclusively are illustrated in Fig. 1. 
Let us compute the diagram Tx: 

r i = - [ ^ r ( r [ i ? / ( r ) ] ) = i / i Y - 1 E x p . r p / f d r<r [^^*(r )a P ^*(r )a p ( r )a . (T)]> = i / iV- 1 Exp . r p . x 

Jo Jo 

X f ^ r [ a , + x * ( r ) c a p _ x * ( r ) ^ ExP* rp ,x 

Jo 
X [5 ( * + * , - 9)8 (Q-X- <r)wp»,+S (or+Cl- 9)6 (Q-7>- p )» P <] = t ^ W " 1 T.P<r[Tpa^-VYp(P~\npnff. (40) 

The terms in the square brackets are equal. In order to since Y \ = 7 _ X as a result of lattice symmetry. Hence, 
prove tr 
Eq. (6): 
prove this, we must take into consideration that, by ^ , n T.T . ^ „ ft ,Mrk. 
TCn <vn. r ^ W A ^ Z . J V V v (42) 

18 D. J. Thouless, Phys. Rev. 107, 1162 (1957). 
(41) is R. P. Feynman, Phys. Rev. 76, 769 (1949). 
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5. BLOCH'S PART IN THE MAGNETIZATION SERIES 

Returning to Eq. (17), we now compute the Z0 term 
in the grand partition function. By (14), we have 

Z0=exp(-/5£0)Ea(a| exp(-l3Ho) \ a) 

= expH8Eo)IL L exp[-/3(L+€x)ax] 
ox«=0 

= exp(-/5E0)IIx{ 1 ~ exp[-/3(L+ ex)]}"1. (43) 

The mean spontaneous magnetization per atom is 
given by the relation 

M(T)=(1/Np)(d ]nZ/dH)H-o 
= (m/NSfi (d \nZ/dL)L-*> (44) 

as L=mH/S. 
From Eqs. (17) and (43), 

lnZ=-^E 0 -Lln{l-expC-i8(L+€x)]}+ L I\. (45) 
x »-i 

We shall call the first two terms in (45) Bloch's part 
and the third term Dyson's part. 

Moreover, 

fd lnZ\ 

- / ° T A 
=/3NS-p ECexpGScx)-ff-H- L ( — ) • 

x i-i \dL/ L=O 
(46) 

We now prove that Bloch's part in the magnetization 
series consists of a constant term (saturation magnetiza­
tion) and of a series with powers 3/2, 5/2, and 7/2 of 
the temperature (the corrections proportional to 5/2 
and 7/2 were originally derived by Dyson2). Dyson's 
part begins at TA. 

As we are interested in the case of low temperatures, 
i.e., long spin waves, we have, by Eq. (5), 

ex=/S(7o—7x) =/Sfro—La exp (#•*)] 
= JS^x2(X)-^x4(X)+^x,(X) ] , 

Ms^(^) = [(2^)!]-1La(S^)2s, | 5 - 3 L | « 1 . (47) 

Here, y, is an auxiliary parameter introduced for 
convenience; its power multiplied by 2 indicates the 
order in the expansion of a given quantity in a power 
series in (h-X). In order to compute the second term in 
(46), we expand the denominator: 

[exp03€x)-l]-1 

00 00 

= L e x p [ - ( t t + l ) f o ] = L exp[-an+lMx2(^)] 

X [l+Ctn+UJpXiiX) — Ctn+ufXiiX) 

+ M 4 E W I , * 4 , ( * ) + « M - I * ( 3 0 : I + O G * » ) 1 (48) 

l4 

® 
t(b) 

n w r(b) r(c) r(d> 

3 A3 x 3 *3 

i*» 

l j ( f > i ; 1 * r4
(W 

FIG. 1. Examples of distinct parts of the 
connected ladder diagrams. 

where, for brevity, 

an+l=l3JS(n+l). (49) 

Passing from the sum to the integral, we obtain 

LxCexpO^x)-!]-1 

= (2TT)-3FL f 
n==0 J 

dX exp[—an+ifj,x2(X)'] 

X [1+an+iM2^4 (X) -an+njL*x6 (X) 

+ M 4 g « n + l W W + ^ l X 8 W + 0(M5)]J (50) 

and, carrying out the summation over nearest neighbors 
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and the integration over X, corrections proportional to T5/2 and T7/2 result from our 

Y,rexv(3e,)-ll-i-Nr?(3/2)e**+^vt(5/2W* h a v i n g g ° n e b e y ° n d ^ u a d r a t i c w a v e v e c t o r a P P r o x i m a " 
2.xl_exp^ex) l j -M[S(6/l)V t ^ W ^ tion of the energy; equivalently, they can be said to have 

