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The behavior on the two borders, left and right, of the 
transition superconductors, namely, in the column ; 
headed 3 and again in columns 8 and 9, is the opposite 
to the behavior of the elements in the center. In the < 
center the elements in the middle row having 4d eleo : 
trons, such as Zr, Nb, Mo, and Tc, have the highest I 
transition temperatures in their respective column, < 
while at the fringes the Sd electron superconductors of : 

the last row have the highest transitions, such as La, Os, , 
and Ir. For the last three, clearly any dependence on 
mass goes—if anywhere—in the opposite direction to ' 
what might be expected from a regular isotope effect. 
Thus, not only Ru and Os, but also La and Ir, might be 
expected to have at least a vanishing isotope effect. ' 
This should also be true for Sc, Y, and Rh once their ' 
superconductivity has been detected, as may happen in ] 
the future. J 

1. INTRODUCTION 

SINCE the first cyclotron resonance experiments 
were successfully carried out in germanium and 

silicon crystals by Dresselhaus, Kip, and Kittel,1 and 
by Lax, Zeiger, and Dexter,2 considerable information 
has accumulated from experiments about the energy 
band structures of these crystals. This information has 
stimulated extensive band-theoretical studies.3 One of 
the major endeavors in the experimental investigations 
has been to elucidate the two degenerate valence bands 

* Supported in part by the Office of Naval Research. 
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g The columns 3, 8, and 9 are also distinguished by 
l another feature. While in the center of the periodic sys-
e tem the electronic specific heat, 7, and the supercon-
e ducting transition temperature seem to be somewhat 
- related in the way that a high Tc goes with a high 7, this 
t behavior is precisely the opposite for the three groups of 
., elements just mentioned. For almost all of these ele-
f ments at both boundaries, superconductivity seems to 
' vanish upon an increase of the electronic specific heat. 
1 Since there is no theory at present for the second mech­

anism the significance of this observation is not clear. 
I We would like to thank A. M. Clogston, P. A. Wolff, 

and P. W. Anderson for informative discussions con-
r cerning the isotope effect, and Mrs. V. B. Compton for 
1 her helpful x-ray investigations, and L. D. Longinotti 

for his careful help in preparing the samples. 

and also the third band that is split off from the first 
two by spin-orbit interactions. 

Recently, Hensel and Feher have performed micro­
wave cyclotron resonance experiments on silicon crystals 
strained by uniaxial stresses and, thus, have been able 
to determine the valence band inverse mass parameters 
as well as the band-splitting deformation potentials to 
an accuracy greater than previously. Full accounts of 
the experimental results are given in their paper.4 Their 
preliminary results have already been reported else­
where.5 In the present paper we investigate theoretically 
the structure of the valence band in silicon influenced 
by external stresses in order to obtain cyclotron reso­
nance frequencies of holes under such conditions. 

The present investigation was undertaken in an 
attempt to settle a question raised in reference 5 con-

4 J. C. Hensel and G. Feher, following paper [Phys. Rev. 129, 
i- 1041 (1963)]. I t is frequently referred to with the abbreviation 
)f H-F in the present paper. 

6 J. C. Hensel and G. Feher, Phys. Rev. Letters 5, 307 (1960). 
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The valence band structure in silicon single crystals subjected to an external uniaxial stress is investigated. 
The cyclotron resonance line for holes in such crystals is predicted to display a significant shift with increasing 
stress, if the split band populated with holes is associated with the quantum number Mj— dbf. This strain-
induced shift is characterized by the following properties: (a) Its magnitude is of the order of 10% of the 
frequency for strains of the order of 2X10 - 3 ; (b) it is anisotropic with respect to the relative orientation 
of the external magnetic field to that of the stress; (c) it must be absent if the band populated with holes 
is associated with the quantum number Mj—dc3/2. These properties in conjunction with the experi­
mentally determined shifts, presented in the paper by Hensel and Feher, lead to a unique assignment of the 
band parameters which had been left ambiguous by previous experiments. A discussion of the line shape of 
hole resonance in a deformed crystal is also presented. 
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cerning the lack of information about the signs of the 
deformation potentials, Du and DJ. These, it was 
found, have a close correlation with the signs of certain 
effective mass parameters in the silicon valence band. 
The uncertainty of these latter signs, in particular 
that of B = \{L—M) defined in reference 1, has been 
recognized to allow two entirely different interpreta­
tions of the structure of the band and, thus, has been 
one of the crucial points in the band theory of silicon. 
In Sec. 2 a brief account will be given, therefore, of the 
above-mentioned problem of the sign ambiguity. We 
will then calculate all possible factors to be taken into 
account in determining the effective masses of holes in 
the deformed band. In Sec. 3 we calculate shifts of the 
effective masses due to strain-induced admixtures be­
tween the valence band edge and the spin-orbit split-off 
band at the center of the Brillouin zone. We shall show 
that the presence or absence of the shift distinguishes 
the nature of the two decoupled bands in terms of the 
quantum number Mj, and that its identification by 
experiment yields a possibility of fixing the signs of Du 

and Du- This result can then be combined with the 
analysis of reference 5 to determine the signs of the 
band parameters uniquely. In Sec. 4 we examine the 
effects of kA terms on the resonance line, and in Sec. 5 
some supplementary calculations are added. 

The results of Sec. 4 show that an effect of the 
incompleteness of the decoupling of the bands gives 
rise to an additional shift, broadening, and asymmetry 
of the cyclotron resonance line. Thus, a study of the 
line shape is included that will improve the accuracy 
of the determination of the effective mass parameters. 

Over-all considerations presented in Sees. 3-5 lead to 
our final conclusion: The strain-induced mass shift of 
Sec. 3 is distinctive and large enough so that its identi­
fication allows us to uniquely assign all the parameters.6 

2. SIGN AMBIGUITY OF THE PARAMETER B 
FOR SILICON 

It is well known from usual band theory that an 
effective mass tensor of an energy band at a particular 
point in the first Brillouin zone is determined by the 
k p perturbation formula. For its evaluation it is 
necessary to know the positions of the energy levels at 
the same point and the matrix elements of electron 
momentum between these levels. For the valence 
states r26' which are relevant to the hole resonance in 
a diamond-type crystal it has been shown that the 

6 A statement has been given by G. E. Pikus and G. L. Bir 
[Phys. Rev. Letters 6, 103 (1961)] about the signs of the inverse 
mass parameters as well as the band-splitting deformation po­
tentials for the silicon valence band. [Note that these authors 
have denned the deformation potentials with signs opposite to 
those of Du and Du': b=—^Du and d= — (2/v3)A/.] They have 
expected that Du and Du' would have the same signs as those of 
the similar splitting parameters for acceptor ground states in 
silicon, so that the nature of the splitting of both the valence band 
top and the acceptor level would be the same. From the results 
of reference 4 it can now be seen that their expectation was indeed 
right. See also their related papers, of which references are given 
in Hensel and Feher's paper (reference 4). 

three effective mass parameters L, M, and N are de­
termined by the perturbations in which the four dif­
ferent representations Tn, IV, I V , and T25 furnish 
nonvanishing matrix elements.1 

In the earlier experiments of cyclotron resonance on 
holes in germanium1 the deduced constants B and N 
have been found to be negative. This assignment is 
consistent with the following theoretical consideration: 
All the possible perturbing levels must belong to the 
conduction states that are located above Tw. If one 
postulates this, one must have a negative sign for each 
of the four different perturbation terms (F, G, Hi, and 
Hi denoted in reference 1). Furthermore, only the com­
bination of the experimental values A, B, and N all 
having negative signs is shown to fill the above require­
ment. In silicon, on the other hand, the assignment has 
not been unique: Both signs, negative and positive, 
have been equally possible for B, even if one assumes 
that the conduction states furnish the dominant per­
turbations. Under this assumption it only follows that 
both L and M should be negative, but the sign of B 
which depends on the difference, L—M, is not certain. 

