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In a magnetic medium the nuclear spins are coupled by the Suhl-Nakamura indirect interaction. This 
interaction is weak but has a very long range b. It is known to contribute to the nuclear spin relaxation. 
It also gives rise to a displacement of the nuclear magnetic resonance frequency which is important at 
temperatures in the helium range for materials with a large concentration of nuclei and large b. More gen
erally the indirect interaction gives rise to a spectrum of nuclear spin waves. This spectrum may be shown 
to be meaningful even when the nuclei are far from order because of the long range of the interaction. 
Different methods to observe this spectrum are discussed. 

I. INTRODUCTION 

NUCLEAR magnetic resonance has been observed 
in a large number of ferromagnetic and antiferro-

magnetic compounds.1 The resonance frequency w„ is 
usually derived by the following arguments: If the 
hyperfine interaction between the nuclear spin I and 
the electron spin S is AI • S , there is an average hyperfine 
field acting on the nucleus, of magnitude 

Hn=-A(S)/hyn, (1.1) 

where yn is the nuclear gyromagnetic ratio, and ( ) 
denotes a thermal average. Equation (1.1) for the reso
nance field is in fact correct only to first order in the 
coupling constant A. I t neglects all correlations between 
the motions of I and S. This is obviously a good approxi
mation in many cases, since the hyperfine interaction is 
very small compared to the exchange coupling J be
tween electron spins. In fact, if one looks at the exact 
eigenmodes of a single nuclear spin in a ferromagnetic 
matrix,2 one finds that the deviations from Eq. (1.1) 
are of relative order A/J and thus completely negligible 
at all temperatures. 

The situation is changed if we have a large density of 
nuclei; then if one of them, It-, is tilted by an angle 6 
with respect to the electron magnetization, it distorts 
the electron spin arrangement. The distortion is of order 
{A/J)(IZ)B, and thus very small, but it has a long range 
in space and thus reacts on the motion of many other 
nuclear spins. The number of active neighbors is of order 
J/fiue (where a>e is the electron resonance frequency) 
and the relative correction to Eq. (1.1) is then of order 

* National Science Foundation Post Doctoral Fellow during the 
part of this work performed at CENS. 

1 J. M. Winter, J. Phys. Radium (to be published). 
2 A discussion of a similar problem can be found in P. G. 

DeGennes and F. Hartmann-Boutron, Compt. Rend. 253, 2922 
(1961). 

(A/J)(Iz)(J/hue) = A(Iz)/fkoe. This "frequency pulling" 
will thus be important at low temperatures ((Iz) not too 
small) provided that (a) the concentration of nuclear 
spins is large (this will be realized with Co59 and Mn55) 
and (b) the electron spin resonance frequencies are low 
(small anisotropy fields). When these conditions are 
realized the nuclear resonance behavior may be drasti
cally different from what it is in the usual case. This 
possibility was mentioned in a previous note.3 The pur
pose of the present paper is to give a more thorough 
discussion of the effect and of its consequences on 
nuclear induction signals. In Sec. I I we derive the 
macroscopic equations for the coupled nuclear-electron 
spin system for various cases of interest (ferromagnets, 
antiferromagnets, Bloch walls- • •)• I n Sec. I l l we come 
back to the microscopic description, and derive the 
spectrum of the nuclear spin waves. The most remark
able result is that these spin waves correspond to well-
defined excitations of the nuclear spin system even at 
comparatively high temperatures (^1°K) , where the 
nuclear spins are strongly disordered. Section IV is 
concerned with a discussion of some effects of demag
netizing fields on the nuclear spin wave spectrum. In 
Sec. V we discuss the effects of the frequency pulling on 
nuclear resonance signals for both steady state and 
transient behavior. 

II. MACROSCOPIC EQUATIONS OF MOTION 

Ferromagnetic Case 

Let us first consider a saturated ferromagnetic ma
terial, of electronic magnetization M and nuclear mag
netization m. The field acting on the nuclei is the sum of 
the external field H0 (along the z direction) plus the 

3 P. G. DeGennes, F. Hartmann-Boutron, and P. A. Pincus, 
Compt. Rend. 254, 1264 (1962). 
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hyperfine field Hn(M./Mo)=aM. The equation of 
motion for the nuclear spins is thus 

J m / ^ = 7 „ m X ( H 0 + a M ) . (2.1) 

Similarly, the field acting on the electron spin is 
Ho+HA+am (where HA is the anisotropy field); at the 
comparatively low nuclear frequencies in which we are 
interested the electrons follow this field adiabatically, 
i.e., M is parallel to H 0 +H^+am. For small transverse 
motions of M we may write: 

M+ = Mx+iMy=Moam+/(H0+HA). K } 

We shall now assume that Eq. (2.1) may be linearized 
in the usual way to describe small amplitude motions of 
m around its equilibrium value m0. This assumption is 
not entirely trivial since the nuclear spins are usually 
far from saturation. I t will be justified by microscopic 
considerations in Sec. I I I . We then obtain from (2.1) 

dm+/dt = — icom+ 

= —iyn[_(Ho+aMo)m+~moaM+^ (2.3) 

and inserting (2.2) we arrive at the resonance condition: 

a = Tnff n[l - fi(m0/M o)]+7n#o; (2.4) 

rj=aMo/(HQ+HA) = Hn/\HQ-\-HA) is the enhancement 
factor relating the effective rf field to the applied rf 
field in the nuclear resonance experiment.4 Equation 
(2.4) predicts a frequency pulling in zero external field 
of relative value 

— dco/cc = rjmo/Mo (2.5) 

= (con/a>e)((I2)/(Sz)) 

^C/( /+l ) /35](co B /co a ) ( fcu„/^r) , (2.6) 

where a>n = ynHn and coe—ye(Ho-\-HA). Equation 
(2.5) applies for 100% isotopic abundance. Taking 
con=3X 109; HA= 103 Oe, 7 = 5 = 5 / 2 (these being plausi
ble values for cubic compounds of Mn2+) we would have 
coe—3X1010 and 5w/u~3X 103/7\ The shift in frequency 
would be important for such a case at temperatures 
below 2°K. (A more complete comparison between the 
shift and the width of the resonance line will be given 
in Sec. III.) _ 

Equation (2.5) shows that we may expect a large 
frequency pulling in all situations where the enhance
ment factor is large. This suggests that the effect 
might be important in Bloch walls where r\ values of 
the order 103 and more are met. In fact it may be shown 
that a formula very similar to (2.5) applies in a Bloch 
wall. This is discussed in detail in Appendix A. 

