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Cyclotron resonance of holes in unstressed or "cubic" silicon fails to specify uniquely the valence band 
parameters because of the complex shape of the warped energy surfaces. The application of uniaxial stresses 
to the crystal lifts the cubic symmetry and removes the degeneracy at k = 0 of the valence band which is 
responsible for the warping of the surfaces. The ellipsoidal energy surfaces of the decoupled bands give 
cyclotron resonance masses amenable to simple interpretation. From the measured masses (at 1.26°K and 
^9000 Mc/sec) the following quantities have been determined: the inverse mass band parameters (in units 
of W/lmM = -4.28±0.02, \B\ =0.75±0.04, and \N\ = 9.36±0.10; the absolute value of the ratio of the 
band splitting deformation potentials \DJ/DU\ =1.31 ±0.03; and the signs of the quantities BDu<0 and 
NDu'<0. The interaction of the spin-orbit split-off band with the valence band edge under strain allows 
the signs and magnitudes of the deformation potentials to be obtained. They are Z>«= + (2.04d=0.20) eV 
and ZV= + (2.68±0.25) eV. The results indicate that the Mj= ± 1 / 2 band moves "up" and the Mj= ± 3 / 2 
band "descends" under compressive stresses along the [001] and [111] crystallographic axes. This fact in 
conjunction with the ratio of deformation potentials shows that the quantization and band energy splitting 
are approximately isotropic with respect to the direction of stress. Finally, the signs of B and N were deter
mined to be negative, the negative sign of B being contrary to that predicted by band theory. An investigation 
of the shape of the split-band hole resonance confirms the line-broadening mechanism proposed by Hasegawa. 

I. INTRODUCTION 

A T low temperatures, free holes and electrons in a 
1 X. semiconductor crystal in an external magnetic 
field HQ can execute orbital or cyclotron motion1 at an 
angular frequency a)c=eHo/?n*c1 where m* is the effec
tive mass of the charge carriers. Since the effective 
mass is a measure of the curvature of the bands, the 
cyclotron resonance determines the shape of the energy 
surfaces near the band edges. This technique has been 
used extensively in exploring the band structure of 
silicon and germanium.2 Significant features of the 
valence bands have, however, remained obscure. The 
present investigation was undertaken in an attempt to 
shed further light on these matters by a study of the 
cyclotron resonance of holes in silicon single crystals 
elastically deformed by the application of large, 
uniaxial stresses. 

From the early cyclotron resonance experiments3,4 

it was evident that the energy surfaces belonging to the 
valence band edge for silicon are considerably more 
complex than those for the conduction bands. The latter 

* Work performed at Bell Telephone Laboratories, Murray Hill, 
New Jersey. 

1 J. Dorfmann, Doklady Akad. Nauk S.S.S.R. 81, 765 (1951); 
R. B. Dingle, Ph.D. thesis, Cambridge University, 1951 (unpub
lished) ; Proceedings of the International Conference on Very Low 
Temperatures (Oxford University Press, New York, 1951), p. 165; 
Proc. Roy. Soc. (London) A212, 38 (1952); W. Shockley, Phys. 
Rev. 90, 491 (1953). 

2 For a review on this subject see B. Lax and J. G. Mavroides, in 
Solid State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1960), Vol. 11, p. 261. 

3 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 
(1955). ' 

4 R. N. Dexter, H. J. Zeiger, and B. Lax, Phys. Rev. 104, 637 
(1956). 

have ellipsoidal energy surfaces for which a measure
ment of the anisotropy of the effective mass w* is 
sufficient to define the mass tensor. The situation for the 
degenerate valence band edge at k = 0 is quite another 
matter. Coupling between the degenerate bands 
distorts the energy surfaces into quartic surfaces, often 
called "warped" or "fluted." These warped energy 
surfaces, which cannot be represented by a mass tensor, 
are usually described in terms of the so-called inverse 
mass band parameters3 A, By and N. Cyclotron res
onance on complex surfaces of this type suffers from two 
major drawbacks. First of all, the warping severely 
broadens and shifts the resonance lines making it diffi
cult to locate their true centers accurately. A second 
and more fundamental limitation is the fact that the 
measurements fail to specify the signs of two of the 
band parameters B and N, since the shape of the 
energy surfaces is independent of these signs. 

This experimental ambiguity is indeed unfortunate 
for silicon because a controversy has existed over the 
sign of B which is especially important since it is 
sensitive to the ordering of the conduction bands at 
k=0. (A negative sign implies a germanium-like band 
structure.) In their original paper, Dresselhaus, Kip, 
and Kittel3 proposed a positive sign for B which was 
supported by more recent band calculations of Kleinman 
and Phillips.8 Theoretical arguments by Kane,6 on the 
other hand, favored the negative sign. In view of this 
uncertainty, an experimental determination of the 
sign of B seemed highly desirable. 

The shortcomings of "classical" microwave cyclotron 
5 L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960). 
6 E. O. Kane, J. Phys. Chem. Solids 1, 83 (1956). 
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resonance experiments in the valence bands can in 
principle be circumvented by the detailed analysis of 
the quantum cyclotron resonance spectrum7'8 seen at 
mm wavelengths. This consists of numerous weak 
lines that originate from transitions between the 
anomalously spaced, low-lying Landau levels. Although 
the interpretation of the quantum lines near 1°K, no 
doubt, provides the most comprehensive picture of the 
valence band structure, the analysis of the spectra is 
sufficiently complicated to require a fairly accurate set 
of "trial values" for the band parameters. One of the 
objectives of this work is to obtain them to a higher 
degree of accuracy. 

The present study constitutes an alternative approach 
to the problem based on recent theoretical investiga
tions9-10 of the effects of uniaxial stress upon the 
degenerate valence bands. Uniaxial stress on the 
crystal lifts the cubic symmetry and removes the 
degeneracy at k=0 responsible for the warping of the 
energy surfaces. In zero magnetic field the decoupled 
states are degenerate Kramers' doublets identified by 
the magnetic quantum number ± M j for stress along 
the [001] and [111] directions. The decoupled bands 
have ellipsoidal energy surfaces which—like the 
conduction bands—give cyclotron resonance masses 
amenable to straightforward interpretation. Preliminary 
measurements11 on germanium and silicon have indeed 
confirmed the predicted effects upon the cyclotron 
resonance spectrum. 

As is shown in detail in Sec. II, for uniaxial stresses 
along each of the three principal crystallographic 
directions [001], [111], and [110] the mass tensor of 
the ellipsoids is related in an elementary way to the 
original band parameters A, B, and N. Thus, from 
measurements of cyclotron masses in Si the following 
have been determined: the inverse mass band param
eters A, \B\, and \N\; the absolute value of the ratio 
of the band splitting deformation potentials12 Du and 
Du \ and the signs of the quantities BDU and NDu

r. 
The signs of B and N enter the analysis only through 
the products BDU and NDJ. Since little information is 
available concerning Du and DJ, one needs to ascertain 
their signs from a different type of measurement. 

Some evidence bearing on this point is available from 

7 R. C. Fletcher, W. A. Yager, and F. R. Merritt, Phys. Rev. 
100, 747 (1955); J. C. Hensel, Bull. Am. Phys. Soc. 6, 115 (1961); 
J. J. Stickler, C. Rauch, H. J. Zeiger, and G. S. Heller, ibid. 6, 
115 (1961). 

8 J. M. Luttinger, Phys. Rev. 102, 1030 (1956). 
9 G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela, 1, 154, 1642 

(1959); 3, 1001 (1961) [translations: Soviet Phys.—Solid State 
1, 136, 1502 (1959); 3, 730 (1961)]; Phys. Rev. Letters 6, 103 
(1961). We would like to express our regrets of having omitted 
references to the work of G. E. Pikus and G. L. Bir in our earlier 
communication (reference 11). 

10 H. Hasegawa, preceding paper [Phys. Rev. 129,1029 (1963)]. 
11 J. C. Hensel and G. Feher, Phys. Rev. Letters 5, 307 (1960). 
12 W. H. Kleiner and L. M. Roth, Phys. Rev. Letters 2, 334 

(1959). 

the spin-resonance experiments13 of acceptor states in 
silicon under compressive stress. It is preferable, 
however, to have confirmation of the sign of Du and 
Du

f from direct measurements on the band edge itself. 
Such information can be derived from the observation14 

that the effective masses shift linearly with increasing 
stress. Hasegawa10 has recently shown that such shifts 
arise from a strain-induced admixture of the spin-orbit 
split-off valence band with one of the upper valence 
bands. The presence or absence of the shift for the 
observed cyclotron line determines the character assign
ment of the topmost band fixing the sign of Du or Du

r 

and, in turn, the sign for B or N. The magnitude of 
Du and DJ has also been obtained from measurements 
of the mass shifts. 

In connection with the deformation potentials, we 
arrive at a rather surprising conclusion. The results 
indicate that the Mjr==b| band moves "up" and the 
Af j=±§ band moves "down" under compressive 
stresses along the [001]| and [111] crystallographic 
axes. This fact, in conjunction with the ratio of deforma
tion potentials, shows that the band energy splitting is 
nearly isotropic with respect to the direction of stress. 
Furthermore, this is the condition for isotropic quantiza
tion, i.e., that dzMj is nearly a good quantum number 
for arbitrary stress direction. 

The shape of the hole resonance line exhibits several 
striking features. It is asymmetric with a tail on the 
high mass side. Its linewidth is not simply determined 
by the hole scattering relaxation time, but has been 
shown by Hasegawa to arise from an uneven spacing 
of the Landau levels. Hasegawa's theory for the line 
broadening was experimentally checked and verified 
in detail. 

tE(k) 

FIG. 1. The valence bands of "cubic" silicon near k=0 . The 
warped energy surfaces of the light- and heavy-hole bands are 
shown schematically. The spin-orbit split-off band labeled by its 
spectroscopic character pu2 has spherical energy surfaces which 
are not shown. 

13 G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. Letters 
5, 309 (1960). 

14 J. C. Hensel, Bull. Am. Phys. Soc. 6, 304 (1961). 
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II. VALENCE BANDS OF SILICON NEAR k=0 

A. In the Absence of Strain 

Without strain or spin-orbit splitting the valence 
band edge of silicon is a sixfold degenerate p multiplet 
characterized by symmetry f V of the cubic group. 

where 

L=F+2G, 

M=H1+H2, (2) 

N=F-G+H1-H2. 

The band parameters F, G, Hh and £T2 correspond to 
the individual contributions from each of the four 
representations that can perturb the valence band edge 
as classified in Table I.5'15-16 

Actually for silicon the spin-orbit interaction partially 
lifts the degeneracy at k = 0 . The sixfold degenerate 
p state splits into a fourfold p^/2 multiplet and a twofold 
put multiplet with separation17 A= 0.044 eV (see Fig. 1). 
The band edge, the upper 7 = 3 / 2 state, consists now of 
a pair or twofold degenerate bands usually designated 
as the "light" and "heavy" hole bands. Off k = 0 , the 
energy surfaces can be determined, as before, by the 
k • p perturbation technique. A generalization Qn (JMj) 
representation^ of (1) including the spin-orbit interac
tion can be diagonalized to give the energy surfaces for 
the 7 = 3 / 2 band3 

E(^) = ̂ ^2zbC5^4+<^(^^/+^A2+^/^2)]1/2, (3) 

where the inverse mass band parameters A, B, and C 
are defined by 

A = i(L+2M)+fi2/2m0j 

B=UL~M), (4) 

C«= $ [ # * - ( £ - J f ) 2 ] . 

The upper and lower choices of signs in (3) refer, 
respectively, to the heavy and light holes. The shapes 
of the energy surfaces are pictured in Fig. 1. The 
coupling between the light- and heavy-hole bands via 
the degeneracy a t k = 0 is responsible for the warped or 
fluted form of the energy surfaces. 

The lower J = J band has spherical energy surfaces 
given by 

E(k) = Ak2-A. (5) 

Cyclotron resonance absorption has not been observed 
for this band. 