In view of the remaining ambiguity for the silicon 
valence band some efforts have been made to settle 
the question about the sign of B. Kane7 has argued in 
an investigation of the structures of the valence bands 
in germanium and silicon far off the center, k = 0 , that 
the combination of the experimental values A, \B\, \N\ 
with positive sign for B would cause the valence band 
edge of silicon to be located off k = 0 , which is evidently 
unrealistic. His argument could not, however, be 
checked accurately because of the large uncertainty of 
the experimental values that existed in the earlier 
experiments. 

Another approach to this problem has been to evalu­
ate the parameters directly from first principles by 
solving the Schrodinger equation in crystals. Detailed 
theoretical calculations of the band structures of 
diamond-type crystals have been made by Herman, 
Woodruff, Kleinman-Phillips, and Bassani-Celli based 
on the orthogonalized plane wave method,8 and by 
many authors based on the tight-binding approxima­
tion. All of these calculations have confirmed the 
assumption mentioned previously that the valence band 
top T25' lies below any of the four representations 
F15, IV, and the other two. 

Kleinman and Phillips,8 who made a very elaborate 
calculation of the energy bands in silicon, have indi­
cated the difference, L—M, to be positive.9 Their calcu-

7 E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956). 
8 L . Kleinman and J. C. Phillips, Phys. Rev. 118, 1158 (1960). 

Most of other references are given in this paper; another is F. 
Bassani and V. Celli, J. Phys. Chem. Solids 20, 64 (1961). See also 
J. C. Phillips, Phys. Rev. 112, 685 (1958). 

9 The order of the energy levels for the conduction states in 
silicon has now been re-examined by J. C. Phillips in connection 
with the present discussion, Phys. Rev. 125, 1931 (1962). The 
present author wishes to thank Dr. J. C. Phillips for calling the 
author's attention to F. Herman's paper concerning "core shifts" 
in OPW calculations. 
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lation shows that the sign of L—M is closely related to 
the relative position of the levels T2' and Tn in the 
conduction bands at k=0, and their result indicating a 
positive sign for it is essentially a consequence of the 
fact that the calculated level T2> is much higher than 
that of the Ti5 (the energy difference between these two 
is estimated to be approximately 6 eV) in contrast with 
the case of germanium. They argue that the "effective" 
crystal potential that has primary importance in deter­
mining the relative order of energy levels for valence 
electrons is sensitive, in the course of self-consistent 
calculations, to the energy levels and the wave func­
tions of the core states (through the core orthogonaliza-
tion terms, or the repulsive potentials according to 
their terminology). The difference between the two 
terms, £(r2 ' ) —E(Tiz), largely depends upon one par­
ticular Fourier component of the potential, F22o, that 
has positive sign and is significantly large, because the 
orthogonalization term overcomes the true crystal-
potential term. This leads to the quoted result: £(r2>) 
— E(Tis) — 6 eV. It is noted that a similar estimate is 
also given in Woodruff's work.10 

Under these circumstances it is clear that the abso­
lute assignment of B without recourse to any model 
for the ordering of the T levels is most desirable. We 
shall see that such a possibility can be found in a 
dependence of the cyclotron resonance frequency on the 
magnitude of the external stresses. The reasoning is 
discussed in detail in the next section. 

3. SHIFTS DUE TO STRAIN-INDUCED ADMIXTURES 

We begin by setting up Hamiltonians pertinent to 
cyclotron resonances of holes in the T25' band under the 
influence of spin-orbit interaction and external stress. 
We shall keep parallel to Hensel-Feher's paper.4 Since 
r25> is a three-dimensional representation (without 
spin) of the space group Oh1, the Hamiltonians can most 
generally be represented by 6X6 matrices. The spin-
orbit interaction splits the sixfold degenerate T25' into 
fourfold degenerate states, denoted by pZ/2, which form 
the valence band edge, and twofold degenerate pi/2 

states. Under ordinary circumstances, therefore, the 
Hamiltonians can be written in 4X4 matrix forms with 
basis operators of the angular momentum J ( /=§ ) to 
represent the interactions within the py2 multiplet. 
The resulting expressions for a strain Hamiltonian He 

and for an effective mass Hamiltonian Hk are presented 
in H-F4 [Eqs. (6) and (7), respectively]. The 4X4 
Hamiltonians, though convenient, do not suffice for 
the present purpose, since we need the off-diagonal 
part of He and Hk between the pZ/2 and pV2 multiplets. 

Let us ignore for the moment the effect of the spin-
orbit interaction that is responsible for the pz/2—pi/2 

splitting. The Hamiltonians He and Hk can then be 
written conveniently in terms of another angular mo-

10 T. O. Woodruff, Phys. Rev. 103, 1159 (1956), and in Solid 
State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1957), Vol. 4, p, 367, 

mentum operator, the orbital angular momentum 
I (1=1), as 

He=Do(exx+eyy+ezz)+DiZ(Ix
2-%P)exx+c.p.'] 

+D£2{IxIy}exy+c.p.2, (3.1) 

F,=^0(^
2+V+^3

2)+^iC(^2-K2)^2+c.p.] 
+AJt2{IJy}{kxky}+c.p.l, (3.2) 

respectively. Here, c.p. denotes cyclic permutations 
with respect to the indices x, y, z. Here, and in the rest 
of the paper, a product of two quantities in the curly 
bracket indicates the symmetrized product; thus 

{IxIy}=HlxIy+IvIz), {kxky} = %{kxky+kykx), e t c . 

(3.3) 

Another remark appropriate here will be the definition 
of the conventional strain components.11 They are ex­
plicitly defined by 

dua dup 
eap= 1 , (OE^JS) 

dxp dxa 

dua 
= — , (a=p) 

dxa 

where u and x are a displacement vector and a position 
vector in a unit cell of a lattice. If the usual strain-
stress relations are inserted in (1), the expression for He 

becomes 

Do 
He= \Txx~\~ Tyy-\- Tzz) 

cn~\-2ci2 

+-L2{IJy) 7^+c.p.], (3.4) 

where Tap is a stress component, and cu , en, cu are the 
usual three elastic constants for a cubic crystal. 