Equation (2.4) also implies that the relation oo(H0) 
between resonance frequency and external field is non
linear since rj depends on H0. The apparent gyromag-

4 A. M. Portis and A. C. Gossard, J. Appl. Phys. 31, 205S 
(1960). A. C. Gossard, thesis, University of California, Berkeley, 
1960 (unpublished). 

netic ratio defined as 7aPP = du/dH0 is given by 

7app = 7n [1 + ^ V o / M o ) ] . (2.7) 

The effect on 7apP is more spectacular since an extra factor 
of rj (~100) comes into play. Of course this is somewhat 
fictitious since to measure yaPp one needs rather large 
magnetic fields for which v\ is strongly reduced. 

Finally, if the electron motion is damped, the nuclear 
frequency acquires a small imaginary part (1/Ti)n. 
This relaxation effect however is very small: it vanishes 
in the adiabatic approximation of Eq. (2.2). If one 
replaces (2.2) by the complete equation of motion for 
the electron spins, including a relaxation of M towards 
the instantaneous value of the field H o + E L + a m , one 
obtains: 

( r i „ 5 c O n ) - 1 = 7 ? ( 7 „ / T e ) ( ^ 2 e W e ) - 1 . ( 2 .8 ) 

For o)<<Co?e and coer2e^>l and taking (r2eCog)
_1= 10 -1, 

(jn/ye) = 10~3,97= 100 we obtain (rm&On)"^ 10~2. Thus 
the relaxation rate Tin~

l given by Eq. (2.8) is very 
small; and there are other more important eflects con
tributing to the linewidth (some of them will be dis 
cussed later). 

Antiferromagnetic Case 

We shall now consider the frequency pulling in an 
antiferromagnet where we must distinguish two sub-
lattices of electronic spins Mi and M2 and the corre
sponding two nuclear spin sublattices mi and m2. 

Neglecting damping, the equations of motion corre
sponding to (2.1) and (2.2) are 

^M,/^=7 6 MiX(Ho+H A -XM2+aai i i ) , 

6 ? M 2 / ^ = 7 e M 2 X ( H 0 - H A - \ M i + a m 2 ) , 

dmi/<ft=7wmiX(Ho+aMi), 

dm2/dt=7«m2 X (H 0 +aM 2 ) , 

where X is the molecular field constant and is related to 
the effective exchange field by \Mo = Hex. In the small 
oscillation approximation (2.9) becomes 

— OJMI+=7e[—HexM 2
++aM 0Wi+ 

-Mi+iHo+HA+H^+cmo)], 

-uM2
+ = yelHexMi+-aM0ni2+ (? m) 

-M2+(Ho-HA-Hm-amo)], { } 

— coWi+ = yn[am0Mi+— tni+(H0+aMo)~], 
— ww2

+=7n[—amoM2+—m2
+(H0—«Af0)], 

where MQ=MIQ=— M20 and w 0 = W i o = - w2o. On 
solving the secular equation (2.10), one finds the nuclear 
resonance frequencies are given by: 

a)/yn=HnZl — (2coexcon7eWo/coico27nMo)]1/2 

±i?oCH-(co„27e
2Wo/coico27n2lfo)], (2.11) 

where coex=7«#ex and a>i,2 are the two antiferromagnetic 
resonance frequencies, i.e., coi i 2 /7 e =(2 J 5 r

e x ^) 1 / 2 ±Fo. 
For many antiferromagnetics where (2He^HA)ll2^>H0, 
the fractional frequency pulling reduces to ^(PIQ/MQ) 

file:///Hq-/-H
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X(Hn/HA)> i.e., one half of the value (2.5) obtained for 
the ferromagnetic case in zero field. The nuclear g shift 
given by the second term in (2.11) is of the order of 
7econ/7nWex smaller than the frequency pulling and is 
thus negligible. Notice that there exist two degenerate 
nuclear resonance frequencies which are split by an 
external field. The two frequencies clearly correspond 
to the two nuclear sublattices one of which is magnetized 
parallel to HQ and the other antiparallel. 

We conclude that, here again, the effect will be im
portant only if we have a very low anisotropy field HA-
This is actually the case in KMnF3 ,5 and might also 
happen in MnC03 .6 However, both these compounds 
are canted antiferromagnets for which Eqs. (2.9) and 
(2.10) must be modified. This is done in the second 
paper of this series7 and the result is 

w/7„ = 27„[l — (2wexCOn7eWo/aJi,227nM0)]
1/2. (2.12) 

Notice that the two nuclear resonance frequencies are 
split even in the absence of an external field. This arises 
because the electronic resonance modes are linearly 
polarized in a canted antiferromagnet, but circularly 
polarized in a usual Neel antiferromagnet. In a case 
such as MnC03,6 this splitting may be considerable 
because one electronic resonance mode may be at an 
infrared frequency of the order of 1012 cps, while the 
other branch is at microwave frequencies ( ^10 9 cps). 
Of course, the pulling caused by the infrared mode will 
always be negligible, but, using the previous estimates 
for Mn55 nucleus, the pulling arising from the microwave 
electronic mode may be of the order of several percent. 
For example, at an electronic resonance frequency of 
9 kMc/sec, 

| <5a>n/cOn | — | 7eWexCO„Wo/7nW2Af o | ^ 0 . 4 , ( 2 . 1 3 ) 

for con~4X109 cps and an exchange field of 106 Oe. 
Such a large effect may occur in both KMnF 3 and 

MnC0 3 . Heeger et al.5 have shown that the effective 
anisotropy field acting on the electronic spins and 
arising from the nuclear spins through the hyperfine 
interaction A(Iz)/hye gives a significant contribution to 
the microwave resonance frequency. In fact, the fre
quency pulling in a canted system is just the square of 
the fraction of the electronic resonance frequency arising 
from the hyperfine interaction. The reason for the large 
effect is just that the anisotropy field arising from the 
nuclei (of the order of a few oersteds at liquid helium 
temperature) is just of the same order of magnitude as 
the ordinary anisotropy field, which is enhanced by the 
exchange field, and is enhanced in the same manner. 
This frequency pulling seems to be the basis for the 
nonlinear effects observed by Heeger et a/.7,8 in KMnF3 . 

5 A. J. Heeger, A. M. Portis, D. T. Traney, and G. Witt, Phys. 
Rev. Letters 7, 307 (1961). 

6 M. Date, J. Phys. Soc. Japan 15, 2251 (1960). 
7 A. M. Portis, A. J. Heeger, and G. Witt (to be published). 
8 A. J. Heeger, A. M. Portis, and G. Witt, presented at the 

International Conference on Magnetic and Electric Resonance 
and Relaxation, Eindhoven, July, 1962 (unpublished). 