+co7rVf (7/2)07/2+O(09/2)], (51) a r i s e n through the stricter calculation of the effective 
with Riemann's f function of indices 3/2, 5/2, 7/2, and m a s s o f t h e s P i n w a v e -

6=3kT/2wJSyov= (2ir)-lT/Tc, (52) 6 DYSON'S TERM IN THE MAGNETIZATION 

co = 33/32, 15/16, 281/288, v= 1, 21/3, 3X2~4/3, EXPANSION 

Yo=6, 12, 8, (53) We now compute the coefficient of T4. The first 
, P . . . . i i . contribution to the term ocfl4 is from Ti diagram, 

for the simple, face-centered, and body-centered cubic -p \~AI1 
lattices, respectively. The part (51) of the magnetiza- ' ' 
tion series is identical with that of Dyson. From the Ti=2&JN~l 2-,p*r Tpa

0npna. 
derivation procedure of relation (51), the trans-Blochian Since 

(dTt/d^L^pJN-1 E P . IV(nJn 9 / dL) L -o= -^JN~l L P . I V [ e x p ( 0 e p ) - l ] " 1 exp(£e,)[exp(0e,)-1]~2 , (54) 

T^=p[xi(Q)+x*(a)-X2(*—Q)]— (55) 

and also 
[ e x p O ^ - l ] - ^ E«=oM exp[-a n + 1 /xx 2 (9)]- [ l+an+ iM 2^(9)+0(M 3 ) ] , (56) 

exp(/3€ff)[exp(/?€,)-1]"2 = EP=O°° ( ^+ l ) exp [ - a 3 H _ 1 ^ 2 ( a ) ] - [ l+a p + l M
2 ^ (o r )+0 (M 3 ) ] , (57) 

with 
an+l=/3JS(n+l), ap+1=t3JS(p+l), (58) 

we obtain 

/ a r i \ r V l 2 - r r 
r 1 ( — ) =~WS){NS)-A — - E (p+l) d9 doexpZ-an+1»x2(9)-] 

\dUL^ L(2x)3J n,P=o J J 

Xexp[—ap+njLX2(o')~]{iJ>[.%2(Q)+X2(v) — x2(<r— p)]—M2[>4(p)+£4(o0 — ^ ( f f — 9 ) ] + 0 ( M 3 ) } . (59) 

The /x term in the braces vanishes owing to lattice symmetry; the /x2 term yields the coefficient of T4, whereas the 
higher order terms 0(/x3) yield the contribution oc05 and higher powers. Carrying out the summation over 5 and 
the integrations over p and a, we have 

^ ( a r 1 / a L ) L = = 0 = - | 7 T ^ 5 - 1 r ( 3 / 2 ) f ( 5 / 2 ) ^ + O ( ^ ) , (60) 

where 6 is given by Eq. (52). 
We now prove that the contribution to the magnetization from the second-order diagram is the same as that 

calculated by Dyson. We have 

r 2 = - ( W - i ) 2 E E I V I V [ dn [ dT2(TZa^*(Ti)a^*(Ti)ap(T^^ (61) 
21 Xpo- Knv JQ JQ 

Applying Wick's theorem, we obtain the two distinct parts of the connected diagram: 

16 p? r^ 
r2<«> = - ( i W ~ i ) 2 E E V V dTl ^r2a f f+x*(ri)cap_x*(r1)-ap(r1)-a0(r1)c 

2 ! \pa KHU J 0 J 0 

Xa^*(r2)
ccccQ!M-.*(T2)cccaM(r2)cca,(r2)cccc (62) 

and 

r s (» = - ( l / i V - 1 ) 2 E I V v f rfri/" rfr2a„+x*(r1)«ap_x*(r1)«ap(r1)«^(r1)— 
2! xpff * M " Jo Jo 

XaH^(T2)OTMatf_«*(T2)M^(r2)c%,(T2)<'. (63) 

By Eqs. (31), (32), (34), and (35), and integrating over the arguments n and T2, we obtain 

?fdxfd9f r2("' = ^ 2 ( ^ - I ) 2 C ^ / ( 2 x ) 3 ] 3 dX d9 * T I V I V W * , ( » P + 1 K (64) 

file:///~ai1
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and 

r2(« = ||3(/iV-1)2[F/(25r)3]2 Sx J dQ dor„*T<r+i,l>-J(ep+e„-e<r+i-er-i)-1 

X C(»,+1) (»»+ 1)W,T+X«P-X- n„na (>v+x+1) («p_x+1)]. (65) 
Introducing new variables 

80JSK)liiX=X', dX=8^(pJSK)-!"*dX', 

«C8/5«)1/,ff=p', dg^S-'ipJSKywdg', (66) 