The form of the strain Hamiltonian in (3.1) or of the 
stress Hamiltonian in (3.4) is a consequence of cubic 
symmetry. The first term in (3.1) or (3.4), which repre­
sents a totally uniform shift of the energy of the six 
degenerate levels, T25>, is expressed by the single irre­
ducible representation of the strain or the stress. The 
second and the third terms generally give rise to split­
tings of the degenerate levels, where the two- and the 
three-dimensional irreducible representations of the 
strain or stress components that are involved transform 
like Ti2, and T25', respectively. Thus, the strain or 
stress Hamiltonian set up here has only a phenomeno-
ligical meaning: The three constants Z>* O'=0, 1, 2) 

11 It is distinguished from a component of the strain tensor, 
Safi = § (dUa/dXfi+dUp/dXa). 

file:///Txx~/~
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there are empirical parameters to be fit. While the 
effective mass Hamiltonian of the form (3.2) has a 
well-established basis from band theory, the strain 
Hamiltonian does not. Recently, Whitfield has dis­
cussed such a basis within a one-particle framework.12 

From his theory the constants D% may be obtained from 
the matrix elements of what is called deformation 
potential operators of the form: S>ap= — (l/ni)papp 
+ Uap(r). In this formalism Do, Dh and D2 can be 
written 

0 i = -<r 26' x I » » . - scU r25'*>, (3.5) 
D2=-<r w * |© , y | r 2 B' l ' > , 

respectively. The two deformation potential constants, 
D\ and Z>2, responsible for uniaxial distortions of the 
r 2 5 ' states, may have an order of magnitude of 1 eV, 
and thus by a shear strain of order 10~~3 they will yield 
a splitting energy ~ 10~3 eV. 

We now consider the effect of the spin-orbit inter­
action which yields the pz/2—pi/2 splitting, A. The value 
of A for silicon, A =0.044 eV, is an order of magnitude 
larger than the stress-induced splitting discussed above. 
Thus, we usually deal with the projections of the 
Hamiltonians He and Hk, both expressed by the I 
operators, onto the pz/2 space. I t is quite straightforward 
to write down the projected portions of the Hamil­
tonians in terms of the J operators: One just makes the 
following substitutions13 

(/„»-JP) -> * ( /« ' -V) , <*=*, y, * (3 6 ) 

Comparing the projected Hamiltonians so obtained 
with those in Eqs. (6) and (7) of H-F, we can establish 
the relationship between the parameters Di, A «• and 
those defined in H-F : 

D0=DA Z>i=2Z>„, D*=DU', (3.7) 

Ao=A, A^-SB, At= -N. (3.8) 

Hereafter, we shall use H-F's notation. 
The projected part of the Hamiltonian, designated 

by JETn, is a 4 X 4 matrix contained in the form 

[#11 Hl2~\ 

#21 # 2 2 J 

the latter being the (JMj) representation of the 6X6 
matrix Hamiltonian. I t is not quite straightforward to 
treat the off-diagonal part, Hn or #21. One needs the 
precise form of each element. In Table I the off-diagonal 
elements for some basis operators are tabulated. The 
correction of the energy for the ^3/2 multiplet to the 
second order in the off-diagonal part may be calculated 

12 G. D. Whitfield, Phys. Rev. 121, 720 (1961). 
*3 J. M. Luttinger, Phys. Rev. 102, 1030 (1956). 

by the formula 

S w ( J = ! ) s ( l / A ) M » i ) , (3.9) 

which is a 4 X 4 matrix. We will not pursue the per­
turbation approach in this general form, but will 
confine ourselves to cases of an external uniaxial stress 
along simple crystallographic directions. 

To discuss cyclotron resonance of holes we first de­
termine the levels split at k = 0 by the combined effects 
of spin-orbit (s-o) interaction and the stress Hamil­
tonian. The effective mass Hamiltonian Hk will subse­
quently be included to give the energy bands in the 
vicinity of k = 0 for each split level. When a static uni­
form magnetic field H is applied, the three components 
of the wave vector k must satisfy the commutation 
relations 

[>«,*/*]= (e/ihc)Hy. (3.10) 

This quantization rule leads to the formation of Landau 
levels whose energy spacing is of major interest in 
cyclotron resonance absorption. 

For a uniaxial stress T applied in the [001] direction 
the Hamiltonian matrix, Ho=He+Ha.0, to zeroth order 
in k is written in the (JMj) representation 

1 
2 

0 
e 
0 
0 
v2e 
0 

1 
2 

0 
0 

— e 
0 
0 

Vie 

3 
2 

0 
0 
0 
€ 

0 
0 

1 
2 
0 

- v i e 
0 
0 

- A 
0 

1 
2 
0' 
0 

Vie 
0 
0 

-K 
where 

e=%DuT/(cn-cl2) = %Du(s11-s12)T. (3.12) 

Here we have omitted the term representing uniform 
shifts of the energy due to the stress as well as to the 
spin-orbit interaction. In the matrix representation in 
(3.11) J is "quantized" along [001], i.e., along the 
stress axis. A similar expression can be obtained, when 
a uniaxial stress T is applied in the [111] direction. 
Here one chooses the quantization axis of J along [111] 
and simply replaces e by e' in (3.11) where 

e=lDu'T/2cu=\Du
fsuT. (3.13) 

The secular equation satisfied for HQ in (3.11) can 
be easily factored. Here the simple nature of the equa­
tion will be emphasized. The uniaxial stress T gives 
rise to a distortion of the cubic symmetry, r2 5 ' . How­
ever, the axial symmetry is still retained in the inter­
action H0, as can be seen from the operator forms 

#o=€(3/ 3
2 -2)+fAl .<T for r | | [001] , 

= € /(3/ r*-2)+*Al-<r for r | | [ l l l ] . { ' } 

Here cr denotes the Pauli spin. The component of the 
total angular momentum, J=I+f<r , along the stress 
direction, denoted by Jz or Jz> for T||[001] or r | | [ l l l ] , 
respectively, can be seen to commute with the Hamil-
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TABLE I. Off-diagonal part Hn for some basis operators in the (JMj) representation. Columns and rows are arranged a s / = § , 
M j = § , J, —i, — f, and / = i , Mj=J, — J, so that the angular momentum J is represented in the form 

/ . -
§ 0 0 0 
0 i 0 0 
0 0 - J 0 
0 0 0 - | 

'•-[o - d ' 

i J x~T"^J y — 

Jx+iJv— 

0 y/3 0 0 
0 0 2 0 
0 0 0 \fl 
0 0 0 0 

[8 4] 

for / = | ; 

for / = | . 

2IM*-IS*-IV* {(/,+*/,)/.} {(/,-*/„)/.} {2/,/,} 

r ° 
-V2 

0 

. 0 

°] 
0 

V2 
i 

OJ 

0 « ) ! « • 

0 0 

0 0 

l - ( ! ) 1 / 2 o . 