15 J . Tauc and A. Abraham, Proceedings of the International 
Conference in Semiconductor Physics, Prague, 1960 (Czechoslo-
vakian Academy of Sciences, Prague, 1961), p. 375; J. Tauc and 
A. Abraham, J. Phys. Chem. Solids 20, 190 (1961). 

16 J. C. Phillips, Phys. Rev. 125, 1931 (1962). 
17 S. Zwerdling, K. J. Button, B. Lax, and L. M. Roth, Phys. 

Rev. Letters 4, 173 (1960). 

The sixfold multiplet is comprised of three bands each 
twofold degenerate due to spin. In the vicinity of 
k = 0 , the shapes of the bands can be determined using 
k p perturbation theory (p= momentum operator). 
The perturbation matrix3 in {mtms) representation is 

The interpretation of cyclotron resonance measure
ments in the / = § bands is difficult for the following 
reasons: 

(a) Since B and N enter (3) quadratically, it is 
impossible to determine their signs from the shape of 
the energy surfaces or, equivalently, from the cyclotron 
resonance spectrum. The importance of the signs, 
especially for B, has been emphasized earlier. 

(b) Quantum effects arise at low temperatures which, 
even though unresolved at X- or iT-band frequencies, 
can shift the apparent line center. 

(c) In the analysis leading to Eq. (3) the coupling 
between the J—\ and J—\ bands was ignored. For 
silicon with a small spin-orbit separation of A= 0.044 eV 
this assumption may contribute errors in the application 
of (3) to cyclotron resonance. 

(d) From an experimental point of view the most 
serious consequence of the warping is the kz broadening 
which spreads and shifts the lines in a complicated way. 
The mechanism for kz broadening is quite simple. On 
a complex energy surface, orbits of different kz (a 
constant of motion for z axis chosen along HQ) have 
different periods. With carriers distributed thermally 
over all allowed values of kz, the resultant cyclotron 
line is a composite of many such individual lines. 
Reasonably accurate calculations to correct for the 
kz broadening and shifts are exceedingly hard to make. 

In view of these drawbacks it is expedient to consider 
new methods of tackling the valence band problem. 
One approach involving uniaxial stresses is discussed 
next. 

T A B L E I . Tabula t ion of the irreducible representations which 
per turb the valence band edge. 

Irreducible Conduction band 
Band represen- Atomic energy (measured 

parameter ta t ion character from r25') 

F T2 ' Antibonding.? ^ 3 eV a 

G T12' Antibonding d ^ 1 0 eVb 

Hi T15 Antibonding p ~3 A eVa 

E% r 2 5 Antibonding d ~ 3 0 eVb 

* Extrapolated from optical absorption measurements in Ge-Si alloys 
See references 15 and 16. 

fa Estimated from band theory. See references 5 and 16. 

3C(w,= zfc§) = 
LkX

2+M(ky2+kZ
2) 

NkykX 

Nkzkx 

NkXky 
Lky2 + M(k2+k2) 

NkZky 

Nkzkz 

1V KyrCz 

Lk?+M(k*+k?) 
(1) 
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B. In the Presence of Strain 
A uniaxial stress applied to a silicon crystal removes 

the cubic symmetry; and the 7 = f valence band splits 
further into a pair of degenerate Kramers' doublets. 
Under special conditions these may be identified by 
the magnetic quantum number ±Af j . Kleiner and 
Roth12 have constructed a strain Hamiltonian in terms 
of the angular momentum operator J ( / = f ) to describe 
the splitting of the 3̂/2 states at k=0, 

He=Dd*{exx+eyy+ezz)+lDu[{Jx
2-\P)exx 

+w-y2)^+w-y2)^] 
+%Du'Z{JxJy}exy+{JJz}exz+{JyJz}eyzl (6) 

where exx, • • •, exyi • • •, are the " conventional" strain 
components (see Appendix A) and Ddv, DUy and DJ 
are the valence band deformation potentials.18 Du

v 

gives the shift of the center of gravity of the entire 
valence band. It does not, however, contribute to the 
splitting and is henceforth ignored. Du and DJ define 
the valence band splitting for uniaxial stress along the 
[001] and [111] directions, respectively. The factors 
{JzJy)y etc., represent the symmetrized products, i.e., 
\J %J y) — 2 (y xJ y ~T J yJ x) • 

To determine the shapes of the / = § bands off k=0 
there must be added to He in (6) the Hamiltonian8 for 
the k • p perturbation 

Hk=A (k*+kv*+k*)-B[k*(Jx*-iJ*) 

+w,2-y2)+w*2-1/2)] 
-(2N/3)[{kxky}{JJy} + {kxkz}{JJz) 

+ {kyk,}{JyJ.)l (7) 

and the sum Ho=He+Hk must be diagonalized. We 
consider the special cases for the stress T along the 
principal crystallographic directions. A general solution 
for any orientation of T in the (110) plane is given in 
Appendix B. 

(1) Stress Parallel to [001'}: Tetragonal Distortions 

For r||[001] the strain components (see Appendix 
A) are 

^xx== ^yyz= S12J- , 

ezz=snT, (8) 

exy exz eyz u, 

where Sn and sn are cubic compliance constants. The 
splitting Hamiltonian (6) thus becomes 

He=iDu(sn-s12)T(Jz>--m, (9) 

which is diagonal with the i f j = + f states split from 
the MJ—±L\ states. The remaining twofold, Kramers' 
degeneracy of each state can be lifted only by applica
tion of a magnetic field. The fact that ztMj is a good 
quantum number is a consequence of the choice of the 

^ 18 See reference 12. The Kleiner-Roth definitions of the deforma
tion potentials are related to Pikus and Bir's notation by Ddv 

= -la, Du= -§&, Du>= -Wd. 

axis of quantization along the stress direction. The 
eigenvalues of (9) are the band energies at k = 0 

£ 3 / 2 = + e°' (10) 
-E1/2— — €0, 

where 
eo=%DuS and S=(sn—Si2)T. 

Under large strains the valence bands decouple so 
that Hk can be considered a first-order perturbation. 
Therefore, to lowest order in k the eigenvalues of the 
total Hamiltonian Ho are the diagonal elements19 

£a/2(*)= (A+mkx2+(A-B)kll
2+e0l 

E1/2(k)=(A-^B)k^+(A+B)ku2~eoy 

where 
ki2=kx

2+ky
2 and ku

2=kz
2. 

Thus, the energy surfaces near k = 0 become ellipsoids 
of revolution, one prolate and the other oblate, whose 
axis of symmetry is along the stress direction as shown 
in Fig. 2. Examination of (11) reveals that Ez/2(k) 
—>Ei/2(&) under the transformation B—+—B and 
€o__> — e0; so at best we can determine only the sign 
of the product eJB. We can, however, re-express Eq. (11) 
in the invariant form 

E±(*) = ( i l ± £ S — ) * i * + ( 4 T 5 — V , 2 ± | € o | , (12) 

where the upper and lower signs refer, respectively, to 
the top +|co| and bottom —|eo| bands. A measure
ment of the effective masses for the top band +1 €01 
with r||[001] determines, according to Eq. (12) the 
values of A, | B \, and the sign of eoi?. The lower band 
— I eo I is depopulated at liquid He temperatures and 
is not observed by cyclotron resonance. 

(2) Stress Parallel to [1112: Trigonal Distortions 

For r | | [ l l l ] the analysis is nearly identical to 
that for [001] case. The strain components are (see 
Appendix A) 

exx=eyy=ezz= (sn+2$i2)£T, 
_ _ _ _ _ irp (l^J 

exy exz eyz 4̂4 3 J-
where s44 is a cubic elastic compliance constant. The 
splitting Hamiltonian (6) becomes 

He=%Du'su(T/3)[{JxJy} + cycL perm.]. (14) 

At this point the problem becomes straightforward if 
we rotate J so that (/*,/„,/«) —> (J1J2JZ) with J3 
diagonal along the [111] direction. (The choice of the 
perpendicular axes /1 and J2 is immaterial.) Making 

19 Strictly speaking, the error in such a procedure will be of 
order k4/eo. The effects of these fourth-order terms have been 
investigated in detail by H. Hasegawa (reference 10). 
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FIG. 2. The split valence bands of uniaxially stressed silicon. 
The band splitting at k=0 , denoted by A, is shown for a compres
sive stress r | | [001J. For a uniaxial tension the ordering of the bands 
would be reversed from that shown. The energy surfaces near 
k = 0 are a prolate ellipsoid and an oblate ellipsoid both having 
axial symmetry about T (kz axis). 

such a transformation we obtain 

ffe=§ZV(s44/2)7t/3
2-i/2] 

similar to the previous result (9). He) now diagonal for 
the axis of quantization along the [111] direction, has 
the eigenvalues20 

E:*=+t\ da) 
where 

e0' = i A / y and Sf=(su/2)T. 

Next, after transforming Hk so that kz and Jz are 
both along [111], we find the eigenvalues of H0 (trans
formed) to lowest order in k, 

where 

£a/2(*)= {A+\N)k?+(A-\N)kn2+e<!, 
EV2(k)=(A-lN)k^+U+lN)ku2-e0\ 

(17) 

£i2=&i2+£22 and k\ 

This can be again rewritten as 

\ 6 «,' / \ 
4 = F — - U „ » ± | 6 o ' | 

5 e0' / 
(18) 

for the upper + \eo j and lower —-1 e0' | bands. Thus, for 
rHp. l l ] we can determine A, \N\, and the sign of eo'iV. 

(3) Stress Parallel to £1102: Orthorhombic Distortions 

In the previous two examples, r||[001] and 7 l | [ l l l ] , 
we discovered that a judicious choice of the quantization 
axis along T led to simple and easily interpretable 
results. Most significantly, the split states could be 
identified by the magnetic quantum number ±Mj and 
the energy surfaces are elliposids of revolution with the 
principal symmetry axis along the stress direction. 
Both are consequences of the high order of rotational 
symmetry about the [001] and [111] directions 
(fourfold and threefold, respectively). However, when 
T is along an axis of lower symmetry such as the twofold 
[110], the situation is substantially more complicated. 

The strain components for r||[110] are (see Appendix 
A) 

T 
eXx—eyy= (^11+^12)—, 

2 
eZz=Si2T, 

(19) 
T 

Cxy
::= S44 '. 

Cxz &yz U> 

(15) for which the splitting Hamiltonian (6) becomes 

He | j 9 u ( r / 2 ) ( 5 1 1 - 5 1 2 ) ( / , 2 - | 7 2 ) 

+lDu'(T/2)s«{JxJ»}. (20) 

If we rotate J according to the transformation 

/ „ = ( l / v 2 ) ( - / x + / 3 ) , (21) 

Jz= —J^, 

with Jz diagonal to quantize along the [110] direction 
then 

He= -lDu{T/2){sn-Sn){Ji-\P) 
+%Du'(su/2)(T/2)(Jz*-J1*). (22) 

As it stands this is not diagonal, so dbikfj- is not a good 
quantum number and, in general, the strain split states 
consist of mixtures of the basis functions for M / = ± f , 
± ^ . Under special conditions, however, He becomes 
diagonal and the system then regains the "uniaxial" 
property for the [110] direction as well. We can see 
this easily by going to a matrix representation21 for 
He giving 

He=i 
f ( e o + 3 e o 0 0 y/3(e0'-e0) 0 

0 - ( € 0 + 3 6 0 ' ) 0 V3(6o ' -6 0 ) 
V^eo'-eo) 0 -(eo+3600 0 

0 y/3(eo'-e0) 0 (€0+3€00 J 

(23) 

20 The splitting energy for T| |[lUnquoted earlier (reference 11) is incorrect by a factor §. The origin of the discrepancy is fully 
discussed in Appendix A. We are indebted to S. Koenig for bringing this error to our attention. 

21 See Eq. (39) of reference 8. 

rHp.ll
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in terms of the splitting energies €o and eo' introduced 
earlier. Clearly from (23) we see that He becomes 
diagonal when €0= eo', the case of equal band splitting 
under equal applied stresses along the [111] and [001] 
directions. Indeed, when eo=eo' the band splitting 
becomes isotropic, and He is diagonal for any orientation 
of T—the condition for "isotropic quantization."10 We 
later see that such is approximately the situation for 
silicon. 