III. MICROSCOPIC INTERPRETATION 

Connection with the Suhl-Nakamura Interaction 

We now proceed to show that the frequency shift dco 
of Eq. (2.5) is due to the indirect interaction between 
nuclei, as derived by Suhl9 and Nakamura.10 Let us 
consider for instance a ferromagnetic Bravais lattice, 
each electron spin Sn being coupled only to one nuclear 
spin In . The linearized equations of motion for both 
systems are 

-{A/h)l(Iz)Sn+-SIn^ (3.1) 

o^I+= - (A/h)(SIn+- (I2)Sn+)+ynHoIn+, 

where S~lhwnm is the exchange coupling between elec
tron spins located at site n and m and we have assumed 
that the electron system is completely saturated 
((SZ) = S). The eigenmodes of Eq. (3.1) are the traveling 
waves 

Sn
+=uel* Rn; In

+=ve^ R \ 

In terms of u and v Eq. (3.1) becomes 

to>-u0q+(A/h)(Iz)lu-(A/h)Sv = 0; 

-(A/h)(Iz)u+lc+(A/h)S~ynHo]v = 0, 

where a>0g=we+2Zm c*w[l — eiq'(R™-R«>] is the usual elec
tronic spin wave frequency. From (3.2) we derive the 
secular equation 

C«-co0fl+(i4/*)</.)][«+(^/*)5-7»ffo] 
-{A/hYS{Iz) = Q. (3.3) 

When ha)e^>AS this has a high frequency solution 
(co^coo5) representing the electron spin waves and a low 
frequency solution 

«^- ( i45/*) [ l+( i4</ , ) / fcoo f l ) ]+7n£ro , (3.4) 

representing nuclear spin waves. The constant term 
(AS/h) stems from the average hyperfine field and the 
q dependent term comes from the indirect interaction 
between nuclei through the electron spins. Equation 
(3.4) can also be obtained by writing the linearized 
equations of motion for the nuclear spins alone when 
coupled by the Suhl-Nakamura interaction 

e iq .(RO T-Rn) 

3 C i = - J ^ 5 E Im+IrTN-lj: 
m > n q flO)Qq 

/»+/»-. (3.5) 
m,n 

The dispersion relation (3.4) is represented in Fig. 1. 
For g=0 , Eq. (3.4) leads again to the shifted frequency 
Eq. (2.6). For large g's, u0q being of the order of the 
exchange frequencies, the interaction term becomes 
negligible, and a> is equal to the unshifted frequency 

9 H. Suhl, Phys. Rev. 109, 606 (1958) 
10 T. Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958). 
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FIG. 1. The nuclear 
spin wave spectrum. 

yn(Hn+Ho). The transition between these two limiting 
behaviors takes place for q values such that co0g~2aje. 
Since coog=coe+coex02<72, where a is an interatomic dis
tance and coex an exchange frequency, this occurs when 
g~1^a(coex/coe)

1/2^>a. The physical meaning of this 
result is simply that the Suhl interaction has a range 
b=a(uex/ue)

U2 and thus gives a significant contribution 
to the nuclear precession frequency only at wavelength 
larger than b. Since b^>a in the cases of interest, it is 
only for a very small fraction of the modes that the 
frequency is shifted from the conventional value. 

These remarks also give a clearer meaning to the 
change in gyromagnetic ratio Eq. (2.7). When we apply 
an external magnetic field Z70 we change the Zeeman 
energy of the nuclei, but we also change the range b of 
the interaction between them; the whole nuclear spin 
wave spectrum is then modified. 

I t is also of interest to estimate the velocity dco/dq 
of typical nuclear spin waves from Eq. (3.4). dco/dq is 
maximum when ab^l and is then 

(do)/dq)max^b8o)^ oco«7?(w0/lfo)(cOeX/coe)
1/2. 

Using our previous values o>„ = 3X109, rj(mo/Mo) 
= 3X10- 3 r - 1 , (a>ex/coe)1/2=30 and taking a=3 A we get 
{doo/dq)m^=\Q2T~l cm/sec, a nonnegligible velocity. 
I t must be realized however, that the mean free path 
/ is small. l^bdoj/Aoo for the high velocity spin waves 
(where Aco is the line width of the corresponding mode). 
As we shall see later, (&o/Aco) is of the order 50 in favor
able cases such as KMnF 3 at 4°K, and then / ~ 1 5 JJL. Of 
course, the mean free path could be increased by work
ing at lower temperatures. 

Validity of the Linearization Procedure 

We now proceed to show that the linearization pro
cedure used to derive Eq. (3.3) is indeed justified even 
at rather high temperatures. For this purpose we con
sider the power spectrum Pq(oo) of the quantity 

A+=j:ie^RiIi+; 

P g ( 0 ) = dt(Aq-(0)A+(t))e*'. 

(3.6) 

(3.7) 

When the spin wave excitations are meaningful, Pq(oS) 
shows a sharp peak at the spin wave frequency cos. At 
very low temperatures (kBT^>A), the nuclear spins 

0, 

being all lined up, this situation will clearly be realized. 
We are interested, however, in higher temperatures (in 
the helium range) for which the average polarization 
of the nuclei ((Iz)/I) is small. 

For such cases of strong disorder Pq{oS) is best studied 
by a method of moments. Let us consider the first 
moment 

(=( !PM^)/( fpMdUJ (3.8) 

= i(A q~dA q+/dt)/(A q~A «+>. (3.9) 

We compute dA q
+/ dt= (i/h)[_^A q

+~] with the Hamil-
tonian 3C=3Co+3Ci, where 3C0 is the first order Hamil-
tonian 5C0=X)n ASIn

z and Xi is the second-order Suhl 
interaction (3.5). The thermal averages are also to be 
taken with respect to this Hamiltonian: 

(0) = T r [ O e r W ] / T r [ « r ^ ] . 
Then 

n,m,p 
mq=-AS-i . (3.10) 

E (IrTlm+) 

At the temperatures of interest we may, to a very good 
approximation, make the substitution 

{In-Im
+IP

Z) -> (In-Im+){IZ) "> 
(f)/(/+l)<J'>«nm (3.H) 

for p7*m, n. This neglects only some small correlations 
brought in by the Suhl interaction of order A^/JUBT 
while the term retained is of order (Iz)^A/kBT. For 
the same reason the terms p^n^m and p—m^n can 
be neglected. Finally the term n=m—p which corre
sponds to the self energy of nucleus In is always negli
gible as explained in the introduction (being only one 
particular term of a long range interaction), and we 
may as well make approximation (3.11) on this term 
too. The result is then simply 

* « , = -AS+2(P)ZP umpe^^~R^ (3.12) 

and thus the first moment 0 g coincides with the spin 
wave frequency (3.4). 