" 1 

0 

0 

0 

0 

1 

v2 

0 

0 

r 0 

0 

1 

y/1 

0 

0 |̂ 

0 

0 

1 

- i ( | ) l / 2 

0 

0 

l -* ( f )1 / 2 0 

tonian Ho. Accordingly, every eigenstate can be specified 
first by the quantum number Mj=Jz or JV. Mj will 
take the values dbf once and =fc| twice. Hence, the 
states corresponding to M / = ± | should be specified 
further by some means. Each energy is doubly de­
generate (Kramers degeneracy) with Mj and —Mj. 
Thus, we can denote the eigenvalues for the three 
doublets by £3/2, £1/2+, and £1/2-, respectively. Ey2± 
is chosen to satisfy £i/2+>£i/2-. 

In Fig. 1 the three energy eigenvalues are shown 
against the external stress T. In the limit T —> 0 the 
two doublets with the terms £3/2 and £1/2+ will ap­
proach A/3, while the third one, £1/2-, will approach 
— 2A/3, thus yielding the spin-orbit separation A in 
the absence of the strain. In this limit the first two 
doublets collapse into four degenerate states, which 
can be specified by another quantum number / = f . 
These are the states that have been investigated by the 
previous cyclotron resonance experiments. The existence 
of the extra degeneracy with / = § in the case of r = 0 
is, of course, a consequence of the spherical isotropy of 
the spin-orbit interaction. As a uniaxial stress is turned 
on, this isotropy is violated resulting in two things: 
(a) splitting of the terms £3/2 and £1/2+ with the sepa­
ration 2e or 2e', (b) mixing of the eigenstates / = § 
with 7 = J . 

It will be noted that the mixing of the states by the 
uniaxial distortion takes place only between the two 
doublets with l f j= |=b , because Mj is still a "good" 
quantum number under the uniaxial distortion: there 
is no matrix element of the strain term in Ho between 
two states with different values of Mj. [See the matrix 
in (3.11).] This is an important property that will 
enable one to distinguish the two eigenstates with the 
energies £3/2 and Z2i/2f. If the eigenvectors of the 
matrix HQ corresponding to Es/2 and £1/2+ are denoted 
by <p3/2 and ^1/2+, respectively, they can be written in 

the (JMj) representation as 

<£>3/2= <£>/=3/2,M=3/2, (3.15) 

<pl/2+=«<p/=3/2,M=l/2+SW=l/2,M=l/2. (3.16) 

Here the amplitude (u,v) for (P1/2+ will depend on the 
relative strength of the strain energy e or e' to the 
spin-orbit separation A, and will represent the degree 
of the mixing. For ^3/2, on the other hand, there is no 
mixing by the uniaxial distortion. 

The difference in the character of the mixing effect 
for <?3/2 and <pi/2+ is due entirely to the simple uniaxial 
nature of the Hamiltonians in (3.14), and hence is 
typical only for the particular crystallographic axes 

E1/2+ 

E3/2 

FIG. 1. Splitting of the valence states T2y by a spin-orbit 
interaction and by a uniaxial stress applied in the [001] or [111] 
direction. The energy term £3/2 is represented by a straight line 
showing no mixing effect from the split-off state, while Em+ is 
affected by the mixing. 
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[001] and [111] (or their equivalent axes). Except 
along these axes, the applied stress will cause, in 
general, a more complicated distortion. As an example, 
the case of a uniaxial stress T applied in the (001) 
plane will be examined. The strain Hamiltonian He is 
then written in terms of e and e [denned in Eqs. (3.12), 
(3.13)] as 

# e =cons t+3[€( iV 1 cos2<p+Iv
2 sinV) 

+ e(IxIy+IyIx) cos<p sin<p] 

-const+3(€ 1 / 1
2+e 2 /2 2 ) , 

where <p is the angle between the x direction and the 
stress direction. In the second equation ei and C2 can 
be obtained from the secular equation 

e', which, in turn, depends on the sign of the relevant 
deformation potential and the nature of the applied 
stress. 

In Table I I the character assignment of the upper­
most eigenvector is indicated in connection with the 
signs of e and Du for the [001] stress. There the form 
of the energy band calculated is also given with 
and without the strain-induced shift. If one calculates 
the energy bands by omitting the off-diagonal element 
in the matrix of (3.11), one obtains 

— €*+ e cosV e' cos<p sin<p 

e' cos<p sin<p — €i+e sin2<p 
= 0. (3.17) 

In this case the uniaxial nature is retained only when 
one of the roots of Eq. (3.17) vanishes. The condition is 

(e2-e'2)sin22<p=0. (3.18) 

We can see from the above equation that, if a simple 
uniaxial stress is applied along an arbitrary direction 
in the (001) plane, the resulting distortion is uniaxial 
only when the following relation is satisfied: 

e = ± € ' . (3.19) 

Making a similar analysis we can conclude that, if a 
simple uniaxial stress is applied along an arbitrary 
direction in the (110) plane, the resulting distortion is 
uniaxial only when 

e ' ( e _ e ' ) = 0. (3.20) 

In particular, if the relation e=e is satisfied, the re­
sulting distortion is always uniaxial with respect to the 
applied stress axis. Except for these few special cases, 
every eigenvector of the Hamiltonian H0 is more or 
less an admixture of all the (J,Mj) basis vectors. 

The energy band that belongs to each level, £3/2 and 
Ei/2±, can be calculated according to first-order per­
turbation theory by taking the expectation value of the 
Hamiltonian Hk over each of the eigenvectors ^3/2 and 
<Pi/2±, respectively. Since every matrix element in Hk 
is quadratic in ka, the resulting bands retain to this 
order a parabolic nature, whose effective masses and 
anisotropy may be determined experimentally by ob­
serving cyclotron resonance lines. For the case of a 
strong stress (e,€'^>thermal energy for a charge carrier) 
essentially one line will be observed, the one that is 
associated with the uppermost energy band, the holes 
in the other bands being, thereby, depopulated. In the 
vicinity near the point k = 0 the locations of the three 
bands will be determined solely by the locations of the 
three unperturbed energies. The question which energy 
is higher, £3/2 or -E1/2+ (£1/2- is always the lowest by its 
definition), depends on the sign of the parameter e or 

(<pmfik<Pm)= (A+±B)kJ+(A-B)kn2, (3.21) 
and 

(^V24-,£r*w»f)= (A-iB)ki*+(A+B)kn*. (3.22) 

Inclusion of the off-diagonal element, i.e., the admixture 
of the spin-orbit split-off state ( / = § ) , modifies Eq. 
(3.22) to 

(<Pl/2+JHk<p1/2+)= (A-^BZ)k,2+(A+BZ)kll
2 (3.23) 

while Eq. (3.21) remains unchanged. Here the quantity 
Z is a function of x= e/A, the degree of mixing, of the 
form 

1 / 1 - 9 * 
Z(*) = -( H l ~ l - 4 s , x«l. 