To calculate the effective masses for r | | [110] we 
make use of the general solutions (setting 0=90°) in 
Appendix B. The k's have been transformed, so that 
ki, &2, and kz are along the [110], [001], and [110] 
directions, respectively. In this scheme the energy 
surfaces are 

h2 h2 h2 

£±(ft) = h2+ k2
2+ ft32±i(€o2+3e0'

8)^2, (24) 
2mi 2m2 2m% 

where the inverse effective masses are given by 

h2 e0 €0' 
= A^\B nx±\N ri2, 

2 w i |€o| \eo'\ 

h2 e0 
=A±B—vh (25) 

2m2 | eo | 

h2 e0 e0 ' 

2mz I eo I | e 0 ' I 
with 

/ 1 \ 1 / 2 / j82 \ 1 / 2 

and /3=€Qf/eo is the splitting anisotropy parameter. 
The energy surfaces are now ellipsoids of the most 
general form with three unequal principal axies and 
without a symmetry axis of revolution. One new feature 
of the r | | [110] case is the appearance of the parameter 
fi in the effective masses. Measurements of mh m2, and 
mz determine, therefore, the ratio of the absolute values 
of the deformation potentials Du and Du

f in addition to 
the band parameters. A stress in a direction other than 
the three principal directions gives essentially no further 
information. The determination of the signs of Du and 
Du', as we see in the next section, must come from 
considerations of the interaction of the / = f multiplet 
with other nearby bands. 

C. Mass Shifts due to Higher Order Effects 

So far we have ignored the influence of the nearby 
J=% split-off band, labeled henceforth £1/2", upon the 
top / = f multiplet. Furthermore, in our discussion it 
has been assumed that the / = § state is completely 
decoupled by strain into two doublets, £3/2 and E1/2 + 
whose energy bands are parabolic near k = 0 . In 
practice, however, neither assumption is strictly 

justified. Recently, Hasegawa10 has shown that the 
breakdown of each approximation leads to a character
istic "mass shift" of the split-band cyclotron line with 
stress. Here we outline his conclusions pertinent to the 
interpretation of the experimental results to follow. 

(1) Linear Mass Shift due to Valence Band Mixing 

When the cubic crystal is stressed uniaxially, the 
spherical isotropy imposed by the spin-orbit interaction 
is lifted so that / is no longer a good quantum number, 
and the strain admixes the / = f and J=\ eigenstates. 
This admixture, ordinarily forbidden for cubic silicon 
when T = 0 , gives rise to a linear effective mass shift 
with stress. For the important case of "uniaxial" 
distortions ± ¥ j is still a good quantum number, and 
mixing, therefore, can take place only between states 
having the same ± M j , i.e., only between Ei / 2

+ and 
JEI/2-. This important property permits identification of 
the character of the members of the / = § band—the 
observation of a linear mass shift implies the " top" 
member of the / = § multiplet is £1/2+. 

To first order in eo/A Hasegawa finds the inverse 
effective mass of the E1/2+ band is shifted by an amount 
« r , where a is an anisotropic constant given as follows: 

r||[ooi] 
A(l/m1) = alT=2Beo/AJ 

A ( l / w n ) = a „ r = - 4 J 5 e 0 / A , 

mcin] 
A(l / f f fxO=«x ' r= | iW/A, 

Ail/mu^an'T^-iNeo'/A, ( } 

where B and N are in units of n2/2nt0- (Here and in 
the rest of the paper unless otherwise stated the effective 
masses are given in units of the free electron mass m0.) 
For £3/2 all a's, of course, vanish. I t is noticed that for 
the above uniaxial cases the shifts for \/mu is opposite 
in sign to l/nn and twice the latter, i.e., 

a i I / a i =a I I
/ / «x / =—2. 

For r | | [110] both of the J—\ split-bands, in general, 
contain more or less an admixture of Mj—-±.\ and, 
consequently, both experience a mass shift. The three 
constants ai, a2, and #3 for this case are given by 
Hasegawa.22 

(2) kA-Mass Shift due to Incomplete Decoupling 

If the applied stress is insufficient to decouple the 
£1 / 2

+ and £ 3 / 2 states completely, then the nonparabolic 
nature of the energy bands near k = 0 becomes signif
icant. Although the energy surfaces are nearly ellips
oidal, they exhibit some residual warping characteristic 
of the original energy surfaces. This perturbation is of 
second order in k2 giving a ¥ mass shift. Under large 
stresses when e0 or e0 '»&©, the bands are expected to 

22 Reference 10, Eq. (3.25). 
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be decoupled completely. However, even under these 
apparently ideal conditions, a small mass shift persists 
if extrinsic carrier heating mechanisms can upset the 
thermal equilibrium distribution and significantly 
populate the regions deep in the band (energies >eo 
or €(/) that are still warped. The correct interpretation 
of experimental results, therefore, requires that the k* 
perturbation be taken into account. Hasegawa10 has 
shown that the kA shift for the inverse effective mass can 
be essentially lumped into a single term y/T where y 
is an anisotropic constant (which is negative in the 
present case for compressive stresses). The net effect of 
the term y/T is always to increase the magnitude of 
the effective mass w*. In addition, the line shift is 
accompanied by asymmetric line broadening showing 
a tail on the high-mass side. These asymmetries and the 
general question of line shapes are discussed in Sec. IV E. 

In summary, the experimentally observed inverse 
effective mass is expected to vary as a function of 
stress T according to 

1 1 7 
—= +«r+~, (28) 
tn* m$* T 

where Wo* is the zeroth order or unperturbed effective 
mass and a and y are the linear and &4-mass shift 
parameters, respectively. Equation (28) is used in 
Sec. IV C to fit empirically the stress dependence 
measured for the effective mass in order to obtain 
values for m0* and the correction terms involving a 
and y. 

III. EXPERIMENTAL DETAILS 

The cyclotron resonance experiments were done on 
a balanced bridge cavity spectrometer operating at 
^-8900 Mc/sec of the type23 characteristic of spin 
resonance experiments. (The microwave frequency was 
monitored by a PRD 559B precision wave meter which 
was checked frequently with an HP 540A transfer 
oscillator in combination with an HP 524 frequency 
counter.) The rectangular cavity resonated in the TEm 
mode. Superheterodyne detection made it possible to 
operate at the ultra-low power levels of 10 - 7 to 10~8 W 
necessary to prevent microwave heating of the carriers. 
Such heating is evidenced by broadening of all cyclotron 
resonance lines as well as shifts of the split-band hole 
lines This last point is discussed more fully later. 
Since the cyclotron resonance lines were observed to 
narrow significantly with decreasing temperature, all 
measurements were made at 1.26°K, the lowest temper
ature that could be conveniently reached. The dc 
magnetic field H0 was measured by nuclear magnetic 
resonance The samples used were cut from a single 
crystal of Merck 5000 O cm p-type silicon. These 
crystals exhibited exceptionally long scattering relaxa
tion times—at 1.26°K the electron lines had an cor~ 160. 

23 G. Feher, Bell System Tech. J. 26, 449 (1957). 

After cutting, the samples were lightly etched for a few 
minutes in a solution made of 8 parts of HNO3 and 1 
part of HF. This reduces the surface recombination as 
well as eliminates sharp discontinuities which might 
lead to breakage under strain. 

The samples were strained as follows: The rectangular 
shaped silicon samples were mounted 1 mm above the 
cavity floor opposite the coupling hole in a region well 
out of the maximum E field. The compressive uniaxial 
stresses were achieved by forces transmitted to the 
sample by external loading on the halves of the split 
cavity. A detailed description of the mechanical system 
used here, the "parallel squeezor," has been given 
elsewhere.24 I t should be noted that the squeezor makes 
possible exact control of the stresses by means of a 
calibrated spring balance located outside of the cryostat. 
In the geometry of the parallel squeezor the dc magnetic 
field HQ could be rotated by angule <p in the plane of 
the stress T to measure the anisotropics of the effective 
masses. The E field is perpendicular to T so the cyclo
tron resonance absorption vanishes at <p=90°. In some 
instances the "perpendicular squeezor" was employed 
to permit rotation of Ho azimuthally about the stress 
axis. Although stresses in silicon as high as 5000 kg/cm2 

have been reached by this method, it was done at the 
expense of sample cross section. Usually it was more 
desirable for the sake of strain uniformity and signal 
intensity to use larger samples, typically of dimensions 
7 mmX3.5 mmX0.7 mm, and compromise with lower 
stresses ~2500 kg/cm2. Such samples, considerably 
shorter than the inside of the cavity, were accom
modated by the use of quartz spacers between the ends 
of the sample and the cavity walls. Thin cardboard 
pieces cemented to the faces of the quartz pieces allowed 
the sample to "seat" itself and prevented localized 
strain concentration points. A small Teflon jig, in 
which the sample was free to move longitudinally, 
prevented lateral play during mounting and assembly of 
the apparatus. 

The calibration of the squeezor was made, first, by 
calculation of the mechanical advantage of the mecha
nism and, second, by actual measurement of the compres
sive force from the elastic distortion of steel proving 
rings inserted between the squeezor jaws in place of the 
cavity. The two results agreed within a few percent. 
The stress, obtained from this calibration along with an 
accurate measurement of the sample cross section, was 
used to calculate the strains using the values for the 
elastic stiffness constants for silicon taken from the 
curves of McSkimin25 extrapolated to 1.26°K: cn= 17.09 
X105 kg/cm2, c12=6.65 X105 kg/cm2, and c44= 8.17X105 

kg/cm2. I t was estimated that the stress or strain could 
be determined by this procedure to an over-all accuracy 
of about 5%. 

Some evidence was found to suggest the presence of 

D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961). 
H. J. McSkimin, J. Appl. Phys. 24, 988 (1953). 
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slight stress gradients in the sample. Such nonuniform-
ities, if serious, could broaden the hole lines which are 
known to be shifted by strain. While no line broadening 
of this kind was noted, a \% shift expected from 5% 
variation of stress throughout the sample would not be 
observable because of the intrinsic linewidths of the 
resonances. On the other hand, small differences in the 
measured magnitude of the linear mass shifts were 
observed from run to run. This probably was due to a 
tendency of the sample to buckle slightly under load. 
Since the main contribution to the cyclotron resonance 
signal comes from the upper surface of the sample which 
is illuminated and also is in the strongest E field, the 
"observed" line shifts are most sensitive to the state of 
the strain in this region. These effects were minimized 
by averaging over a sequence of runs with the sample 
turned over between each. 

Free carriers—both holes and electrons—were intro
duced into the sample by white light. The light, 
furnished by a 6-V microscope lamp (Spencer-type 353), 
was transmitted via a quartz light pipe running inside 
the waveguide down the Dewar and illuminated the 
sample through the cavity coupling hole. The linewidths 
of the cyclotron resonance signals, especially those for 
the electrons, were found to be very sensitive to 
excessive light intensity. The lines were narrowest 
when the light intensity was cut by operating the 
lamp "yellow" at 4 V and inserting into the beam a 

neutral density optical filter having 5% transmission 
Cyclotron resonance was also done with infrared 
illumination at a wavelength near that corresponding 
to the band gap of silicon. For these experiments a 
Bausch & Lomb 500-mm grating monochromator with 
the grating blazed for 1.0/x was used. In all cases 
the cyclotron resonance absorption was modulated by 
chopping the light at 100 cps. The resulting signal was 
coherently detected. 

Although the samples were oriented with an x-ray 
goniometer to within ~0.3° of the desired crystallo-
graphic axis before cutting, special precautions were 
necessary to insure after mounting that the stress 
direction coincided with the crystal axis. For this 
purpose the electron lines in the cyclotron resonance 
spectrum were used as guide posts since their positions 
are essentially fixed as the stress is applied. From the 
positions of the electron lines the orientation of the 
crystal axis could be accurately determined. Likewise, 
the symmetry of the anisotropics of the masses of the 
strain-split hole line about T, was used to determine the 
direction of T. The two measurements located the 
stress axis relative to the crystal axis at the beginning of 
each run to within 0.2°. In all cases the maximum 
misorientation was kept less than 1.0°. For measure
ment with 7l| [001] or r||[110] where the effective 
masses are extrema a misorientation of this magnitude 
causes a negligible error of less than 1 part in 103. 