Our next problem is then to determine the width of 
the power spectrum Pq(u>). If this width comes out to be 
small (when compared with \Qq+(AS/h)\), then we 
may say that the frequency fiq corresponds to a well 
defined elementary excitation of wave vector q. We 
derive the width from the reduced second moment 
(£V)av— 09

2=(AOg
2) and also simplify the calculation 

by going to the limit of complete disorder in the nuclear 
spins (AS<<OiBT). This clearly will give us an over
estimate of the width. I t is found that (A0e)

2 is inde
pendent of q in this limit and thus identical to the value 
(AQ0)

2 computed by Suhl9 for the uniform mode: 

(AOg)
2 (Afto)2 / ( / + 1 ) con

4 

4TT2 4TT2 24TT52 C0ex
3/W/2 

(3.13) 
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As pointed out above we are mainly interested in the 
ratio [&q+(AS/h)yMlg<(8u0/AQo) between the total 
bandwidth of the spin wave spectrum and the width of 
one individual spin wave mode. This is given by 

(WAQo) 
= (27r)-1[247r//(/+ l)yi*(I,)(°>**/<*.)m- (3-14) 

For nuclei such as Mn55 and Co59, assuming a low 
anisotropy (coe/je^lO3 Oe) and a reasonable value of 
exchange (wex/Ve^lO6 Oe), we find that (8OOQ/A£IO) is 
larger than 1 when T is below ~3°K. In such a case the 
nuclear spin waves are well denned at temperatures 
~ 1 ° K where the nuclear polarization level is only of 
order 1%. 

Apart from all theoretical consideration (3.14) is of 
course very important since it gives us the temperature 
region in which the frequency shift do)0 of the uniform 
mode is large when compared to the Suhl width AO0: 
all frequency pulling effects can be observed only when 
|5w0/AOo|>l. 

In fact, (3.14) can be obtained by the following simple 
argument. Let us consider the field Fi acting on the 
ith. nuclear spin arising from all the other nuclear spins. 
Because the nuclei are far from saturation Fi is a random 
field with its associated distribution function F(Fi). 
The average field Fi is proportional to the polarization: 

Fi=C(h)/L 

One can estimate the width of the distribution by 
noticing that the number, N, of spins contributing to the 
local field is very large: N-{b/aY^[HeJ(HQ+HA)Ji\ 
In the temperature range of interest, the field Fi is 
therefore the sum of a large number of random, nearly 
independent contributions. The width of the distribu
tion is therefore of the order of CN~1/2. There will 
exist well defined collective modes if this width is small 
relative to the mean displacement Fi. 

The condition is, therefore, 

m'2{Iz)/I>\, 

which is within a numerical factor of the order of unity 
identical to (3.14). 

Specific Heat of the Nuclear Spin System 

The standard expression for the nuclear specific heat 
in the "high temperature" limit (kBT> foa)n) is11 

C=NkBlI(I+l)/3Xfon/kBT)*. (3.15) 

At first sight one might wonder whether the frequency 
shift should not be added to wra in (3.15). Actually this 
is not so, and (3.15) is the correct formula, even in the 
presence of frequency pulling in the range ftwn<KkBT. 
This may be seen in a formal way by a trace method 
carried to 4th order in A. More physically we may argue 
as follows: the frequency pulling affects only the fre-

11 W. Marshall, Phys. Rev. 110, 1280 (1958), Appendix A. 

quency of the long wavelength nuclear spin waves 
(kb<l). As pointed out before the relative number of 
shifted modes is very small of order (a/6)3=(coe/coex)3/2 

~10~ 4 . When fto)n<kBT all modes are excited, and the 
contribution of the shifted ones to the specific heat is 
negligible. On the other hand when foun>kBT (i.e., at 
temperatures below 10~2°K), only the bottom of the 
nuclear spin wave spectrum is excited: This is precisely 
the region of the shifted modes and their effect on the 
specific heat will then become important. 

IV. DEMAGNETIZATION FIELD EFFECTS 

Until now, we have neglected the demagnetizing 
fields. I t is known that they modify the electronic spin 
wave spectrum for low value of the wave vector q12 in a 
ferromagnet. Here we calculate the modifications of the 
nuclear spin wave spectrum arising from these effects. 
I t will be shown that the nuclear spin wave spectrum 
is also anisotropic and therefore, effects such as parallel 
pumping13 and Suhl instability14 should be investigated. 

Consider the equations of motion for the q component 
of the nuclear magnetization: 

dmqx/dt=ynMgyaMz—ynm^xMyq 

+yn(HQ-NzM)m 

dmqy/dt= —ynmqxaMz+ynmzaMq 

(4.1) 

— yn(H0—NzM)mqx. 

The corresponding equations for Mqx and Mqy are12 

dMax 

dt 
-=Ma yeHA+ye(H0-NzM) 

47T 

-) qy
2yeM+o)e^(aq)2 

r4wyeM 
+ \ —Q*Qv 

L n2 

Mqx—ayeMmq 

dMq 

dt 

(4.2) 

-=-Mqx\ yeHA+ye(H0-NzM) 

4TT 

H qx2y<M+ooex (aq)2 

— qxqy \Mqy+ayeMmqx. 

Without any loss of generality qy may be assumed to be 
zero. The nuclear frequency being low the time deriva
tives of Mqx and Mqy are neglected. 

12 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). 
13 E. Schlomann, J. J. Green, and U. Milano. J. Appl. Phys. 31, 

386S (1960). 
14 H. Suhl, J. Phys. Chem. Solids 1, 209 (1957). 
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Mqy and Mqx may then be expressed in terms of mqy 

and mqx; the nuclear equations of motion then become: 

dmqx/dt = ynmqJ[aM-\-Ho—NgM'] 
~ynam{aM/Cq)mqy\ 

dmqy/dt= --ynmqx[aM+Ho—NzM2 
+ynam(aM/Dq)mqx, 

with 

Cq=H0-NzM+HA+(u>ex/ye)(aq)2; 

Dq==HQ-NzM+HA+^ex/ye)(aqy+ATrMsm^q, 

where 0q is the angle between the wave vector q and 
the z axis. The nuclear spin wave frequency is easily 
obtained as 

unq
2 = yn

2ZHn+H0-NzM-atn(aM/Cq)~] 

XlHn+H0--N,M--am(aM/Dq)J (4.4) 

The nuclear frequency depends on the angle 6q. The 
equations (4.3) show that a small ellipticity is induced 
in the nuclear motion. This ellipticity is usually very 
small because it affects only the second term in (4.3). 
As for a ferromagnet, Eq. (4.4) is not valid when 
the wave vector q goes to zero. For p O we have to 
consider the coupled motion of the two uniform modes. 
The resonance frequency is 

uno
2 = yn2iHn+H0-NzM-atn(aM/Co)'] 

XLHn+H0-NzM-afn(aM/Do)l, 
wThere 

C0=HA+HO+(NX-N,)MI 

Do = HA+Ho+(Ny-Nz)M. 