(l-2x+9r01/2 
• ] ~ 1 — 4#, 

To first order of the stress, therefore, the inverse 
effective mass of the band £1/2+ (k) varies linearly with 
the stress as 

fi2/2mi.=A-^B(l-4e/A), 

jp/2mn = A+B(l-4te/A). 
(3.24) 

Thus, the characteristic difference between the de­
coupled bands Z£3/2(k) and £ 1 / ^ (k) can be found in 
their stress dependence. An appreciable shift of the 
effective mass is expected with an increase of the ap­
plied stress in the resonance, if the line is associated 
with Mj=zk%. On the other hand, no such shift can 
be expected, if the line is associated with Af/=-bf . 
When analyzing experimental results, one first ex­
trapolates the effective mass versus stress curve to the 
zero stress. This procedure will determine, without 
knowing the assignment of the band, only the absolute 
magnitude of B, since £3/2(k) and Ei/2+Qs) have a 
twin character in the limit T —> 0 regarding the sign 
of B. The unique determination of its sign is possible, 
therefore, only after recognizing the difference between 
the two bands, which is now available from the identi­
fication of the shift, i.e., the presence or absence of the 
strain-induced shift discussed above. 

The analysis can be extended to other directions of 
the applied stress. Table I I may also apply to the case 
r | | [ l l l ] , another possible direction that retains abso­
lute uniaxial nature of distortion. Here one is concerned 
with another set of the parameters, e', Du', and N, for 
which the procedure is entirely similar to that for the 
case T| |[001]. For the [110] type stress the analysis is 
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TABLE II. The character assignment distinguishing the decoupled bands Em (k) and Ei/2+(k) for the case of tetragonal distortions, 
T||[001]. The case for r | | [ l l l ] may also be obtained, if e, Du, and B are replaced by e', Du\ and \Ny respectively. 

Uppermost eigenvector <pm+ 

Sign of € 
Sign of Du

& 

£(k) (without shifts) 
E(k) (with shifts) 

Sign of Bh 

€ > 0 
Du<0 

(A+iB)h*+(A-B)kn2 

(A+iBW+(A~B)kn* 

B>0 

€<0 
Du>0 

(A-hBW+(A+B)kn2 

(A-iBZ)ki*+(A+BZ)kn2 

Z « l - 4 e / A 
B<0 

a The sign of Z>« is opposite to that of e, if the applied stress is compressive. 
b The sign of B is opposite to that of Du, if the uppermost decoupled band is oblate. See reference 5. 

more complicated. The uniaxial nature generally no 
longer holds, so that the admixtures take place in all the 
eigenvectors. We give here the formulas for the first-
order shifts of the three inverse masses for 2 l | [ H 0 ] . 
The latter are given by H-F [see Eq. (25) of reference 
4 ] . For the uppermost band 

/ W 
A ( — 

\2m\ 

I h2 

A ( — 
\2m^ 

1/ 2A\(e2+3(='2)1'2 / 2A\(e2+3e'2)1/2 / 

- A (3.25) 

J 2A\(€2+3e ,2)1/2 / 

\2mJ A\(e2+3e,2)1/2 

B( 3e , 2 -e 2 

2A\(€2+3€ /2)1/2 

where the signs of the roots are assumed to be positive. 
The axes 1, 2, and 3 are labeled as in H-F, i.e., 1||[110], 
2 | | [00 l ] , and3 | | [110] . 

Finally, some further details of the strain-induced 
mass shift are presented here to help its identification 
in experiments. 

(a) We have tentatively estimated the magnitude 
of the deformation potentials to be 1 eV. This yields 
an estimate of the mixing parameter, 41 x | = 41 e/A | 
= 10-1, for a value of the strain § T/(cu—cn)= 1(H. 

(b) I t will be important to note the anisotropic 
nature of the shifts. The sum of the three inverse 
effective masses is equal to 3A. This "sum rule" can 
be seen to hold, even when the shifts are included. Thus, 

h2 

L = 3 4 , 
«=1-2'3 2ma 

or 
«=1'2-3 \2mJ 

(3.26) 

independent of the strength and the orientation of the 
stress. An inspection of Eqs. (3.24) and (3.25) proves 
this property. Thus, for the r | | [001] and r | | [ l l l ] 
cases the shift A(l/mu) is opposite to A(l /wi) , and 
twice as large. If experimentally established, such a 
characteristic will make the identification of the shift 
indisputable. 

(c) For the [110] type stress the shifts are complex, 
as given by Eq. (3.25). However, it will help to con­

sider the following point: We have pointed out that, 
if one of the special relations e = ± € ; or e' = 0, shown in 
Eqs. (3.19) and (3.20), is fulfilled, the uniaxial nature 
of the distortion is then restored. In fact, if we set 
e = ± e ; (with the + sign corresponding to the case of 
isotropic distortion), Eq. (3.25) becomes 

A(h2/2mi) = A(h2/2m2) = A(h2/2mz) = 0 when € > 0 , 

and 

A(h2/2m1)=-

A(£2/2w3)=-

•(€/A)(£=FA0, 

•(e/A)(£±A0 

A(h2/2m2)=(2e/A)By 

when €<0. 

(The upper and the lower signs are according to e '<0 
and e '>0, respectively.) Thus, the two choices of the 
sign of e are quite distinguishable in this case also.14 

4. EFFECTS OF FOURTH-ORDER TERMS— 
A THEORY OF LINE SHAPE 

In order to retain a high accuracy in analyzing ex­
perimental results to deduce the effective mass param­
eters one should consider all possible corrections to the 
lowest order frequency calculated in the preceding 
section. One of such corrections comes from the second-
order perturbation of the kinetic energy term Hk (the 
effective mass Hamiltonian), and can be written as a 
sum of fourth-order terms in the three variables kx, ky, 
and kz, Clearly, this effect is important when the 
applied stress is not strong so that the decoupling of the 
upper two bands is incomplete and their nonparabolic 
nature is significant. In the present section this cor­
rection will be estimated by taking the matrix elements 
of Hk in the 4 X 4 projected form 

Hk=Ak2-
\x 
u 
V 

Lo 

u* 
-X 

0 
V 

7* 
0 

-X 
-U 

0 ] 
7* 

-17* 
X J 

(4.1) 

Here the representation is assumed to diagonalize the 
strain Hamiltonian He in the projected space pm. The 

14 J. C. Hensel has informed the author that [ e| « | e'| is really 
the case in silicon (private communication and reference 4). It 
is then interesting to inquire about the presence or absence of the 
linear shifts; if e>0, the shifts are expected to be very small. This 
fact is demonstrated by a comparison between case i and case ii 
of reference 4, IV-C. 
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matrix elements X, U, and V are, in general, quadratic 
forms of the three wave vector operators ka's. 

For convenience two cases will be distinguished 
according to whether the highest Kramers doublet is 
Mj= ± f , or =fc|. The second-order perturbation energy 
for it is then given by 

Case I : 
Em™=(l/AE)(U*U+V*V)y 

R-S/t™=(l/AE)(UU*+VV*), 
Case I I : 

£V2 ( 2 )= (l/AE)(UU*+V*V), 

£_!,/2(2)= (1/AE)(U*U+VV*)9 

respectively. AE in these equations represents the dif­
ference of the two unperturbed energies, and is assumed 
to be positive. In applying the above formulas the two 
quantities U*U and UU*, or F*F and FT*, are not 
equal to each other, because in the presence of the 
magnetic field the three variables kx> ky, and kz are not 
commuting quantities but are subject to the relations 
given in Eq. (3.10). The difference between EMj

i2) and 
E-Mj{2), expressed by the commutators, [£/*,£/] and 
[ F * , F ] , distinguishes the two states belonging to a 
Kramers doublet as a quantum effect in the magnetic 
field. 