ELECT toN3~*J V~8900 MC/SEC 
T * 0 K G / C M 2 

REL.GAIN = + 18 0B 

T ~ 410 KG/CM 
BEL.GAIN- C D S 

-J I I L. j L 1 L 
500 1000 1500 

MAGNETIC HELD IN OERSTEDS 
2000 

FIG. 3. The behavior of the cyclo
tron resonance lines in silicon as a 
uniaxial, compressive stress is applied 
along the [001] axis. The recorder 
traces were taken at 1.26°K and 
i/«8900 Mc/sec with H0 in the (110) 
plane and inclined 15° from the [001] 
axis. The broad, weak lines of the 
unstrained "classical" hole resonances 
in (a) point up the difficulties men
tioned in Sec. I I in obtaining accurate 
measurements of their effective 
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For r | | [ l l l ] , however, the formulas given in Appendix 
C were used to correct for the first-order errors in mass 
arising from small misalignments of T. In all cases the 
corrections were less than \%. 

IV. EXPERIMENTAL RESULTS 

A. General Features of the Spectrum 

The application of a uniaxial stress to silicon causes 
marked changes of the hole lines in the cyclotron 
resonance spectrum as the initially degenerate valence 
band is split. The effects observed are illustrated in 
Fig. 3 showing typical recorder tracings of the cyclotron 
resonance lines with Ho| |[ l l l] taken for unstressed 
silicon as well as silicon subjected to a compressive, 
uniaxial stress along the [111] axis. As increasing stress 
is applied to the sample we find, first, for low stresses 
r<100 kg/cm2 that the intensity of the light-hole line 
drops sharply as the descending band depopulates at 
liquid He temperatures. No mass shift is apparent for 
this line before it becomes too weak to be measured. 
The heavy hole, however, shifts to lower mass at the 
same time broadening to an extent such as to become 
unresolvable when T reaches —100 kg/cm2. Next, when 
the stress exceeds T~ 200 kg/cm2 the split-band hole 
line, very broad at first, begins to form in the inter
mediate mass region as shown in Fig. 3(b). As the bands 
decouple further, the hole line narrows rapidly and 
shifts to lower mass [the y/T term in Eq. (28)] reaching 
a minimum mass value at 7^800-1000 kg/cm2. 
Finally, at this point the linear mass shift becomes 
evident [see Fig. 7(a)]. A small asymmetry in the line 
shape is noticeable even at the highest stresses reached 
(r—2500 kg/cm2), indicating residual effects corrected 
with the kA mass shift. 

A study of the line shape, &4 mass shift, and related 
effects, which stem from a new line-broadening mecha
nism for cyclotron resonance, is used to check the 
theoretical basis for Eq. (28). These matters are taken 
up in Sec. IV E. It is important to note, however, that 
a detailed understanding of the line broadening is not 
essential for the application of Eq. (28) to the deter
mination of the effective masses wo* in the discussions 
to follow. 

B. Anisotropics of the Effective Masses 

The anisotropics of the effective masses with respect 
to the angle <p between H0 and T are shown in Figs. 
4(a) and 4(b) for compressive stresses along the [001] 
and [111] directions, respectively. These anisotropics, 
characteristic of oblate elliposidal energy surfaces, 
indicate that mL>mn for r||[001] and mi>mXi for 
r | | [ l l l ] . Since T<0, it follows according to Eq. (12) 
and (18) that 

The effective masses measured in a plane perpendicular 
to T have been found to be isotropic for large stresses 
indicating essentially complete decoupling of the bands. 

When r||[110] the energy ellipsoids have, in general, 
three unequal principal axes. This is illustrated by the 
effective mass anisotropics in Fig. 5 measured for H0 

in two, (001) and (110), of the three principal planes. 
It is tempting to take values for the effective masses 

from Figs. 4(a) and 4(b). This procedure is incorrect, 
however, since we must analyze the behavior of w* vs 
stress according to Eq. (28) to determine the zero-order 
mass mo*- This is done in the next section. 

C. Dependence of the Effective 
Masses on the Stress 

1. Experimental Results 

The effective masses of the split-band hole in Si being 
functions of stress made it necessary to measure the 
dependence of m* vs the stress T in order to determine 
the unperturbed masses mo* in addition to the param
eter a. This procedure was facilitated by the external 
loading feature of the "squeezor" (see Sec. Ill) which 
allowed us to vary the stress on the sample form 
0-2500 kg/cm2 covering the range from the formation 
of the split-band hole at T~400 kg/cm2 well into the 
linear region of the mass shift. Measurements were 
usually made at two angles, sufficient to define the 
anisotropy, by rotating the Varian magnet from 
<^0° for HQ\\T to ^60° -70° , the highest angles 

0 10 20 30 40 50 I 60 70 80 9.0 
[ooi] [H i ] [ i fo ] 

g ANGLE OF H 0 IN DEGREES IN (iTo) PLANE FROM [00l ] AXIS 

^ 0.44 r 

0.40 
u 
UJ 

it 0.3 6 

Cb) 
Til [ i l l ] . 

70 60 90 

BDu<0, 

NDu'<0. 
(29) 

0 10 20 30 40 50 | 60 
[111] tOOl] 

ANGLE OF H 0 IN DEGREES IN (iTo) PLANE FROM [11 i j AXIS 

FIG. 4. The anisotropy of the "cyclotron" effective mass m* 
for the hole resonance in uniaxially stressed silicon. For (a) 
T=2130 kg/cm2 and (b) T=1925 kg/cm2. The curves were 
calculated for ellipsoidal energy surfaces with (a) wj.=0.2638 and 
mn =0.1929 and (b) mj.=0.4197 and wn=0.1255. 
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that could be reached before the signal to noise for the 
cyclotron absorption became prohibitively poor for 
accurate measurements (see Sec. I I I ) . 

The resulting measurements of w* (taken at the 
maximum of the absorption line) were analyzed by 
fitting the experimental points, as shown by typical 
examples in Figs. 6-8, with curves calculated from 
Eq. (28). The excellent fit in all cases attests to the 
essential correctness of Eq. (28) in describing the stress 
dependence of the effective masses over the stress 
region 400-2500 kg/cm2. From the values of w0*(<p) 
for r | | [001] and r | | [ l l l ] thus obtained, the compo
nents nti and ntu of the effective mass tensor were 
calculated according to Eq. (D4) in Appendix D. 
Similarly the components ax and an of the linear mass 
shifts were derived from a(<p) by Eq. (D5) in Appendix 
D. An analogous procedure was used for r | | [110] to 
get mh ni2> and mz [see Eq. (D7)] ; and ah a2y and az 

[see Eqs. (D8) and (D10)]. 
The components of the effective mass tensors and 

the linear mass shift parameters a obtained in this way 
are given in Table I I for T along [001], [111], and 
[110]. The results quoted represent averages from 
four to six different runs taken at each of the directions 
chosen for H0. The uncertainties are based on the rms 
deviations from the average. I t is believed that these 
represent the experimental uncertainties. However, any 

0.44 

0.40 

0.36 

0.32 

0.28 

0.24 

(a) 
Til [no] 

[HO] 
[no] 

[oo?j/j><r*3 

0 

O 20 30 I 40 50 60 70 80 90 
^ I E Biol tin] [oot] 

^ ANGLE OF H 0 IN DEGREES IN (110) PLANE FROM [110] AXIS 

systematic error due to the lack of validity of Eq. (28) 
is not included. In our preliminary report on these 
measurements11 no attempt was made to correct for 
the stress dependence of the masses. Consequently, the 
earlier values for m± were higher and those for mu 

lower than the corrected ones quoted in this work. 
As a by-product of these measurements we obtained 

(see captions of Figs. 6-8) representative values of 7, 
the &4-shift contribution. The sign of this shift is always 
negative as predicted; and the magnitude appears to be 
highly anisotropic. Little quantiative significance can 
be attached to the magnitudes, however, because they 
varied as much as 40% from run to run depending upon 
conditions of illumination, changes in microwave power, 
etc. Under the same circumstances, the values for w* 
and a were usually reproducible to better than 1 and 5%, 
respectively. This suggests that extrinsic carrier heating 
effects as well as the intrinsic kA shift were for the 
most part absorbed into the y/T term. 

2. Determination of the Signs of Du and Du
r 

from the Linear Mass Shifts 

From the existence of the linear shifts of the type 
characteristic of mixing of the £1/2+ and Ei / 2 - states of 
the valence bands, we conclude that the £ i / 2

+ states lie 
above the £3/2 states for silicon under compressive 
stress for both r | | [001] and r | | [ l l l ] . Thus, the signs 
of the deformation potentials are fixed: Du>0 and 
Dj>0. This assignment is consistent with additional 
evidence available from the r | | [110] measurements. 
Since the linear shift for r | | [001] is small, it is especially 

0 10 20 30 40 I 60 60 70 80 90 
[110] [100] [110] 

ANGLE OF H 0 IN DEGREES IN (00?) PLANE FROM [110] AXIS 

FIG. 5. The anisotropy of the effective mass m* for the hole 
resonance in silicon with r | | [110]. For (a) T = 2270 kg/cm2 and 
(b) T = 2350 kg/cm2. The curves were calculated for ellipsoidal 
energy surfaces with (a) (wiW2)

1/2 = 0.4085 and {mitnz)ll2 = 0.2880 
and (b) (miw2)

1/2=0.4056 and (m2m3)
1/2=0.1905. 

0.268 

0.264 

* 1 o 0.262 
£ | £ 

co 0-248 

< 
ai 0 244 

O 
UJ 

£ 0-240 

0.236 

0.232 

a 228 

\ o 

(a) 
H0 II [ooi] 

4> = o° 

0^>s3 

\ (b) 
[MO] PLANE 

£ = 65° 

0 400 800 1200 1600 2000 2400 2600 
STRESS IN KG/CM2 

FIG. 6. The dependence of the effective mass m* on stress for 
holes in uniaxially stressed silicon with r | | [001]. The curves were 
calculated for (a) m0*=0.2557, a=-0 .40XlO~ 4 cm2/kg, and 
7 = - 6 8 kg/cm2; and for (b) m0* = 0.2294, a = +0.23X 10~4 

cm2/kg, and y — —120 kg/cm2. 
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TABLE II. The components of the effective mass tensors (in units of the free electron mass m0) and the linear mass shift parameters 
for silicon subjected to uniaxial, compressive stresses along the principal crystallographic directions [001], [111], and [110]. The 
experimental uncertainties indicated are based on the rms deviations from the averages of 4 to 6 runs. 

r||[ooi] 
mi = 0.2561 ±0.0010 
mu = 0.1991 ±0.0015 

ai= - (0.40±0.05)X10-4 cmVkg 
c*n = + (Ul±0.15)X10- 4cm 2 /kg 

r | | [ i i i ] 

wi' = 0.3695±0.0010 
mn' = 0.1354±0.0010 

a i ' = - (1.55±0.10)X10"4 cm2/kg 
an '=-K3.22±0.20)Xl0- 4 cm2/kg 

niciio] 
w1=0.4390db0.0015 
m2 = 0.2596db0.0015 
m3 = 0.1486±0.0015 
ai=- (3.08±0.30)X10"4 cm2/kg 
a2= - (0.25±0.15)X10-4 cm2/kg 
0,3= + (3.05±0.30) X10-4 cm2/kg 

important to check the sign assignment for Du. Let us 
admit now for the sake of discussion the possibility 
that Du<0 (and B>0). Using the values of the band 
parameters and deformation potentials in Table IV 
we can calculate22 the values of ah a2, and a 3 for the 
following two cases subject to the condition BDu<0: 

Case (i). 
Du>0, B<0, 

a1=~(2.31=±:0.25)X10~4 cm2/kg, 

a2= - (0.36±0.05)X10-4 cm2/kg, 

a3== + (2.67db0.25)XlO-4 cm2/kg. 
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FIG. 7. The dependence of the effective mass m* on stress for 
holes in uniaxially stressed silicon with JT| | [111 ] . The curves were 
calculated for (a) (white light) w0* = 0.3704, a=-1 .60X10~ 4 

cm2/kg, and 7 = —90 kg/cm2 and (1.02 fx radiation) w0* = 0.3693, 
< X = - 1 . 5 5 X 1 0 - 4 cm2/kg, and 7 = - 6 0 kg/cm2; and for (b) m0* 
=0.2335, a = -0.25X1O"4 cm2/kg and 7 = - 1 0 0 kg/cm2. 