When 0<q<l/L, L being the dimension of the sample, 
the electronic eigenmodes are magnetostatic modes and 
the nuclear eigenmodes have the spatial behavior of 
these electronic modes. 

We notice that the perturbation of the nuclear spin 
wave spectrum due to demagnetizing effects occurs for 
wave vectors less than (l/c) = (l/a)(47r7eM/a>ex)1/2, and 
c is usually of the same order as b, the range of the 
Suhl-Nakamura interaction. 

The occurrence of an ellipticity in the nuclear motion 
suggests that a parallel pumping experiment is possible 
within the nuclear system. We add an oscillating field 
h cos2coo£ along the z axis and also include a transverse 
damping term. Then the equations of motion become 

dmqx/dt = ynmqy(aM+H0—NzM) — yninaMqy 

+ynmqyh cos2co0/— (w g x / r 2 ) ; ,. _ 
(4.5) 

dmqy/dt==—ynntqx(aM+Ho--AT
zM)+yninaMqx 

—ynMqxh cos2ooQt— (mqy/T^). 

By the same technique Mqy and Mqx are expressed in 
terms of mqx and mqy, but now there is in Cq and Dq an 
oscillating term h COS2OJ0£. This term may be neglected, 
its effect is to change h into h[l — ri2(m/M)~}. 

Equations (4.5) are written now as 

dmqx/dt=ynntqycq— {mqx/T^); 

dmqy/dt— —ynmqxdq— (niqv/Tz), 
with 

cq=Hn+H0-NzM- (a2mM/Cq); 

dq=Hn+HQ~NzM-(a2mM/Dq). 

The problem is now formally identical to the problem 
of parallel pumping in a ferromagnetic system. The 
critical field hc which produces instability is given by 

(ynhc/^){cq-dq){Cqdq)-^> 1/7Y (4.6) 

I t is quite clear that this condition is very difficult 
to satisfy for three reasons: 

(a) there is no enhancement factor for a longitudinal 
field h; 

(b) the transverse damping is very large; 
(c) the ellipticity of the nuclear motion, which is meas

ured by e=(cq—dq){cqdq)~
112 is very small. This 

term is approximately given by 

e=a2mM/(Cq-Dq)/HnCqDq 

c^a2?nM/HnH<^Hnin/HoM. 

Thus, even at very low temperature, this term is 
very small. 

V. NUCLEAR RESONANCE IN THE 
PRESENCE OF PULLING 

Steady State Behavior 

In this section we would like to show in what way an 
appreciable frequency pulling may change the nuclear 
resonance absorption. In particular we shall show that 
nonlinear absorption effects may arise from the non
linear nature of the frequency pulling. The nonlinear 
effect of the frequency pulling arises because the reso
nance frequency shift is proportional to the nuclear 
polarization itself. Thus the nuclear absorption line at 
lowr power levels will be centered near the pulled fre
quency, but at high power levels when the nuclear 
polarization may be small, the absorption line may then 
be centered near the unshifted frequency w„. In other 
words, if one were to apply a rf field at o>„, at low powers 
one would find very little absorption since the applied 
signal would be well off resonance. As one increases the 
power, at a certain power level the line would be able to 
snap over to con and thus a nonlinear absorption versus 
power curve might be observed. Such is the observed 
type of behavior in KMnF3 .7 , 8 

In order to determine the response of the nuclear 
system to an effective rf field h*> where h* = rjh, we may 
consider a rate equation for the z polarization of the 
nuclear spin system as is, for example, given in 
Abragam,15 by 

dmz/dt= ~2Wmz+(mQ-mz)/Th (5.1) 
16 A. Abragam, The Principles of Nuclear Magnetism (Oxford 

University Press, New York), Chaps. II and IV. 
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FIG. 2. A para
metric plot of Eq. 
(4.5) in the absence 
of frequency pulling. 
The line L represents 
the left-hand side of 
(4.5) and F repre
sents the right-hand 
side. The stable solu
tion is given by the 
intersection of F and 
L. 

where m0 is the thermal equilibrium value of the mag
netization and where the transition probability per unit 
time, induced by the rf field is given by 

W=(ynh*nW2)f("). (5.2) 

The function /(co) is the normalized shape function of 
the resonance line. For example for a Gaussian line 
/(w) is given by 

/(«) = (27r)-^2A-1e-^-^>2/2A2
J (5.3) 

where A is the linewidth in frequency units and o>0 is 
the resonance frequency. Under steady state conditions, 
(5.1) and (5.2) give 

(mo—mz)/Ti=Trf(o))(ynh*)2ms. (5.4) 

The characteristic transverse time T2 is defined as x/(co0) 
and is given by 

T2-
l=(w/2)l^A (5.5) 

for a Gaussian line. The right-hand side (rhs) of (5.4) 
represents the rate at which energy is absorbed from 
the radio frequency field, and the left-hand side (lhs), 
the rate at which energy is transmitted to the lattice; 
of course, in equilibrium these two quantities must be 
equal. The solution of (5.4) gives the power and fre
quency dependence of the nuclear absorption signal. 
For the usual case, where there is negligible frequency 
pulling, / («) is independent of mz and (5.4) can easily be 
solved to give the standard results. However, in the 
presence of appreciable frequency pulling co0 is a function 
of the nuclear magnetization mz and thus one must 
resort to graphical solutions of (5.4). In Fig. 2 we give 
the trivial graphical solution of (5.4) in the absence of 
frequency pulling. The ordinate of the line of negative 
slope, L, is proportional to the rate at which energy is 
delivered to the lattice [lhs of (5.4)], while the line of 
positive slope, F, is given by the rhs of (5.4). The slope 
of F is proportional to the power and for slopes greater 
than unity the line is effectively saturated. On resonance 
(o)=o)0) this just gives the usual saturation requirement 
that (ynh*)2TiT2^1. At a fixed power level, the fre
quency dependence of the ordinate of intersection will 
trace out the nuclear absorption line. 