To proceed further one rewrites the first-order 
kinetic energy calculated in Sec. 3 in the form 

E^ = E^(n,k) 

= Ao>0(»+i)+(*V2wi)*2, V ' 

where n represents 0 or positive integers (Landau 
quantum number), and k represents the component of 
the wave vector along the H direction. The unperturbed 
frequency as well as the longitudinal effective mass mi 
are assumed here to be positive quantities. Thus, for 
the present discussion, the scale in the energy diagram 
in Sec. 3 is now reversed, since all the energy bands 
discussed there are supposed to have negative curva­
tures at k = 0 ; and the second-order perturbation (4.2) 
or (4.3) must accordingly have the sign reversed. 

The diagonal part of the kinetic energy up to second 
order can be written in a quadratic form of the two 
variables, n and k, and is denoted by E(n}k). The fre­
quency of the resonance induced by a dipole transition 
from nth Landau level to ( » + l ) t h Landau level is 
then given by 

hu = E(n+l, k)-E(n,k). (4.5) 

The frequency co generally depends on n and k2 and can 
be written in the following form: 

O)n,k = ^0~\-OJi+O)2n+C03k2. (4.6) 

The first term represents the unperturbed frequency, 
and the remaining three terms the corrections from the 
fourth-order parts. 

By way of example the calculation will be shown in 

great detail in the simple case for the applied stress and 
magnetic field both parallel to the [001] direction. In 
this case, U and V are given by 

1 V3 i 
U=~Nkz(kx+ikv), V=—B(kx

2~ky
2)+—N{kxky}. 

v3 2 \ 3 
(4.7) 

Using the commutation relations between kx and ky one 
can write 

KU*,Ul=$N*k*eH/hc, (4.8) 

\ [ V*, V~] = BN (ell/hc)2 (2n+1). (4.9) 

Also for the diagonal part of the product 

{U*U) + {F* V) = § {B2+\N2) (n2+n+1) 

feH\2 eE 
X — +\N2{2n+\)k2—. (4.10) 

\ he I he 

The contribution to the frequency from (4.10) is 
common to all the bands, while the contributions from 
(4.8) and (4.9) are different for each of the four M/s. 
Dividing two cases, I and II , one can now explicitly 
write the four frequencies as follows: 

Case I : (The Mj= dbf band is the highest, or e>0.) 

hu>o=2(A+±B)eH/hc, 

««i= (3/-AE)(B±$N)*(eH/hc)2, 

according to Mj= dbf, (4.11) 

«co2= (S/-AE)(B2+l-N2)(eH/hc)2, 

ha>zk
2= {\/-&E)\N2k2eH/hc. 

Case I I : (The M=±\ band is the highest, or e<0.) 

hwo=2(A-%BZ)eH/hc, 

««!= (3/-AE)(B±iN)*(eH/hc)*, 

according to Mj= ± J , (4.12) 

hcc2= (3/-AE)(B2+±N2)(en/hc)\ 

h^k2= (l/-AE)\N2k2eH/hc. 

The energy denominator AE is given by 
AE=2\e\. (4.13) 

Therefore, all the correction terms o>i, o>2, and co3 are 
proportional to the inverse of the applied stress T. 

At the absolute zero temperature the dipole transi­
tion is restricted to the one, w=0, £ = 0—»«=1, & = 0. 
The corresponding resonance frequency will then be 
given by 

w = a>o+wi. (4.14) 

At a finite but still very low temperature the other 
terms co2 and o>3 will also play roles in modifying the 
resonance line. The ^-dependent term <x>zh

2 will give a 
continuous shift; thus effectively a broadening. This 
kind of broadening effect known as a kz broadening is 
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important15 in determining the correct frequency in the 
absence of stress (i.e., "quantum" spectra), where the 
magnitude of the term o)Zk2 for thermal carriers is 
usually comparable with the unperturbed frequency. In 
the present case it turns out that the term u^k2 does 
not yield a shift of the maximum of the intensity. This 
is confirmed by a direct integration of the intensity 
curves with respect to the continuous parameter, k. 

The most significant modification that should be 
carefully examined arises from the first two terms wi 
and a>2. If the resolution of the microwave signal is 
high enough, many lines will be observed that corre­
spond to different values of the initial Landau quantum 
number. Under ordinary circumstances an observed 
resonance will be a superposition of several lines, whose 
frequency shift will be determined by a certain sta­
tistical average of the individual terms with different n. 

Both the corrections wi and w2 are negative and 
diminish the unperturbed frequency co0. Therefore, the 
apparent resonance frequency for the superposed line 
must be lower than co0. To see their order of magnitude 
one rewrites a>i and co2, as 

| o ) 1 | / c o o = | ( W w ) 2 ( ^ ± i i V ) 2 ^ o / | e | , (4.15) 

Ico2 | /coo=f(^x/m)2(^+|iY2)feo/ |6 | , (4.16) 

where the constants B and N are measured in units 
of h2/2m, and WQ=eH/miC. The strain energy e is 
estimated for r = 2 0 0 0 kg cm~2 to be 

| e | = f | A ^ r | = : 2 X 1 0 - 3 e V . (4.17) 

Here 5 = l A u - ^ i 2 = 1 . 0 X 1 0 ~ 1 2 dyn cm"2, and the de­
formation potential \DU\ is assumed to be 1.5 eV. A 
more satisfactory estimate for Du will be obtained in 
H-F. Also, their preliminary results indicate 

| ^ | =0.8 , I # 1 = 9 . 3 , mx/m=0.26. 

Using these values, we can estimate the right-hand 
side of Eq. (4.15) to be 

I wi I /to0= 7.1 X 10~3 when B and N are additive, and 
= 2.5X10~~3 when B and N are sub tractive. 

Similarly, for the right-hand side of Eq. (4.16) 

!u2 |/a>o=4.9XlO-3. 

In these estimates coo is assumed to be equal to the 
microwave frequency: W 0 = 2 T T X 9 0 0 0 Mc/sec. 