Case (ii). 
Du<0, B>0, 

a i = + (0.11±0.01)XlO-4 cm2/kg, 

a2= + (0.08±0.01)X10"4 cm2/kg, 

az= - (0.19±0.02)X10-4 cm2/kg. 
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FIG. 8. The dependence of the effective mass m* on stress for 
holes in uniaxially stressed silicon with r | | [110]. The curves were 
calculated for (a) m0* = 0.3350, a= -2.00X10"4 cm2/kg, and 
7 = - 1 0 0 kg/cm2; (b) m0* = 0.2655, a=-1 .95XlO~ 4 cm2/kg, 
and 7 = - 4 5 kg/cm2; and (c) w0* = 0.225, a = +0.35XlO~4 

cm2/kg, and 7 = —90 kg/cm2. 
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Comparison of these numbers with the experimental 
results in Table I I shows clearly that case (i) is the 
only possible choice. 

3. Other Possible Linear Mass Shifts 

The possibility exists that under strain the / = § 
valence band can interact with other nearby bands 
(interband coupling), e.g., the T2, conduction band, 
resulting in additional linear mass shifts besides that 
arising from the intraband mixing of the £1/2 and £1/2-
states. To estimate the contribution from these sources, 
we use a theorem given by Hasegawa, namely, 

£ l/m* = 3A (30) 
{=1,2,3 

[where A, given by Eq. (4), here is in units of ft2/2w0] 
if the interband couplings can be neglected. Clearly, 
if the condition 

E «<=0 (31) 
t=l,2,3 

is obeyed, then it follows that the sum of inverse masses 
is invariant under stress as required in Eq. (30). 
Equation (31) is satisfied automatically if the a's arise 
only from intraband mixing since au/ai—au

f/ai= —2 
as pointed out in Sec. I I . The measured ratios 

a i I / a i = - 3 . 3 ± 0 . 8 , 

« „ ' / « / = -2 .01±0 .10 , 

0.344 

0.336 

0.328 

ElE, 

0.258 

O 
LU IL 0.250 

0.242 
0.204 

0.200 

EXPER 
VALUE 

• 

*— 

MENTAL 
5 

- , .BE ST FIT 
.84 ±0.0 

• 

^y 
2 

*C Vm,m2 

H M 
^m1m3 

1 \ 

f -
I 

V, N/m2rri3 

are sufficiently close to the value —2 to allow us to 
conclude that interband mixing is probably unimpor
tant, particularly so far T|| [111]. The larger discrepancy 
for the r | | [001] case is not surprising in view of the 
small value of the shifts allowing, consequently, a 
greater relative contribution from other causes. For 
r | | [110] we see that 

£ a t -=0 .3±0.3~0, (33) 
i=l,2,3 

which is small in comparison to the intraband effects 
characterized by £,--1,2,3 |«f| =6.4, further supporting 
the contentions above. 

D. The Determination of the Inverse Mass Band 
Parameter and the Deformation Potentials 

From the effective masses in Table I I the inverse 
mass band parameters are obtained at once by means 
of Eqs. (12) and (18). Since we have already ascertained 
that BDu<0, NDu'<0 and DU>0, A / > 0 , it follows 
that B and N are both negative. The results for A, B, 
and N (in units of ¥/2m0) are summarized in Table I I I . 

TABLE III. The inverse mass band parameters A, B, and N (in 
units of h2/2mo); the deformation potentials Du and DU'\ and the 
splitting anisotropy parameter (3 for the valence bands of silicon. 
In calculating Du and Du> the value of the spin-orbit splitting was 
taken as A = 0.0441 eV.a 

T || [001] 

A = -4.28 ±0.02 
B= -0.75 ±0.04 

D« = +(2.04±0.20) eV 

a See reference 17. 

ruci i i ] 

A = -4.2 7 ±0.02 
N = - 9 . 3 6 ±0.10 

I V = +(2.68 ±0.25) eV 

ruciio] 

0 = +0.84 ±0.02 

05 0.6 0.7 0.8 0.9 1.0 1.1 1.2 
SPLITTING ANISOTROPY PARAMETER,|£| 

FIG. 9. Determination of the splitting anisotropy parameter 0. 
[See Sec. II , Eq. (25).] The curves were calculated using the 
values of A, B, and N given in Table II. 

These values differ considerably from those (A = — 4.0 
±0 .2 , |J3| = l.ldb0.5, |A 7 |=7 .5±0.5) obtained from 
the original cyclotron resonance experiments on the 
valence band of unstrained silicon. In view of the 
limitations, cited in Sec. I I , that one faces in doing 
conventional cyclotron resonance on energy surfaces 
as badly warped as those in silicon, the poor agreement 
of the old results is, perhaps, not unexpected. Note added 
in proof. Values of the inverse mass band parameters 
for silicon recently obtained [J. J. Stickler, H. J. Zeiger, 
and G. S. Heller, Phys. Rev. 127, 1077 (1962)] from the 
quantum spectra disagree in some cases from those 
quoted in Table I I I . The reasons for this discrepancy 
are at present not clear. Experiments by one of us 
(J. C. H.) are underway which, it is hoped, will shed 
more light on this question. 

The splitting anisotropy parameter p defined in 
Sec. I I , Eq. (25) was determined from measurements 
with 7l|[110] as follows: Using the values of A, B, 
and AT obtained for r | | [ l l l ] we can calculate the 
effective masses mi, m^ and m% for r | | [110] as a 
function of the parameter | fi \. The result is shown in 
Fig. 9 where we have plotted the calculated "mean 
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masses" (wiw2)1/2, (wiw3)1/2, and {myn^112 which are 
the quantities directly measured. On the same figure we 
indicate the experimental points thereby fixing | 0 | 
= 0.84±0.02. Since Du>0 and A / > 0 , the sign of & is 
positive. The ratio of the deformation potentials, there
fore, is ZV/Z>u==1.31±0.03. 

The over-all consistency of the results can be judged 
by noting that we have essentially measured a total of 
7 effective masses whereas only 4 quantities are being 
determined. The three redundant masses, therefore, 
serve as a check on the measurements. First, we see 
that the two values of A obtained when r | | [001] and 
r | | [ l l l ] are in excellent agreement. Second, Fig. 9 
shows that all three measured masses for J T | | [ 1 1 0 ] are 
consistent with one value of | # | . Such agreement would 
be unlikely if the band parameters cited herein were 
appreciably in error. 

The deformation potential DJ is determined accord
ing to Eq. (27) from a/ rather than an' the value of 
the latter being somewhat less certain. Thus, we get 

DJ = aL' / (- suj = + (60.9± 6.0)A, (34) 

from which D u ' = + (2.68db0.25) eV using the value17 

A =(0.0441 ±0.0004) eV for the spin-orbit splitting. 
Next, from 

Du'(s AI/2) 
0 = = +0.84d=0.02, (35) 

we get DM= + (2.04±0.20) eV. The value for Du 

arrived at in this way is expected to be more reliable 
than that which could be gotten directly from aL or 
a n . I t is, nevertheless, interesting as a check to compare 
these two results. To do this let us write the ratio £ in 
terms of aL and a / using Eqs. (26) and (27) which give 

aL'B 

"«i (# /3) 
-=+0.90db0.10. (36) 

This result is entirely consistent with the more ac
curately known value |# | = 0.84=fc:0.02 obtained directly 
from the measured effective masses. The values26 for 
Du, ZV, and (} are listed in Table I I I . 

E. Cyclotron Resonance Line Shape 

1. Experimentally Observed Linewidths, Asymmetries, 
and Shifts as Functions of Temperature, 

Direction of Ho, and Stress 

There are considerable experimental checks of 
Hasegawa's theory of line broadening. Foremost is the 
excellent fit of the stress dependence of the effective 
mass for all cases shown in Figs. 6-8. This, in fact, 
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FIG. 10. Comparison of experimental and calculated line shapes 
of the hole resonance in silicon under uniaxial compressive stress. 
The experimental line shape was measured for Ho and T||[001] 
( r^2550 kg/cm2), 1.35°K, and * = 8816.4 Mc/sec. The 
theoretical line shape was calculated by Hasegawa (reference 30) 
for 1.3°K, z/^9000 Mc/sec, and |o>2!r=0.4. The width of the 
calculated line was matched to the measured resonance at the 
half amplitude points. The minor discrepancy between the curves 
is probably due partially to a small bridge unbalance in the 
spectrometer resulting in a slight admixture of the dispersive 
component into the absorption signal. 

provides a verification of the aspects of the theory 
pertinent to the determination of the effective masses as 
given in Eq. (28). More detailed checks can be made 
using the following experimental results: 

(a) For Ho and r | | [001] the k* contribution to the 
mass shift is measured to be 7=50-70 kg/cm2 at 1.3°K. 
The spread in these values appears largely due to 
carrier heating. I t is expected, therefore, that the 
lower value in the range which was measured using 
infrared illumination of X=1.02/x is closest to the 
" intrinsic" value. 

(b) A striking feature of the hole line in a sample 
subjected to a uniaxial stress is its asymmetry. This is 
clearly discernible in all the traces and is illustrated in 
detail in Fig. 10. 

(c) The relative linewidth27 varies inversely with 
stress as shown in Fig. 11 for H0, r | | [001] and 1.3°K. 
For r = 2 5 0 0 kg/cm2 the relative linewidth was meas
ured to be 2AH/H0= 1.5%. 

(d) Under the conditions in (c) (T=2500 kg/cm2) 
the resonance line maximum exhibits a linear shift of 
+ 1.1% in raising the temperature from 1.3 to 4.2°K. 

(e) The relative linewidth of the hole resonance is 
anisotropic with respect to the direction of HQ. This is 
shown in Fig. 12 for r | | [001] and r | | [ l l l ] . 

(f) The broadening of the lines with temperature is 
seen in Fig. 13. The exact dependence of the relative 
linewidth on temperature is plotted in Fig. 14 from 
which we see that 2AH/H0 is proportional to the first 
power of the temperature 0 . 

Before discussing the above results, it is interesting 
to note in passing that the electron lines (see Fig. 13) 

26 Calculations of the deformation potentials for silicon have 
recently been made by L. Kleinman (to be published). His results 
are A , = +2.85 ev and Z)«> = +3.41 eV. 

27 The linewidth 2AH is denned as the total width at the half-
amplitude absorption points. 



1054 H E N S E L A N D G . F E H E R 

701 

60 

5l ° 
& 50 
f 
Q 

2 40 
Z 
_1 

UJ 

P 3 0 < 
_j 
UJ 
oc 

ui o n 
CO ^ U 

cc 
UJ > 
2 

10 

a 

/ / 

INFRARED c 
1.02/U- ^ y 

y 

/ y 
rS 

- / l a 1 

WHITE LIGHT 

^ 1 
/^ 

" 0 4 0 0 800 1200 1600 2000 2400 2800 
STRESS IN K G / C M 2 

FIG. 11. Dependence of relative linewidth on stress for II Q, 7|i[001] 
(at 1.26°K and 8880 Mc/sec). 

are completely symmetric, their line widths arising from 
a relaxation time process. The ratio of scattering 
relaxation times for the electrons as measured from the 
linewidth (2AH/HQ=2/O)QT) is given by 

T . ( 1 . 2 6 ° K ) / T . ( 4 . 2 ° K ) ~ 6 , (37) 
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FIG. 12. Anisotropy of the relative linewidth of the hole res
onance in uniaxially stressed silicon with respect to the direction 
of Ho in the (110) plane. The measurements were made at 1.26°K, 
/v«8900 Mc/sec, and for compressive stresses (a) T = 2130 
kg/cm2 and (b) T=1925 kg/cm2. The curves were calculated 
according to the theory of Hasegawa. 
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which fits very closely to a @_3/2 dependence,2 

r(1.26°K) /1.26°K\-3 /2 

-(4.2°K) 

/ 1 . 2 6 W K \ - ^ 
= ( — — ) =6 .1 , (38) 

characteristic of acoustic phonon scattering. 
The hole lines, on the other hand, exhibit an entirely 

different behavior suggesting the presence of a new 
line-broadening mechanism. First, the line shape is 
distinctly asymmetric with a tail on the high-mass side; 
second, the ratio of the linewidth changes only by a 
factor ^ 3 in going from 1.26 to 4.2°K. This is shown in 
more detail in Fig. 14. 