In the presence of appreciable frequency pulling the 
curve F will be nonlinear and there exists the possibility 
of multiple intersections or multiple roots of (5.4). We 

shall graphically investigate several possibilities under 
the assumption of a Gaussian line (5.3). We shall take 
the frequency pulling shift in the form 

& o = —(3ojntnz, (5.6) 

where 0 is assumed to be independent of the nuclear 
magnetization. This assumption is not strictly valid 
since the electronic resonance frequency will depend 
appreciably on mz when the frequency pulling is large. 
However, this will usually be a correction to the large 
mz dependence given in (5.6). For a Gaussian line with 
frequency pulling, (5.4) becomes 

/(«) = (27r)-^2A-1 e x p [ - (Ato+/fonmz)
2/2A2], (5.7) 

where Aco = co—con. Let us suppose that an rf field is 
applied between wn and a)n— do). In Fig. 3 we show 
qualitatively the behavior of (5.4). At low power levels, 
JFI, there is only one solution corresponding to very little 
absorption. However at sufficiently high powers, F2, 
new solutions appear corresponding to much smaller 
values of mz and correspondingly higher energy absorp
tion. For the special case con—o£>>A the first point of a 
contact for the high absorption solution may easily be 
seen to occur at 

( 7 r / 2 ) ( 7 ^ * ) 2 r 1 r 2 ^ [ c o - ( a ) n - M ] ( ^ , - ^ ) " 1 . (5.8) 

This is generally of the order of the usual saturation 
condition. The two extreme solutions for high and low 
absorption may be seen to be stable with respect to 
small fluctuations in mz. The central solution is unstable. 
For example, for the central solution, if there is a small 
fluctuation with 8m3>0 the relaxation rate will exceed 
the absorption and thus the system will be driven to the 
low absorption solution. Similarly for 8mz<0 the system 
will be driven to the high absorption solution. In fact, 
the condition for stability is clearly that the slope of the 
rf field absorption curve, F, be greater than the slope of 
the relaxation time L. At frequencies oo<oon such that 
Ao><0, the curves Fi and F2 will shift to the right, with 
decreasing absorption for a fixed power. For o)>o)n, the 
curves Fx and F2 will shift to the left, making it rapidly 
very difficult to obtain a high absorption solution. For a 
given power level, the maximum absorption will occur 
at that frequency such that the high absorption root 
first appears. Consequently, the frequency for peak 

FIG. 3. A para
metric plot of Eq. 
(4.5) in the presence 
of frequency pulling. 
Fi and F2 represent 
two different power 
levels. The two ex
treme solutions (for 
F2) are stable. This 
sketch is not drawn 
to scale in order to 
give a better demon
stration of the quali
tative behavior. 

m0 

"V, 
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absorption will be a function, both of power level and 
temperature, and will usually lie between the shifted 
and unshifted nuclear resonance frequencies. As the 
power increases, the peak frequency will approach o>n, 
and as the power decreases, the peak frequency will 
approach o)n—8w. As the temperature increases, the 
pulling effect will decrease and the peak frequency will 
tend toward con. The line shape in the presence of strong 
frequency pulling will probably be very asymmetric. 
The absorption on the high frequency side of the maxi
mum should fall off much more steeply than on the low-
frequency side and the width of the observed line will 
be of the order of a fraction of the frequency pulling, 
and may be much greater than the natural width. Of 
course, the precise critical power level wTill depend 
strongly on T\ and T%. This nuclear saturation at the 
critical power level is just the type of effect which has 
been observed in KMnF3 . 

There remains the question of how the spin system 
can be pulled to small values of mz from the other stable 
solution m2^mo. There exists a critical rf field, hc, above 
which the high absorption solution is the only equi
librium solution to (4.5). For a Gaussian line this 
critical field is given by 

(7r/2)(7n^c*)2r1r2 
« A2 exp{[oj-(coK-5a;)]2/2A2}/5co(ajn-a)), (5.9) 

for co«—a£>>A. For sufficiently broad lines and/or fre
quencies sufficiently near the pulled frequency, con— 8oo, 
the high absorption solution will be reached in a time of 
the order of T\. As the power is decreased from hc, the 
low-absorption solution would not appear until the 
first contact point (given by 5.8) is reached. Thus, one 
could observe a region of hysteresis in the nuclear 
saturation for power levels between these two contact 
points. Of course, the precise value of hc depends very 
strongly on the exact nuclear resonance line shape. 
An experiment in which one sweeps from low to high 
frequency should also give rise to hysteresis in the same 
way. In fact, the condition for the second contact (5.9) 
is strictly not valid when (ynh*)2TiT2> 1. Then it is 
known16 that there exist large changes in the line shape 
especially in the wings which may change the condition 
for he drastically. However, the excitation of the pulled 
solution will probably be nucleated by other phe
nomena17 such as spin pinning. 

At high power levels, one might wonder whether or 
not Suhl instabilities14 might occur, as in ferromagnets, 
via the coupling, through the dipolar fields, of the q=0 
nuclear spin wave mode with degenerate q^O modes. 
In Appendix B, it is shown that such an effect would 
occur at much higher power levels than, for example, 
given by (5.8). 

16 A. Redfield, Phys. Rev. 98, 1787 (1955). 
17 A. M. Portis, G. Witt, and A. J. Heeger, to be presented at 

the Eighth Annual Conference on Magnetism and Magnetic 
Materials, Pittsburgh, November, 1962 (unpublished). 

Spin Echoes 

We now investigate the behavior of a coupled electron 
nuclear system when a strong rf field pulse Hi is applied 
at a frequency co in the vicinity of the nuclear resonance 
frequency. 

At the beginning of the pulse, the magnetization m is 
tilted, mz is reduced, and the instantaneous precession 
frequency ton[l — r}(mz/M0)2 increases; the nuclear sys
tem is then submitted to a rf field which is not any more 
tuned to the correct frequency and the magnetization 
becomes insensitive to Hi. The main conclusion is that 
it is difficult to make 90 pulses when the frequency shift 
5oo is large. Numerically, for a ferromagnet the effect is 
computed as follows: in a frame rotating at frequency 
co, the equations of motion for the nuclear magnetiza
tion are: 

dmx/dt = (Aco-f/xSco) my; (5.8) 

dmy/dt= — (Aco-\- jjL8co)mx-{-ynH irjmofx; (5.9) 

dfjL/dt=—ynHi7}(my/mo)y (5.10) 

where Aco = co—con and n=(mz/mo). Combining (5.8) 
and (5.10) we obtain 

(Aco+/xdco)(d/x/d/) = ~-ynHiK)ni<rl(dinx/dt). (5.11) 

This may be integrated (with the boundary condition 
\ JU=1 for mx=0) and gives mx explicitly as a function 
\ of \i. Eliminating then my between (5.9) and (5.10), one 
\ obtains a second-order equation for /i, formally identical 
\ to the equation of motion of a classical point in a static 
\ one-dimensional field: 

; d2ix/dt2=dF(fx)/dfx; (5.12) 

• F(M) = 8 - 1 ( M V - M ) P M ; (5.13) 