I t is somewhat difficult to carry out the statistical 
average over the quantum number n for the co2 term 
in order to deduce its effective shift. One way of doing 
this is to plot numerically the individual lines and 
superpose them. This is done by assuming a Lorentzian 
shape for each line with a common width. The result 
is shown in Figs. 2 and 3. Here the intensity curve is 
understood to be as a function of the static magnetic 

15 M. Okazaki (to be published). 

(a) 

M 
(b)/ I 

I 1 I I I 1 I I I 1 1 ! I I I 
- 5 - 4 - 3 - 2 - 1 0 I 2 3 4 5 6 7 8 9 

x= (o>- ICOQ + OJJ) T 

FIG. 2. Theoretical curves of the hole resonance. Each curve 
is obtained as a superposition of the individual lines with dif­
ferent Landau quantum number. The individual line is assumed 
to be a Lorentzian. The weighting factor in the superposition is 
(fi+J)«r**"o<»+»> with /3Jfcoo=0.34 (co0=27rX9000 Mc/sec, jS-*~ 
1.3°K): thus the expression for each curve is given by 

= 2 (2»+l)4~°-"(,t+l/a> 
y »~o 1 - K S - | C O 2 | T » ) 2 ' 

(a) |co2[r=0.1, (b) |aj2 |r=0.4. To secure convergence the sum­
mation is made up to « = 20 by a computer. The arrows indicate 
the estimated positions of the maximum points by Eq. (4.19). 

field H to conform with usual experimental conditions. 
The intensity vs H dependence is regarded in the vi­
cinity of the resonance as just the intensity vs o) 
dependence with the abscissa reversed at the point 
wo+coi. This should not yield a significant error, since 
the individual shift, co2w, is quite small compared to «o. 
Besides a shift of the maximum for the superposed line 
we can see an asymmetry. Clearly, this asymmetry is 
a consequence of the accumulated intensity on the high 
mass side with many quantum numbers, thus forming 
a tail. 

If the initial states can be assumed to have a Boltz-
mann distribution,16 and if the width of the individual 
line is much greater than w2(a>2r«l), the resulting shift 

16 The distribution depends upon the way of producing charge 
carriers, i.e., upon the wavelength of the light. I t also changes 
by an increase of the microwave power. The present paper is not 
concerned with the problem of finding the best distribution. For 
analyzing experimental results it is desirable to eliminate heating 
processes as much as possible. 
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- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 

x= (CO-|CO0 + CO1I)T 

FIG. 3. Some individual lines in the series for curve (b) in Fig. 3. 

for the superposed line can be approximately given by 
averaging w2w over the Boltzmann distribution: 

Aco = coi+co2n, n= ]£ nwn, 
n>0 

where 

Wn= ( W + i ) e - ^ 0 ( n + l / 2 ) / £ (w+I)e-0*o>o<«+l/2)# (4.18) 
n>0 

This expression is derived by expanding a general form 
of the frequency-dependent conductivity tensor.17 The 
factor n-\-\ in wn is necessary because of the square of 

17 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). The symmetric 
part of the conductivity was shown to be 

i r00 

Vzx ^ = I E MJ ^*3* ® * ^C0&03tdL 

Expanding the right-hand side into eigenmodes of the cyclotron 
motion, in which some damping factors are included, one reaches 
an expression essentially of the form 

o-xxfa)— 2 wng(o)—w„), 
n=G 

where g(co) is the Lorentzian line-shape function. In deriving this, 
the factor Ep(<a) = ihco coth(|j8^o>) is essential in giving the correct 
normalization for wn. The maximum point of the composite line 
satisfies 

2 wn—g(w-con)=0, 

from which one can see that the shift coincides with the expres­
sion in (4.18) provided co2r<3Cl. 

the dipole matrix element. Using Eq. (4.18) one finds 

f 1 1 \ 
V ^ o - i s inhjBW (4.19) 

=o) i+ (2/j5^coo)aj2=coi+co22^®/^coo. 

Thus, the contribution from co2 is now enhanced by the 
factor 2k@/ha). One expects the total correction at the 
temperature 0 = 1.3 K° to be 

|Ao)/w0 |=3X10-2 . (4.20) 

The shift of the second term is linear with temperature, 
and it can be checked in experiments. One can also 
calculate the second moment of the superposed line, 
which will provide a rough measure of the width due to 
the "inhomogeneous" broadening effect: 

<Aa>2)av=o>2
2 «w 2 ) a v - n 2 ) « 2<o2

2//32 (««o)2. (4.21) 

Thus, the width of the observed line should also be 
linear with temperature, provided that the broadening 
is actually governed by the above mechanism. However, 
this is not certain, since another time constant T, the 
relaxation time for individual lines, is not known at 
present. If the condition O)2T<K1 is really satisfied, the 
broadening should be determined by r, and Eq. (4.21) 
may not apply. 

To examine this point in more detail we quote in 
Table I I I the results of numerical computations for the 
line shape. Here the second and the fourth columns list, 
respectively, as a function of the parameter | co21 r, the 
position of each superposed line maximum, xmax, and the 
half-width, Ax, on the reduced scale x= (o>— |a>0+a>i| )r. 
In Table I I I we compare these two quantities with the 
"approximate" first moment (4.19) and second mo­
ment (4.21). For the shift of the maximum it can be 
seen that the first moment value deviates significantly 
for all samples from the " t rue" shift #max to higher 
values, the deviation being larger for larger value of 
| o)21 T. With the aid of Fig. 2 one can see that this 
overestimate of the shift by Eq. (4.19) is closely con­
nected with the asymmetry effect, namely, a weighted 
contribution from the high-frequency side to the first 
moment. From this one expects that the first moment 
can indicate the correct shift of the maximum in the 
limit [ OJ2 | r —> 0, as mentioned previously. For the width 
we employ a conventional assumption that the width 
is proportional to the square root of the second moment, 
«Aoj2)av)1/2, the proportionality constant being chosen 
for a Gaussian shape. Contrary to the case of the shift, 
the second moment value of the width deviates from the 
true width significantly for smaller |CO2|T, indicating 
the relative importance of the 1/r broadening in the 
total width. One can see that the computed half-width 
is close to the Gaussian half-width for samples |co2|r 
>0 .4 ; a fact which supports the analysis made in H-F 
(IV-E). I t may not, however, entirely justify the linear 
dependence of the width upon temperature, since we 
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TABLE III. Comparison of first and second moments by Eqs. (4.19) and (4.21) with computed position of 
resonance maximum and half linewidth for © = 1.3°K and w0=2^X9000 Mc/sec. 

Line maximum 
#max \o)2\TX2kB/ho}o Ax 

Linewidth 
2(ln2)^2(2(Aco2)av)

1/2r 
0.1 
0.2 
0.3 
0.4 
0.6 
0.8 

0.48 
0.86 
1.17 
1.46 
2.03 
2.51 

0.59 
1.18 
1.77 
2.36 
3.54 
4.72 

2.33 
2.92 
3.54 
4.18 
5.54 
6.79 

1.0 
2.0 
3.0 
4.0 
6.0 
8.0 

have not computed the line shapes at different tempera­
tures. This point will be left to future investigations. 