2. Comparison with Hasegawa's Line Broadening Theory 

These effects are explained by the line-broadening 
process proposed by Hasegawa.10 Essentially each line 
is a superposition of a large number of individual lines 
corresponding to transitions between slightly unequally 
spaced Landau levels—a consequence of the nonpara-
bolic nature of the split valence band (see Sec. I I C) 
due to incomplete decoupling by strain. This "inhomo-
geneous broadening" differs from kz broadening since 
the individual component lines of the former could be 
separated under sufficiently high resolution.29 The 
frequency of the component line arising from a transi
tion between the Landau levels n —> n-\-1 is given by 

fc = C » J o + W i + C 0 2 W - r - C i J 3 & 2 - (39) 

Here OJO is the unperturbed (angular) frequency; coi 
represents a "quantum" shift (which is the same for 

1000 
MAGNETIC FIELD SN OERSTEDS 

FIG. 13. Comparison of cyclotron resonance lines in uniaxially 
stresses silicon at 1.26 and 4.2 °K. The traces were taken for H0 
and r | | [001] (7 = 2550 kg/cm2) and */«8800 Mc/sec. 

28 The ©~3/2 dependence of the scattering relaxation time is 
confirmed in detail by measurements throughout the range 
1.26 and 4.2°K, J. C. Hensel (unpublished). For measurements at 
higher temperatures, see D. M. S. Bagguley, R. A. Stradling, and 
J. S. S. Whiting, Proc. Roy. Soc.^(London) A262, 365 (1961). 

29 The inhomogeneous broadening enables one, in principle, to 
saturate part of the hole resonance line and perform double 
resonance experiments analogous to ENDOR. 
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all component lines); co2 gives the spacing between 
component lines; and the o>3 term includes kz broadening 
which for the present case is negligible. The perturbation 
terms, coi, o>2, and co3, are all inversely proportional to 
the stress T. 

Raising the temperature increases the line broadening 
by shifting the hole population to the upper Landau 
levels. The lattice scattering dependence on temperature 
contributes only in a secondary way by broadening 
the component lines. For present conditions where the 
values of co0r appear to be large, the linewidth seems to 
be more or less dominated by the inhomogeneous or 
"k* broadening." 

Hasegawa30 has calculated representative line shapes 
by taking weighted sums of Lorentzian lines up to 
n=20, where n is the Landau quantum number, for 
the case T and H0 along [001], a>0=27rX9000 Mc/sec, 
and @=1.3°K consistent with the experimental condi
tions for Figs. 10 and 11. These line shapes are charac
terized by the parameter | w21 r which gives the spacing, 
o>2, between the component lines of the resonance rela
tive to their half-width, 1/r. From these calculated 
lines plotted against x= (w— |o?o+o>i| )r, the resonance 
maximum, xmax (which gives the shift of the composite 
line due to the co2 term) and the linewidth, Ax, have been 
determined and are given in Table IV. 

At this point we cannot directly compare the line-
width Ax given in Table IV with the experimental 
linewidth 2AH of the hole resonance because the former 
depends upon the as yet undetermined parameter 
|co2|r (| W21 and r, in fact, are both unknown). Some 
light can be shed on this problem by the following 
approach. 

Hasegawa31 has determined an approximate expres
sion for the linewidth from the second moment by 
assuming the component lines to be narrow compared 
to the resonance width but not narrow compared to the 
spacing between the component lines, i.e., | co 2 | r~ l (it 
will be seen presently that | a ) 2 | r^0 .4 for the case at 
hand). Approximating the composite line by a Gaussian 

TABLE IV. Position of resonance maximum and linewidth 
for 0 = 1.3°K, a>o=2*-X9000 Mc/sec. The line is plotted against 
x— (co— |coo+wi I )r. The values for COOT and the relative linewidths 
2AH/HQ were calculated assuming |co2/coo| = 1.4X10~3. 

shape (thereby neglecting asymmetry), he has obtained 
the second moment value of the linewidth as 

|o)2 | r 

0.1 
0.2 
0.3 
0.4 
0.6 
0.8 

Line maximum 
*max 

+0.48 
+0.86 
+ 1.17 
+ 1.46 
+2.03 
+2.51 

Linewidth 
Ax 

2.33 
2.92 
3.54 
4.18 
5.54 
6.79 

o)or 

71 
143 
214 
286 
430 
570 

2AH/H0 

3.3% 
2.0% 
1.7% 
1.5% 
1.3% 
1.2% 

30 H. Hasegawa, reference 10 and (private communication). We 
are indebted to Dr. Hasegawa for supplying us with his unpub
lished calculations of line shapes. 

3 1 H . Hasegawa (private communication). See reference 10, 
Eq. (4.21). 

2 AH \o>2 
«2 .35 | — 

Ho i o)o ho)o 
(40) 

Using Eq. (40) the measured relative linewidth 2AH/H0 

= 1.5% at 1.3°K gives lco2/a>0|~1.4X10-3 for # 0 , 
r | | [001] and T=2500 kg/cm2. 

I t is seen that Eq. (40) predicts a linear dependence 
of the linewidth on temperature consistent with the 
experimental results shown in Fig. 14. The observed 
linear dependence with temperature is evidence that one 
is not near the limiting case |w2| r<Kl. If this were the 
case here, the linewidth of the resonance would be 
strongly influenced by the component linewidth and 
would, therefore, be expected to vary with temperature 
somewhat more like @3/2 as observed for the electron 
linewidths. Inasmuch as |co2/co0| varies inversely with 
stress, Eq. (40) also predicts the observed inverse 
stress dependence of the relative linewidth as shown in 
Fig. 11. 

Next, from the result | o)2/o)01 ~ 1.4X 10~3 just obtained 
we calculate a>0rs= | OJ2 | r | a)0/co21, the values of which 
are given in the fourth column of Table IV. These 
determine the relative linewidth 2AH/HO=AX/UQT, 
the values for which are listed in the last column of 
Table IV. From the latter we find that the observed 
relative linewidth of 1.5% for 1.3°K and HQ, r | | [001] 
coincides with the linewidth calculated for |w 2 | r=0 .4 
and COQT^2SO. This result has been checked by fitting 
the experimental line shape with the one calculated for 
|w 2 | r=0 .4 . In Fig. 10 one sees that the agreement is 
quite satisfactory. 

The hole resonance exhibits a relative line shift from 
x=0, i.e., G> = G>O+WI, by an amount xmajcc^oT. Thus, the 

<|x 
/(. 

/ ° 
A 

°> 

f O 
) O 

1 2 3 4 
TEMPERATURE IN DEGREES KELVIN 

FIG. 14. Relative linewidth of the hole resonance in uniaxially 
stressed silicon vs temperature. The measurements were made for 
Ho and r | | [001] ( r=2550 kg/cm2) and ^ 8 8 0 0 Mc/sec. 
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total relative line shift from co=o>0 is given by 

Aco 

wo 

/ | w i | xmsjc |a?2]\ 

MctJol I « 2 | T I « 0 ' / 

(41) 

From this it follows that the term y/T in Eq. (28) is 

7 

T 

1 / | w i | #max |C0 2 | \ 

Wo*\'COol |o?2| 7-iCOoi / 

(42) 

where 7, it should be noted, is independent of the 
applied stress T since both coi/coo and co2/coo are inversely 
proportional to T. A value for COI/OOQ has not been 
ascertained experimentally. However, theoretical es
timates made by Hasegawa10 indicate that coi/coo and 
W2/W0 are nearly of the same magnitude; the latter, 
therefore, having a sizable coefficient of #max/|w2|r 
^3.6 gives the major shift. Thus, 

T #max |<*>2 

Mi |a>2|r!coo 
-50 kg/cm2 (43) 

for Ho, r| |[001] and 1.3°K in good agreement with the 
experimental vaues 7 ~ —50 to —70 kg/cm2. 

When the temperature is raised from 1.3 to 4.2°K, 
the resonance maximum Ho, r||[001] is observed to 
shift linearly by +1 .1%. It is difficult to see the 
temperature dependence from Eq. (41) as it stands 
although it is implicit in the coefficient #max/|w2|r. 
However, if it is assumed that |co2|r<$Cl (which is not 
strictly true here), Hasegawa32 finds that the relative 
line shift is given by 

Aco wi 2&©/a>2' 

coo coo ha)\ 0 \&>o/ 

(44) 

which explicitly contains the temperature ®. In compar
ing the results at 1.3 and 4.2°K it is the last term that 
interests us. Thus, 

Am* 

nr 

Aco 2&A© 

coo ho)a 
(45) 

giving a relative line shift of Am*/m*^+2% for 
|co2/coo|^1.4X10~3. As pointed out by Hasegawa, 
Eqs. (44) and (45) overestimate the shift when |co2|r 
is not <$C1 the correction (see Table III, reference 10) 
being ^ 2 for |CO2 |T=0.4. The relative line width is, 
accordingly, 

(Aw*/w*) (corrected)- iX2%- + l%, 

in agreement with the measured value. 
The relative linewidth of the hole resonance is 

anisotropic with respect to the angle <p between H0 

and Tas illustrated in Fig. 12 for T\\[001] and T\\[111]. 

Hasegawa31 has obtained expressions for the anisotropics 
of |co2/co0| for Ho in the (110) plane and for F||[001] 
and for r | | [ l l l ] . Under conditions which Eq. (40) 
holds, it follows that this also gives the anisotropy of 
the relative linewidth. The calculated results are 
shown in Fig. 12. There is a qualitative fit for both 
cases r| |[001] and r | | [ l l l ] . Finally, from the measure
ments shown in Fig. 12 it is possible to compare 
2AH/HQ for the two casesH0, T\\[001] and Ho, T\\ [111]. 
The calculated ratio33 for Z7o||r is 

co2[lll] 

co2| [001] 

2/mADB2+2(AV3)2]__ 

3\mJ[£2+(iV/3)2] 
(46) 

which is very close to the measured ratio of 3.7. 
As mentioned earlier the parameter |co2/co0| can be 

estimated theoretically. Using the experimental values 
of mjmo, B, N, and Du given in Sec. IV D, it is found 
for Ho, 2l| [001] and T=2500 kg/cm2 that |co2/co0| 
~2.8X10~3 which is twice the value determined 
experimentally. This discrepancy is not understood. 

We conclude that the generally good agreement in 
the foregoing examples between the predicted and 
observed behavior of the line shapes substantiates in 
some detail the Hasegawa line-broadening theory. 

3. Line Shifts due to Carrier Heating 

Thus far, we have assumed that the carriers are in 
thermal equilibrium with the lattice, and the Landau 
levels are populated according to an equilibrium 
Boltzmann distribution. Actually it has been found 
that a number of experimental factors can seriously 
upset this idealization. 

First, excessive microwave power, especially if 
scattering relaxation times are long, can pump the 
carriers into the higher Landau levels thereby broaden
ing and shifting the line. These effects are illustrated in 
Figs. 15 and 16 showing the line position for Ho and 
r H Q l l ] as a function of microwave power, Po, coupled 
to the cavity. Under extreme conditions, P0^10~2 W, 
the split-band hole resonance can be shifted nearly to 
the position of the original heavy hole. 