5 P(M) = M 3 + ( 1 + 4 X ) M
2 

I + ( 4 y 2 + 4 x 2 - l ) M + 4 y 2 - 4 x 2 - 4 x - 1 ; (5.14) 
3 

x=Aoo/8a)'j y = ynrjHi/8co. (5.15) 

1 The "energy integral" for this problem yields 

(^ /^ ) 2 =4- i (5co) 2 ( l - M )P( M ) , 
r 
, where the integration constant is chosen to ensure 
) djj,/dt=0 when /x= 1. This system starts from this value 

H, then decreases, and dix/dt remains negative until 
1 P{p) vanishes. At this point, y, starts to increase and 
, goes back to 1. Thus, if we want to make a 90° pulse 

(JU going from 1 to 0) we need that P(M) does not vanish 
in the interval 0</x< 1. A detailed study of P(n) shows 
that the minimum value of y (or Hi) for which this is 

* realized is v=4_ 1(2 I / 2—1)^-0.1. The pulse frequency 
for which this is obtained corresponds to x= —-J. 
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FIG. 4. Bloch wall. In the 
interior of the Bloch wall the 
magnetization rotates remain
ing parallel to the xy plane 
perpendicular to Oz. 

Thus, to make 90° pulses, in the most favorable case 
we need an rf field Hi such that 

(8^)~l(vynHl) = 0A or # i = 0.1ow0. (5.16) 

In the liquid helium range this leads to fields of order 
0.1 to 1 G (for 100% isotopic abundance). At lower 
temperatures it would be considerably more difficult to 
apply echo techniques. 

Up to now, we have discussed only the motion when 
the rf field was applied. The last question is: What 
happens after the rf pulse? The answer is given simply 
by Eqs. (5.8), (5.9), and (5.10) with Hx=0 (for times 
shorter than the spin lattice relaxation time 7\). Then 
mz retains the constant value which has been prescribed 
by the pulse conditions and the transverse components 
of the magnetization process at the frequency, 
w„[ l — 7}(mz/M0)']. 
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APPENDIX A. FREQUENCY SHIFT IN BLOCH WALLS 

We derive the frequency shift for a 180° wall in a 
uniaxial crystal. The general notation and structure of 
the wall at rest is represented on Fig. 4. In a state of 
motion there are small, z dependent deflections MZi Me, 
and mz, me, of the electron and nuclear magnetization. 
The component Mz (along the axis perpendicular to the 
wall) is always negligible. The equations of motion for 
the nuclear spins are 

mme=dm e/dt=y naMomz, 

icotnz — dmz/dt = yna(—'MQme+moMe). 
(Al) 

The variation Me(z) of the electronic magnetization is 
related to the overall displacement of the wall .5 by 

Me=-Mo(d0/dz)S, (A2) 

where 6 is the turn angle in the undisturbed Bloch wall. 
For the simple case at hand 

dd/dz = e-1sm6, (A3) 

where e is the wall thickness. 
The displacement 5 can be related to the fields acting 

on the wall; the external rf field Hi and the fields from 
the nuclei am: 

d2S dS 
mw h/3 \-CS=2MQHi-aM / medd. (A4) 

dt2 dt ' / • 

In this equation, mw is the wall mass (per cm2), & a 
damping coefficient, and C is related to the static 
permeability of the material. The right-hand side dE/dS 
gives the change in magnetic and hyperfine energy 
per cm2, dE> when the wall is displaced by an amount 
dS; it may correctly be called the pressure acting on 
the wall. 

I t is convenient to introduce at this stage the maxi
mum enhancement factor r]m&x for the rf field acting on 
the nuclei. ^max is obtained for nuclei at the center of 
the wall; it may be calculated by neglecting the small 
hyperfine contribution to the pressure in (A4). 

£ = — (aMe/H i)d=^r/2 

= 2aMo2e-1(-mw^2+il3o:+C)-1. (A5) 

5jmax as defined here is generally complex. We know, 
however, from the results of Portis and Gossard,5 that 
at room temperature in cobalt ^max is essentially real 
and of order 1500. Let us now come back to the calcula
tion of the resonance frequency for which we can put 
# i = 0 . We obtain from (A2), (A4), and (A5) 

Me= dhmtxeidS/dZ) / medd, 
/ • 

(A6) 

Thus, the dependence of all amplitudes Me, me, mz is 
given by 66/6z. Putting me=R(dd/dz) = Re~1 sin0, we 

FIG. 5. Vectors relating 
to Bloch wall. Mo is the 
equilibrium position of the 
magnetization in the x'y' 
plane. M is the deflected 
magnetization. 
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get fmedd=2R/e and from (A6) 

Me=r}mBXme. (A7) 

If we now insert (A7) in (Al) we obtain the secular 
equation: 

C02 = OJn
2[l — 1?max(W-Wo)]; , . «v 

CO^COn[l — ^ m a x ( W o / M 0 ) . ] 

Equation (A8) is very similar to Eq. (2.4) for the fre
quency shift in the bulk material. The factor f obviously 
comes from the fact that, in the Bloch walls, the effec
tive rf field acting on the nuclei is linearly polarized. 
Equation (A8) was derived for a simple case but remains 
qualitatively correct for all situations. 

In fee cobalt, with 9?max=1500, M=1400 emu, 
w 0 =3 .3X10- 2 r , we obtain from (A8), (w-con) /Y„-103 

Oe at r==4°K. This estimate, however, is correct only 
if ?7max does not change significantly from room tem
perature to 4°K. In fact, in the case of a metal like 
cobalt, the damping coefficient (3 is probably due to 
eddy current effects, and is proportional to the con
ductivity,12 a. From the data of Portis and Gossard5 we 
estimate /fo/C^O.l at room temperature. At low tem
peratures, (3 depends critically on the residual resistivity 
of the cobalt particles and we cannot make a 
very definite prediction. Assuming, for instance, 
crr=ao/o"r=3oo= 10, we wrould have, at very low tempera
tures, pco^C. The real and imaginary parts of 7?max are 
then equal, the shift and the intrinsic width of the res
onance are then comparable and of order 500 Oe. I t 
would thus be of interest to study simultaneously 7?max 

and 8o) on cobalt particles in the helium range. Of course, 
as in the case of the bulk material, the resonance fre
quency is power dependent through mo and the shift 
co—o)n can be observed only at very low powTer levels. 

APPENDIX B. SUHL INSTABILITY WITHIN 
THE NUCLEAR SYSTEM 

In this Appendix we calculate the critical field for the 
Suhl instability. We start from the equations of motion 
(4.1) for the nuclear magnetization 

dmqx/dt=yn[_aMz-\-Ho—NzMz~]mqy—ynamzMqy. 