5 (0JSK)1I*O= a', d<r= &~3 (pJSK^dff', 
where 

«= 1,2, 4/3, (67) 

for the simple, face-centered, and body-centered cubic lattices, respectively, we see that, by Eq. (55), in the lowest 
order of the expansion in (5- X), I V is proportional to (0JS)-1. We obtain (pJS)~912 from transformation of the 
variables of integration. Thus, 

T2M«NS-2(pJSy- 03/5)-2- (0JS)-w<xff>'\ (68) 

To evaluate diagram IY6), we interchange g+± a, X —* —X: 

V -is 

-CM 
ry«»2= _ i/3(/JV-i)2r -1 jjx jdg J «fcrr(,/-'Tx,P+,_xw(^+€,- e„+x- e^x)"1 

£ x I dg J <fcrlVT„+x,,-xx(«„+x+ ep_x- e„- O^WP"*- (69) r v 

L(2x)3J 

The first part of Eq. (69) is by dimensional estimate cc09/2; therefore, we compute only the second term. By 
Eqs. (5) and (6), 

iVr,+x,,-xx r (IV)2 

= (JS)-A — 
e«+x+«p-\—«p—«« L7P+7ff—7,+x—TP-X 

r (iv;* -i 1 IV 
LTO+TT—YT+X—TO-X -I 

= (JS)~A I V • (70) 

TiW=-L-——l _ _ £ e-«LCn+r+2)£ / dgg-lv+l),^ / (/^-(H-l)^ 

By means of Eq. (66), we now pass with the g and a to the new variables, and obtain 

1 o2 

8/c552 (2:r)«(£/S)4 n.^o T 

X(To-Tx)-15-4CL5exp(i5^)(5-e)(B-cF)]2+0(^2), (71) 
with 

o=l , 2-1'2, 4X3-3/2, (72) 

for the simple, face-centered, and body-centered cubic lattices, respectively. Summation over nearest neighbors 
and integrations over the p and <r yield 

T^b) = lirvNS-W £ (^+l)-5/2(^+l)-5/2e-^ (n+r+2)+0(^9/2) (73) 
n,r=0 

or 

with 
M2(T) = - f irvmS-^ (3/2)f (5/2)04+O(09'2), (74) 

•jr 

1 r r r cos2x 

247r3 J y 7 1—i(cos#+cosy+coss;) 
(75) 

48TT3 J J J 
—T 

~24TT3 J J J' 

1+2 cos2x cos2y— 2 cos2#+cos2# COST COSS 
dxdydz = f r '+i<* /, (76) 

1 — f (cos# cosy+cosx coss+cosy coss) 

3 cos2# cos2y cos2s+2 cos2x—4 cos2x cos2y 
dxdydz = | r 6 + i a 6 , (77) 

1 — cosx cosy cos2 
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for the three types of cubic lattice. The quantities T and a are taken from Dyson's2'15 theory: 

G0(5) = iVr-15:p(7o-7p)-1exp(i5.ff), a = £ s Go^^N'1 E P ( 7 O - 7 P ) - V 
Explicitly, 

«.--!+-

«,= -!+-

a&=-l+-

8TT3 

1 

87T3 

8TT3 

docdydz 

1 — J (cosx+ cosy+coss) 

docdydz 

= 0.52, 

1 —§(cOS£ COSy+COSX COS2+COSJ COSz) 
-=0.34, 

1 — cosx cosy cosz 

cos#(l — cosy) 

= 0.39, 

1 r r r cos#(l — cosy) 1 
Ts==— 1 / / dxdydz 

Swz J J J 1 —Kcosx+cosy+cosz) 5 

1 f f f cos# cosy(2—cos2s) —cos2# 
T / = / / / dxdydz ~—. 

247r3 J J J 1 — § (cos£ cosy+cosx cosy + cosy coss) 12 

1 

16^7 J 
dxdydz-

2 cosx cosy coss — cos2# (1+cos2y) 1 

1 — cos# cosy coss 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

Similar methods can be used to compute the share in 
the magnetization of the diagrams r3

Cd), r4
Ce), etc. 

By Eqs. (44), (51), (60), and (74), the spontaneous 
magnetization becomes 

M(T)= (m/S){S-{ (3/2)^2-f7Tvf(5/2)^2 

X [ l + ( 3 S ) - 1 ( 2 r + a ) + . . . ] 

Xf(3/2)f(5/2)^+0(^2)}. (85) 

A detailed account of the present investigation, 
giving the calculations in full, will be published in 
Acta Physica Polonica. 

Note added in proof. In a new paper "Some Remarks 
on the Spin Wave Theory for Cubic Ferromagnetics" 
[Acta Physica Polonica, (to be published)], the present 

author carried out summation of the infinite series of 
graphs contributing to the spontaneous magnetization 
as the fourth power of the absolute temperature, 
obtaining full agreement with Dyson's magnetization 
formula. 
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