Second, "hot" carriers can be produced by the 
illuminating radiation if hv>Egap as indicated in Fig. 
7(a). The effective mass for r | | [ l l l ] is shown for white 
light and monochromatic radiation of wavelength 1.02 JJI 
close to the band gap. A distinct line shift is evident 
especially for low values of stress. Although less 
pronounced than the microwave effects, this light shift, 
nevertheless, can cause sizable errors in effective mass 
measurements. Fortunately, its effects can for the most 
part be extracted from the data using the mass shift 
analysis given in Eq. (28). These heating effects shift 
the values for y but have little effect on the values of 
wo* and «. (See caption of Fig. 7.) It is, however, 

32 Reference 10, Eq. (4.19). 33 See Eq. (4.16) and (4.24) of reference 10. 
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FIG. 15. The effects of microwave carrier heating upon the 
cyclotron resonance lines in uniaxially stressed silicon. The traces 
were taken for H0 and r | | [ l l l ] ( r«1000 kg/cm2), 1.26°K, and 
v«8900 Mc/sec. In (c) the high microwave electric fields (£ i«10 
V/cm) shift the split-band hole line nearly to the position indicated 
for the unstressed "heavy" hole line. The electron lines are severely 
broadened by the microwave carrier heating at the power levels 
10~* to 10"2 W in (b) and (c). 

desirable to eliminate all heating mechanisms as much 
as possible from the experiments. 

V. DISCUSSION 

A. Negative Sign of B 

Contrary to earlier theoretical predictions,5 the sign 
of the band parameter B has turned out to be negative. 
This has important implications for the ordering of the 
conduction energy bands at the point T(k=0) as seen 
by the following argument: In essence, F, G, Hh and 
H2 each have the form 

l ( r i l p l r 2 5 > ) l 2 

Eo—E{ 

where E0 and Ei are, respectively, the energies of the 
valence band A25' and the perturbing conduction band 
Tt- according to the classification in Table I. Since the 
perturbing bands lie above r25' we expect that F, G, 
Hh and H2 are all negative. On the other hand, B 
can, in general, have either sign. From Eqs. (2) and (4), 
we see that B=\(L—M)^\(F—Hi) if we ignore for the 
moment the contributions of G and H2 which are small. 
Thus, the sign of B is, to a large extent, controlled by 
the relative magnitudes of F and Hx which, in turn, 
depend upon the relative locations of T2, and Tn, 
respectively. Hence, the negative sign measured for B 
implies that T2' is lower and Ti5 is higher than the 
earlier estimated positions making the band ordering 
in silicon more nearly like that in germanium. 

P0 IN WATTS 

FIG. 16. The effective-mass shifts of the hole resonance produced 
by microwave carrier heating. The data were taken for Ho and 
r | | [ l l l ] , 1.26°K, and *>«8900 Mc/sec. At P 0 = 10"2 W the electric 
field in the sample was £ i « 1 0 V/cm. For low power levels the 
curves fail to coincide because of the shift of effective mass with 
stress. 

Taking the measured values of A, B, and N from 
Table III we calculate F, G, and Hi (in units of ¥/2m0): 

F= | ( -^+4B+27V r +l )=-5 .48±0 .06 , 

G=|(2^+J5-iV-2)=~0.64dz0.03, (47) 

# i = ^ - £ - l = - 4 . 5 1 ± 0 . 0 5 . 

As usual, the assumption has been made that £T2^0, 
justified since r25 is remote (~30 eV) from the valence 
band and since the matrix element itself is very small. 
Using the earlier values for the matrix elements (which 
are substantially less sensitive to the values of F, G, 
and Hi than are the energies), Phillips16 has recalculated 
the band energies using the new values of the band 
parameters in Eq. (47). He finds that Tr and Ti5 both 
fall at approximately 2.8 eV thus forming the direct 
energy gap at k=0, and that Y1V will fall somewhat 
higher at ~10 eV, approximately at its previous 
estimated position. Previously, T2/ and Tlb were believed 
to be at 8.8 and 2.1 eV, respectively. The revised 
estimate for the position of T2> is corroborated by recent 
evidence obtained by Tauc and Abraham15 from the 
optical absorption in Ge-Si alloys which upon extrapola
tion to the limit of pure Si indicated that T2> is near 
3.3 eV. 

As mentioned earlier, the sign measured for B is in 
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contradiction to that obtained from band calculations.5 

The reason for the failure of the band calculations has 
been examined by Phillips.16 He concludes that the 
difficulty lies in estimating reliably the value for the 
core levels relative to valence levels. Certain bands 
(at r , for instance, r 2 ' ) are very sensitive to core level 
shifts as recently pointed out by Herman34; and it seems 
risky, therefore, to make detailed predictions without 
calculating core levels as carefully as valence levels. For 
silicon, the ordering of bands at T indicated by the 
cyclotron resonance data requires a value of core shift 
which is encouragingly close to that needed16 to fit 
the peaks for optical absorption at L ( k = (7r/a)[ l l l ] ) 
measured by Tauc and Abraham. 

B. Nearly Isotropic Band Splitting in Silicon 

A further unexpected result of the present work has 
been that the J—\ band energy splitting is nearly equal 
for r | | [001] and r | | [ l l l ] , and, furthermore, has the 
same sign, i.e., the order of states at k = 0 is the 
same for r | | [001] and r | | [ l l l ] with Mj=±.\ " u p " 
for compressive stress. As pointed out earlier, under 
these conditions, the energy splitting is isotropic with 
respect to the directions of T, and ±Mj is always a 
"good" quantum number along the direction of T. 
A similar result has been found recently for the valence 
band of CdTe by Thomas35 from optical reflection 
measurements of the direct exciton in uniaxially stressed 
crystals. I t is important to note that more nearly equal 
splittings are obtained for equal applied stress rather 
than strain. This implies a relationship between the 
deformation potentials and the elastic constants, 

Du(sn-s12)^DuSu/2. (48) 

(Neither Si nor CdTe is elastically isotropic, i.e., for 
both ^11—^127^^44/2.) At present, there is no theoretical 
reason to expect such a property which may be purely 
"accidental" for Si and CdTe. I t would be of interest to 
ascertain if a similar behavior exists in other cubic, 
tetrahedrally coordinated semiconductors.36 
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VII. APPENDIXES 

A. Strain Components for a Cubic Lattice 

We calculate the strain components in a cubic 
crystal with an applied uniaxial stress along a direction 
in the (110) plane. This covers the cases for stress along 
each of the three principal crystallographic directions 
(a generalization to include cases when T is out of a 
(110) plane is easily made). The procedure is quite 
straightforward; but due to considerable confusion over 
a factor of 2 in some of the strain components it seems 
worthwhile to write out the analysis in detail. 

Consider a Cartesian coordinate system (x',y',zf) 
such that Tf is along the z' axis. (The specific choice for 
x' and 3/ is unimportant.) In this system the stress 
tensor has the simple form 

121 = (Al) 

in 6-vector notation. In order to transform this tensor 
from the primed system into the crystal coordinate 
system (x,y,z) we need the coordinate transformation 

X%~~~ \Uf JijXj • (A2) 

A simple choice for the x1 and y' directions gives the 
transformation matrix 

1 1 1 
— — cos# — sin0 
v2 v2 v2 

1 1 1 
— — cos# — sin# 
v2 v2 v2 

0 - s i n0 COS0 

(A3) 

where 6 equals the polar angle between z and zf. The 
stress tensor rotates by the same transformation 
according to 

Tik= (cr^icr^Tn', (A4) 

so that in the crystal system (x,y,z) it becomes 

imi 

T 1 
1 XX 
T 
1 yy Tzz 

T 
1 xy Txz 

TyZ\ 

= r 

\ sin20 
\ sin20 
cos20 

\ sin20 
(1/V2) sin0 cosfl 
(l/v2) sinflcos^ 

(A5) 

Next, from the stress tensor (A5) we obtain the strain 
tensor by the relation 

Sij=SijkiTkh (A6) 

where the Sijki are components of the cubic elastic 



C Y C L O T R O N R E S O N A N C E E X P E R I M E N T S I N S i 1059 

compliance tensor37 

$11 $12 $12 

$12 $11 $12 

$12 $12 $11 

0 
0 
0 

4$44 

L 
o 

4^44 0 

0 is. 
0 0 

The strain tensor (written as a 6-vector) is, finally, 

(A7) 

\\S\hT-

isu sin20+$i2(§ sin20+cos20) 

| $n sin20+$i2( | sin20+cos20) 

$n cos20+$i2 sin20 

J$44 sin20 

(l/2v2)$44 cos0 sin0 

(l/2v3)$44 cos0 sin<9 

(A8) 

As usually defined, however, the "conventional" strain 
components e%j differ from those of the tensor | |5 | | by a 
factor of 2 in the off-diagonal elements: 

exx=eyy= r [ i $ n sin20+$i2(J sin20+cos20)] 

eZ2= T\jn cos20+$i2 sin20] 

exy = (r/2)$44 sin20 

eXz=eyz= (r/v2)$4 4 cos0 sin0. 

(A9) 

B. Effective Masses for a Uniaxial Stress 
in the (iTo) Plane 

1. Calculation of the Masses 

We consider now the general problem of calculating 
the principal masses mh mi, and m% for the 7==f 
bands for an arbitrary orientation of T in the (110) 
plane. We start by writing the splitting part of the strain 
Hamiltonian from Eq. (16) using the strain components 
in (A9), 

He=e{J?-\P)+y{J*Jy} 

where 

€=eo(cos20-§sin20) 

e"=eo '(3V2/2)sin0cos0 

(B2) 

and €0, eo' are, as defined earlier, 

eo = \DU ($ii—$12) T 

ea' = lDu'{s«/2)T 
(B3) 

Employing a matrix representation21 for Jx, Jy, and 

Jg, we get 

ff.= 

€ 

(l/v3)(l —0*" 
- ( i / W 

0 

( i /^)( i+«>" 
— e 

0 

-(i/vsy 

( v W 
0 

— e 

- ( l / V 3 ) ( l - t ) e " 

0 

(i/^sy 
- (i/>«)(i+0 

e 

(B4) 

Since we are interested in the masses for an arbitrary 
orientation of T in the (110) plane, we shall rotate the 
coordinate axes so kz is along T (it is not necessary 
to rotate / to change the axis of quantization). Choosing 
ki along the [110] direction as the axis of rotation, we 
make the transformation [see (A3)] from the crystal 
system to the stress coordinate system, 

1 1 1 
kx=—ki~\ k2 cos0H kz sin0, 

v2 v2 v2 

1 1 1 
&y= ki-\ k2 cos0H kz sin0, 

kz= — &2 sin0+&3 cos0, 

(B5) 

37 See, for example, C. Kittel, Introduction to Solid-State Physics 
(John Wiley & Sons, Inc., New York, 1957), p. 91. The compliance 

in which 0 is the polar angle between kz and &3. This 
particular choice of 1, 2, 3 coordinates is advantageous 
because they automatically coincide with the principal 
axes of the mass tensor. 

Direct substitution of (B5) into (7) to obtain the 
transformed k • p Hamiltonian is extremely tedious and, 
in fact, unnecessary. We can, instead, determine the 
masses mh w2, and mz by diagonalizing the Hamiltonian 
for specific directions in k space, i.e., kh £2, and kz 

successively. 