The electronic term Mqy is now expressed in terms of 
mqy and we obtain 

dmqx/dt = yn[aMz+Ho—NzMs 

-{a2mzMz/Cq)~]mqy, (Bl) 

and a similar equation for mqy. 
If a strong rf field is applied at a frequency corre

sponding to the uniform nuclear mode, mz and Mz are 
strongly affected. The effects related to the reduction 
of mz are discussed in Sec. V. If the electronic and 
nuclear motions are elliptical, terms oscillating at a 
frequency 2co0 will appear in mz and Mz. These terms 

produce an instability for the nuclear spin waves de
generate with the uniform mode. 

Let us calculate now the amplitudes hMz and 8mz of 
the oscillating parts of Mz and mz. 

We write the equations for the motion of Mz and mz 

disregarding damping terms and nonuniform compon
ents : 

dM0z/dt=ye[.Moy(atnox+hox) — Mox{amoy+hy)~], /-n2\ 
dmoz/dt=yna(moyMox—moxMoy). 

We neglect the direct coupling between the rf field 
and the nuclear magnetization. 

M0x and Moy are expressed in terms of hx, hyj MQX, 
and woy. We obtain 

M0x=Mo(amox+hx)/Do, 

Moy=Mo(am0y+hy)/Co. 

Co and D0 are defined in Sec. IV. 
I t is interesting to compare the magnitude of the field 

due to the nuclear motion amox to the magnitude of the 
external applied field hx. mox at resonance is given by 

tnox^ynyhxT2tno. 

The ratio p of the two quantities is 

p=antox/hx=afnQr)ynT2= (o)oT2)r}(mo/Mo). (B4) 

At low temperature, p may be larger than unity. If 
*7=102, (m0/Mo) = 3X10-\ co0r2=103, then p=30. 

The calculations will be done assuming p^>l and, 
therefore, hx and hy will be neglected in the Eqs. (B3). 
If this condition is not valid, the critical fields will be 
larger than our estimation. Equations (B2) become 

dM0z/dt=yeMop2hxhy(Do-Co)/DoC0, 
(B5) 

dmoz/dt=ynMop2hxhy(D0— CO)/DQC0. 

(DQ—CO)/(A)CO)1/2 is a measure of the ellipticity of the 

electronic uniform mode; for a thin plate perpendicular 
to the z axis, we have 

(DO-CO)/DOCO=4TM/(HO+HA)(H0+HA+4TM), 

and if 4WM^>>HQ, Eqs. (B5) become 

dMQz/dt=yeM0p
2hxhy/(Ho+HA)y 

dmojdt = ynMop2hxhy/{Ho+HA). 

The amplitudes bMz and 8mz are easily obtained: 

8Mz = p2(yeMQ/ynHn)h
2/4:(Ho+HA)y 

8tnz = p2(Mo/Hn)h
2/4(Ho/HA), 

k being the amplitude of the rotating applied field. 
The a8Mz term behaves exactly as an external oscil

lating field applied along the z axis, and the problem is 
identical to the parallel pumping problem. The critical 
field is given by 

yna8Mzri(m/M)>l/T2 
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which may be written as 

{ynr}hT^>^nT2)-^{m/M)^-KM/m){yn/ye). 

With the usual assumptions, the equation is 

( Y « ^ r 2 ) 2 > 3 . 

The effect of the dmz term is examined. The calcula
tions are similar and lend to the condition 

a2Mz8m,/Cq> 1/T2q. 
We obtain 

(T»i?Ar2)
2>8(u„r2)-KWA0" 

The critical field we obtain is much larger than the 
field given by the usual saturation condition. With such Or with the assumptions, (ynrihT2)2> 10. 
a field all the approximations made in this Appendix The conclusion is that it is impossible to reach a 
are not valid. critical field giving rise to Suhl instability. 
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Specific Heats of Transition Metal Superconductors 

F. J . MORIN* AND J. P . MAITA 

Bell Telephone Laboratories, Murray Hill, New Jersey 
(Received 5 July 1962) 

Specific heats have been measured on superconducting transition metal elements, alloys and compounds 
which cover a wide range in TG and a large portion of the d band. A strong dependence of Te upon the density 
of states in the d band indicates that the superconducting electrons are d electrons. The electron interaction 
parameter, V, of the Bandeen-Cooper-Schriefler theory is found to be approximately 0.4 eV for all the 
metals investigated. The phonon frequency involved in the electronic interaction is less than that predicted 
by theory and changes over a range of about a factor of 5 when the Fermi level is moved to different parts 
of the d band. The product N(0)V exceeds the weak coupling limit for many specimens, yet the results 
for these do not depart from the general behavior. 

INTRODUCTION 

THE experimental investigation of transition metal 
elements, alloys, and compounds by Matthias 

and Hulm have emphasized certain regularities in the 
appearance of superconductivity throughout the peri
odic system. The connection between these regularities 
and the Bandeen-Cooper-SchriefTer theory of super
conductivity1 is given by the expression 

kTc= 1.14<Mav e x p [ - l / i V ( 0 ) F ] , (1) 

where Tc is the critical temperature, (#co)av the average 
energy of the phonons which scatter electrons at the 
Fermi surface, N(0) the density in energy of electronic 
states at the Fermi surface, and an adjustable param
eter V, which measures the difference between the 
Coulomb repulsion and the phonon-induced interaction 
of electrons close to the Fermi surface. However, 
nearly all of the published data describe the behavior 
of Tc as a function of the average number of valence 
electrons per atom and, therefore, do not constitute a 
test of Eq. (1). If Eq. (1) is approximated by 

r c « ^ e x p [ - l A V ( 0 ) F ] , (2) 

where 6D is the Debye temperature, one sees that a 
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measurement of specific heat versus temperature, which 
yields TCJ OD, and i\7(0), will allow the behavior of V 
to be determined. Some specific-heat data have been 
published for alloys of Ti-Mo,2 Ti-V-Cr,3 and4 Ti-V 
but they range over only a factor of 4 in TC/6D, not 
enough for any general conclusions to be drawn con
cerning V. In this paper we report data on elements, 
alloys, and compounds of the transition metals in which 
TC/6D is varied by a factor of 300. I t is found that V 
is a constant, as Pines5 suggested it might be for d-band 
metals. However, an unexpected result indicates that 
the phonon frequency involved in the electronic inter
action is less than that predicted by theory and changes 
over a range of about a factor of 5 when the Fermi 
level is moved to different parts at the d band. 

EXPERIMENTAL 

In order to test the theory, results of moderate 
accuracy on a large number of samples were required. 
For this purpose a calorimeter was developed in which 
heat capacity was measured by a pulse method de
signed for speed, small samples, and for use in an 
ordinary cryostat mounted between the poles of an 
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