The calculation of o?i and co2 can be extended to other 
orientations of the applied stress and magnetic field. 
For another simple case, r | | [ l l l ] and H | | [ l l l ] , U and 
V in the representation of (4.1) are given by 

1 / N\ 1 / N\ 
U= B ( f t l _ # 2 ) 2 + _ ( 2B+-) 

\ M 3 / v3\ 3 / 

2 \ 1 ' 2 / N\ 

(4.22) 

1 (B N\ / A 1 ' 2 / N\ 

X{h(k1-ik2)\, 

where the coordinates (1,2,3) are chosen so that 3 is 
parallel to the stress axis [111]. (The other_two direc­
tions, 1 and 2, are along the [112] and [110] axes, 
respectively.) For this orientation 

I co! | /co0= J {mllmf ( 5 + f i V ) 2 W | e' |, 

Case I, M j = f , 

1, Mj=~l 

' 2 5 

= MW/m) 2 (5-J iY)%co 0 / |6 / | , 

= i(m{/nif{W+ (2 /9 )A/ 2 )W I e' |, 
Case II , Mj = 

= 0, Mj=-h 

(4.23) 
! cos| / u 0 = i(ni/ftn)2(B2+ (2/9)iV2) W | e' \ 

for all cases. (4.24) 

The calculation of o>2 is further extended to the case 
of H parallel to an arbitrary direction in the (llO) 
plane. Denoting the angle between T and H by 0, one 
obtains expressions for co2(0)/coo, which can be used for 
checking the anisotropics of the linewidths. For r | | [001] 

(°!l\ - f-\ (m*®\* B2f^+WW*(o) 

where 

coo/e \oJo/e=o\ ^ i / 

sin20 x- 1 
/cos20 sm20 \~x 

•*(*)2=( + ) , 
\ mx

2 mLmuJ Wi ' 

/1(d) = cosV, 

= -fl+(l+—)ssm2d-
4L \ w n / 

£ 2+(;V/3) 2 

(4.25) 

(1+3 sin20)3 cos20 1 

cos26+(mx/mu) sin20J 

and for T\\[111] 

(M*'{6)\2 B2
gl(d)+2(N/3)%(6) 

\<ao/e \ W 0 / M \ « i / £2+2(iV/3)2 

where 

/co2\ Ao2\ /nr\6)v 

\coJe Ncoo/^oV w / / 

ire 
/cos20 sin20 X"1 

*'(0)2H + ), 
\ W j / 2 miMui 

3/ w A 
g1(0) = l + - ( l + _ ) 

8 \ w / 

3v2 
sin20H sin20 

4 

3 / l - 2 v 2 s i n 2 0 + 7 s i n 2 0 
+ - ( cos20-1 

8\cos2<9+(Wi7wnO sin20 

3V2 

),a 26) 

3 / f » / 

8\«i, 
- - 1 J sin2< • sin20 

3 / l+v2sin20+sin 20 
+ - ( cos20 

SXcos^+Cwi'/wnOsin^ - ) • 

For the case r | | [ l l l ] the angle 0 is to be taken positive 
for rotations of H toward the [001] axis. The ani-
sotropy curves will be shown in H-F. 

5. SUMMARY 

From the calculations in the preceding two sections 
it is now clear that in the range of the external stress 
used in the experiment of H-F the stress-independent 
effective masses to be obtained from 4X4 matrix 
Hamiltonians to lowest order are subject to two major 
corrections, both in the order of magnitude 1~10%. 
An appropriate inclusion of these corrections in deter­
mining the effective mass can be made by assuming an 
empirical formula 

l / w * = l/mo*+aT+y/T, 

for each principal effective mass. Here the first term on 
the right hand represents the zeroth-order inverse mass 
without stress dependence. The second and the third 
terms represent, respectively, the shift due to admix­
tures by the spin-orbit third band of Sec. 3, and the 
k* shift of Sec. 4. The nature of the constants a and 7 
has already been discussed. By way of summary we 
repeat some features here. 
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(1) a may have either a positive or negative sign 
depending upon the principal axis in question. 

(2) 7 must be always negative. I t depends on tem­
perature and on the external magnetic field. 

(3) The first two terms are common to both com­
ponents of a Kramers doublet (Mj and —Mj). The 
third term, on the other hand, generally differs for the 
two counterparts of the Kramers doublet by the field 
dependent correction to the frequency, i.e., the coi 
term. Thus, a line may be resolved into two by the use 
of high-frequency cyclotron resonance techniques. 

(4) a vanishes, if the resonance is associated with 
holes in the decoupled band M j = ± f . 

(5) St=i,2,3«t==0, where at- are the components of a 
along the principal axes. 

Actually, some reservation is required concerning the 
last two points, (4) and (5). I t is related to some 
minor corrections to the zeroth-order inverse mass 
which have not been considered in the preceding sec­
tions. Here we consider briefly such minor effects. 

(a) I t is evident that the linear mass shift calculated 
in Sec. 3 comes from the cross terms between He and 
Hk in the perturbation formula. I t can be seen, then, 
that the direct perturbation for Hk yields another ¥ 
term that is different from the one considered in Sec. 4 
and smaller by the order of the magnitude of e/A. For 
the simplest case, r | | [001] and H||[001], the correction 
to the frequency is given by 

A(«i/«0) = - f W w ) 2 ( £ ± i A 0 2 W A , 

A(<Va>o)= - ! ( ^ x / w ) 2 ( ^ 2 + i V 2 ) ^ o o / A , 

for JkO=dbf, and by 

A (cox/coo) = A (cos/coo) = - (mL/m)2B2fucQ/A, (5.2) 

for M j = ± J . These expressions yield order-of-magni-
tude corrections less than 5X10 - 3 for microwave cyclo­
tron resonances, and thus may be ignored. They cannot, 
however, be ignored for millimeter resonance. 

(b) For the problem of the silicon valence band our 
starting Hamiltonians (3.1) and (3.2) are almost ade­
quate, but not complete. First, from the symmetry 

point of view the expressions He and Hk are not com­
pletely general even to the lowest order in strain (or 
stress) and in k- p perturbations. The ignored terms are 
spin dependent of the type, exxIx(TXy exy(Ixay+Iyax); 
kx

2Ixax, {kxky}(Ix<Ty+Ivax)y etc. This type of coupling 
may result from the spin-orbit perturbation on the 
T25' and other T levels. In particular, the inverse 
effective mass parameters A, B, and N may be modified 
by this effect with corrections of the order A/E (band 
gap) - 2 % . 

(c) Another correction to the starting Hamiltonians 
can arise from the effect of a band gap change by the 
stress, and may be significant in the identification of 
the linear mass shift of Sec. 3, i.e., 4e/A or 4e'/A. The 
effect can be described by the usual k p perturbation 
that is modified by the presence of the stress, thus, as 
one of the terms in a third-order perturbation form in 
which a k- p element appears twice and a strain element 
appears once. The simplest and, probably, the largest 
contribution from such terms is the change of the in­
verse mass parameter by an isotropic volume dilation, 
where the deformation potential Dd of the order 10 eV 
may be involved. For example, from the conduction state 
IV the effect yields a change of A that amounts to a maxi­
mum of 1~2% with experimentally available stresses 
due to a linear shift of the form lL(Ddv—Ddc)s0T/ 
E(T2') — E(T2b>). If such effects are taken into account, 
our conclusions (4) and (5) stated previously should not 
hold exactly: One expects the constant a not to vanish 
even for the M j = ± f band and the "sum rule" not to 
hold. Such a deviation is expected, however, to be still 
a minor effect, and can be eliminated in the analysis of 
Sec. 3 since it is isotropic with respect to the H 
direction. 
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