If we set &2=&3=0, then the transformed Hamil-

tensor (A7) differs from KitteFs set of compliance constants by a 
factor of J before the su. This occurs because the set derived by 
Kittel is not a tensor since it was obtained using the conventional 
strain components which are, by definition, not tensor components. 
I t was the failure to recognize this fact which led to the incorrect 
value of eo' given in reference 11. 

file:////S/hT-
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toman is 

fl.(A0-
( l /S3)( l -*>" 

0 

( l / \5)( l+i)e" (*/>&) ( 4 W + 0 0 
(il - JB) W - e 0 (i/\5) ( J 2 W + e') 

0 U - i W - e - ( l / ^ ) ( l + t ) e " 
- ( 0 8 ) ( J 2 W + 0 - (l/\3) (!-«)«" ( 4 + 1 W + * 

(B6) 

This can be exactly diagonalized. The eigenvalues of 
H0(ki) are 

E(k1) = Ak1*±it(B*+%N)k1*+4(eB+h'N)k1
i 

+4:(<?+W*+h"i)Jn- (B7) 

Since we are only concerned with the bands near k=0, 
we can neglect the kil terms which are small compared 
to the &i2 terms if the bands are well decoupled, i.e., 
«, e'>X¥£i2, Bki2; then 

E{h) = Ak^±\_{eB^yN)kl
i+^+y^hmJli- (B8) 

Expanding for small k\ we get 

W=[; E(h) = \ A±\B—Cl(g)+hN—c2(0)\' 
I el le ' l J 

where 
Cl(d)= (l/D)(cos26-i sin20), 

c2(6)=(l/2D)\p\ sin20, 

±{<?+h'2+hm)l,\ (B9) 

(BIO) 

in which 

D(0) = [ (Js in 20--cos 20) 2+fi3 2sin 20(l+3cosW 2 , (Bl l ) 

O tO 20 30 40 50 | 60 70 80 90 
[001] [m] [„o] 

ANCLE OF T IN ( itO) PLANE FROM [OOt] AXIS 

FIG. 17. The anisotropy of the effective masses for the "upper" 
hole band Ei/2

+ for uniaxially compressed silicon with respect to 
the direction of T in the (110) plane. The curves were calculated 
using the values of A, B, N, and £ given in Table III . The experi
mental points are shown. 

and 13 =€o/eQ is the splitting anisotropy parameter. 
The upper and lower signs always refer, respectively, 
to the " top" and "bottom" 7 = f bands. 

The same process can be repeated for the remaining 
directions k2 and k$. Next, letting &i=&3=0, we obtain 
to lowest order in k2, 

E(k2) 
r e° 

= \A±\B— 
L No 

60 

•cM±hN-
601 € 0 ' 

-c(6) \k2* 

where 

cz(6)= (l/£>)(cos20--| sin20)(cos20-2 sin20) 

cA(B)=(3/2D)\p\ cos20sin20. 

Finally, if we set &i=&2=0, we get 

±(62+§€'2+f€"2)1/2, (B12) 

(B13) 

E(kz) = [̂ ±4 B—ci(e)T±N^c,(d)~\kz
2 

€0 no

where 

ch{6)= (l/Z))(cos20-§ sin20)(sin20-2 cos20), 

C6(6>)= (1/2D)\I3\ sin20(3cos20+l). 

±l*+h'*+h"tlm, (B14) 

(B15) 

2. Band Splitting A 

From the foregoing the anisotropic energy splitting 
A for the / = § valence bands is 

A=2(€ 2+|6 , 2+f6" 2) 1 ' 2 . (B16) 

Expressed explicitly in terms of the angle 0, this becomes 

A=2|eo |£>(0). (B17) 

For 0 = 1 we find that D(6) = 1 and the splitting becomes 
isotropic, A=2 | eo | . 

3. Anisotropy of the Effective Masses with respect to T 

At this point it is perhaps worthwhile to summarize 
the behavior of the three hole effective masses mh m2y 

and mz in strained silicon by exhibiting their complete 
anisotropics as T is rotated in the (110) plane. Using 
the values of A, B, A7, and f$ in Table I I I we calculate 
these anisotropics from Eqs. (B9)-(B15). In Fig. 17 
are shown the curves thus obtained upon which are 
superimposed the experimental points for the masses 
at the three principal crystallographic directions. For 
the high-symmetry directions [001] and [111] the 
unique nature of the energy ellipsoids, i.e., axial 
symmetry, is clearly evident. 



CYCLOTRON RESONANCE EXPERIMENTS IN Si 1061 

The large anisotropics of the mass with respect to 
T suggests that, in principal, greater over-all accuracy 
could be achieved in determining the band parameters 
by measuring the masses for additional stress directions 
and then employing appropriate curve-fitting tech
niques. In view of the complications brought about by 
the mass dependence on strain, however, the extra effort 
in pursuing this approach does not seem presently 
justifiable. 

C. Corrections for Small Misorientations 
of Tfrom [111] 

It is often difficult to align the direction of the 
applied stress precisely along the desired crystallo-
graphic direction. Since the effective masses are extrema 
for r||[001] and F||[110], a small misalignment of 
T by A0 from these directions is usually not serious, 
introducing into the measurements an error of order 
(A0)2. However, for T near [111] where the effective 
masses are changing with direction of T a significant 
error of first order in Ad is possible. We calculate here 
these first-order changes in the cyclotron mass for the 
[111] case to enable one to make corrections for the 
inevitable small experimental misorientations. 

In the present experimental setup using flat samples 
out in the (110) plane, the misorientations are confined 
almost entirely to this same plane. Consequently, we 
can utilize the results of Sec. B and calculate the changes 
of mass with respect to the polar angle 6. Differentiating 
the inverse effective masses with respect to 6 and 
evaluating the derivatives for the [111] direction, 
we get 

/ 1 \ /N €o' 1 B €0 \ 
A ( — ) = ±V2 W , 

W \ 6 leo'l |jS| 2 I co l / 

\mz/ 

€0 

l/Jl 2 
1 B €Q 

6 | * ' | | 0 | 2 |€o| 
A0, (CI) 

where the upper and lower signs refer to the "top" and 
"bottom" / = § bands, respectively (B and N are in 
units of -h2/2tno). If we add the above deviations to the 
zeroth order masses m/ and mX\ for r | | [ l l l ] , we can 
write the three total effective masses as 

where 

wi=w/(l=F5), 

w 2 =w/( l±5) , (C2) 

{<• 
eo 1 B eo 

6 |«o'| |j8| 2 | Co| ) / 

V 6 Uol/J 
(C3) 

It is worth noting that m% reaches an extremum for 
r | | [ l l l ] , whereas m\ and m2 cross the [111] direction 
with equal but opposite slopes (see Fig. 17). 

The_anisotropy of the cyclotron effective mass in 
the (110) plane is given by 

2,„\-l/2 

ntr (cos^ smVX 
— + — ) . (C4) 

where <p is the angle between Ho and the stress direction. 
Using the masses mh m^ and mz from (C2) we obtain 

m 
:=m0*[ 

Wo*2 h 
l=p sjn2 

mi'mu 2 4 (C5) 

where w0* is the anisotropic cyclotron effective mass 
for m C l l l ] 

c2/^ cm2//) v—1/2 

mo1 (cosV $m2<p x -1 '2 

+ ) • (C6) 
m/2 mx'niu/ 

For HQ\\T the correction is zero; however, for <p= 90° 
the mass shift is nearly maximum 

Am*/W= =Fp-±O.3A0, 

which represents a | % correction for a 1 ° misorientation. 

D. Anisotropy of the Linear Mass 
Shift Parameters 

Hasegawa10 has pointed out that the measured 
inverse effective masses for the decoupled valence 
bands of silicon have the following form for the axially 
symmetric cases T||[001] and r | | [ l l l ] , 

1 

(*»±)meas Wj. 

1 1 

-<*xT, 

(Dl) 

(*»ll)n 
+anT 

mu 

(assuming the y/T component has been extracted). 
Here aL and au are the linear effective-mass shift 
parameters and mL and mu are the "zero strain" 
masses denned in Sec. II. As a rule (mL)mQ&9 and 
(w,i)meas cannot be determined directly but must be 
ascertained from the anisotropy of the cyclotron 
effective mass, 

w*(^>) = 
•W meas n 

]- l / 2 

(D2) 

where <p is the angle between H0 and the symmetry 
axis of the ellipsoid. In addition, we should like as well 
to determine ax and an in a similar way from the 
anisotropy of the linear effective-mass shifts described 
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by a(<p) according to 

1 1 

w*(<p) mo*(<p) 
-a(<p)T. (D3) 

zeroth-order mass anisotropics in each of the principal 
planes are 

(cos2<pi s inVi\~ 1 / 2 

+ 
m2mz mmi 1 

The requisite relation for a(<p) in terms of ax and an can 
be obtained as follows: If we substitute Eq. (Dl) into 
Eq. (D2) and expand to first order in T, we obtain, 
after identifying the resulting terms with those in 
Eq. (D3), the zeroth-order effective-mass anisotropy 

> m2mz mLm2 * 

/cos2<p2 sin2<p2\~
1/2 

f»o*(110) = ( + 
\ mints w2w3 / 

(D7) 

wo* (110) = 

*»o (cosV sinV\~~1/2 

+ ) , (D4) 
mL

2 mLm\\/ 

(co$2<p% sm2^3 \ 

. WiW2 niiniz J 

-1/2 

as expected and, in addition, the first-order term 
containing the anisotropy for a(<p), 

r2ai (ai au\ "1 
a(<p) = ±ni0*(<p)\ — c o s V H — + — ) sinV • (D5) 

Lwi \niu mj J 

The same analysis obtains for the case r | | [110] for 
which there are three different inverse effective masses 

1 1 

Ol)n 

(W 2 ) n 

W n 

-+<*iTy 
s nil 

1 

-=—+a2r, 
s w2 

1 
8 niz 

(D6) 

where <ph <p2, and <pz are the angles between #0 and the 
1, 2, and 3 axes, respectively. The anisotropics for a in 
these same planes are 

a(001) = §wo*(OOl) (X cosVi+ F sinVi), 

a(110) = |wo*(110)(Fcos 2^ 2+Zsin 2^ 2) , (D8) 

a (U0) = Jwo*(lIO)(Z cos2<?3+X sinV3). 

Here we have defined 

X = ai/m2+a2/mh 

Y=a2/tnz-\-az/ni2, (D9) 

Z=az/mi+ai/mz. 

In order to obtain ah a2 and a3 from the measured 
anisotropics it is useful to have the inverse relations 

1 / m2niz \ 
a i = - ( m2X+mzZ Y J, 

2 \ 

where 1, 2, and 3 are along the [110], [001], and [110] 
axes, respectively. The effective masses mi, m2j and 
mz are those given by Eq. (25) in Sec. I I ; the effective-
mass shift constants au a2, and a3 for r | j [110] have 
been determined by Hasegawa.22 We find that the 

mi 

W3W1 1 / mznii \ 
a2 = - ( mzY+miX Z ), (D10) 

2 \ m2 I 

1 / mim2 
a3 = -( miZ-\-m2Y X 

2 \ mz > 
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FIG. 1. The valence bands of "cubic" silicon near k=0 . The 
warped energy surfaces of the light- and heavy-hole bands are 
shown schematically. The spin-orbit split-off band labeled by its 
spectroscopic character pm has spherical energy surfaces which 
are not shown. 
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FIG. 13. Comparison of cyclotron resonance lines in uniaxially 
stresses silicon at 1.26 and 4.2°K. The traces were taken for Ho 
and r | | [001] (7 = 2550 kg/cm2) and »~8800 Mc/sec. 
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FIG. 15. The effects of microwave carrier heating upon the 
cyclotron resonance lines in uniaxially stressed silicon. The traces 
were taken for H0 and r | | [ l l l ] ( r«1000 kg/cm2), 1.26% and 
v=»8900 Mc/sec. In (c) the high microwave electric fields (£ i«10 
V/cm) shift the split-band hole line nearly to the position indicated 
for the unstressed "heavy" hole line. The electron lines are severely 
broadened by the microwave carrier heating at the power levels 
10-3 to 10"2 W in (b) and (c). 
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FIG. 3. The behavior of the cyclo
tron resonance lines in silicon as a 
uniaxial, compressive stress is applied 
along the [001] axis. The recorder 
traces were taken at 1.26°K and 
v«8900 Mc/sec with H0 in the (110) 
plane and inclined 15° from the [001] 
axis. The broad, weak lines of the 
unstrained "classical" hole resonances 
in (a) point up the difficulties men
tioned in Sec. II in obtaining accurate 
measurements of their effective 
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