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Experiments on cyclotron resonance of the Azbel'-Kaner type were performed on pure Bi at 34.5 kMc/sec. 
Angular variation of the cyclotron masses for both the electrons and the holes with the magnetic field in the 
binary, bisectrix, and trigonal planes were studied. For the electrons in Bi, the tilt angle of the Fermi surface 
in the crystallographic coordinate system was directly measured. The mass parameters in Cohen's nonellip-
soidal-nonparabolic model were determined for the first time. The inverse effective mass tensor components 
in Shoenberg's ellipsoidal-parabolic model were completely determined by using the tilt angle. The results 
indicate that the ellipsoidal-parabolic model is unable to explain quantitatively all the angular variation 
in the electron cyclotron masses. One particular case of Cohen's model corresponding to electron Fermi 
surfaces at centers of the six pseudohexagonal faces of the Brillouin zone was shown to be in better agreement 
with the experimental results. Angular variation of the light-hole cyclotron masses with field in the three 
crystallographic planes were fitted quite satisfactorily by the one-spheroid model. No resonance of a heavy 
hole was observed in this experiment. 

I. INTRODUCTION 

CYCLOTRON resonance provides a useful tool for 
exploring the Fermi surface in metals. For a given 

direction of the external magnetic field H, measurements 
of the cyclotron mass m*= (l/2Tr)(da/dE) at resonance 
give the energy derivative of the extreme cross-sectional 
area of the Fermi surface in momentum space perpen
dicular to H. The details of angular variation of m* can 
be conveniently used in conjunction with other informa
tion to establish the shape of the Fermi surface. 

Early studies1-4 have demonstrated that the Fermi 
surface for electrons in bismuth can be satisfactorily 
described by a set of equivalent ellipsoids in momentum 
space with one axis in common with the binary axis and 
the other two axes being tilted several degrees from the 
trigonal and bisectrix axes. Recently, both experi
mental5*6 and theoretical7 work have indicated that 
these Fermi surfaces may not be ellipsoidal-parabolic, 
so that m* is energy-dependent and one needs more 
parameters to specify one "ellipsoid." 

The de Haas-van Alphen (dHvA) effect4,8 and cyclo
tron resonance9-13 have been observed in bismuth. The 
extreme cross-sectional area of the Fermi surface and 
their energy derivatives measured by these experiments, 
if completed for all orientations, enable one to map out 
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the topology of the Fermi surface. To date, however, 
all these measurements have been done with H along 
the crystallographic axes or in the trigonal plane. These 
results are by no means complete in themselves. 
Furthermore, all of the previous data were interpreted 
by using Shoenberg's ellipsoidal-parabolic model; one 
usually multiplies the dHvA period by the cyclotron 
mass to get the Fermi energy. For a nonellipsoidal-
nonparabolic Fermi surface, this traditional procedure 
of obtaining the Fermi energy is incorrect and has led 
to confusion. 

In the present work, angular variation of the cyclo
tron masses for both electrons and holes with H in the 
binary, bisectrix, and trigonal planes were studied. The 
tilt angle of the electron Fermi surface in the crystallo
graphic axis system was directly measured without 
having to extrapolate by using the ellipsoidal-parabolic 
(EP) model as was done in all previous work. These 
results, combined with values of the Fermi energy and 
the thermal energy gap recently measured by other 
experiments,6,14 enable us to obtain all the parameters 
in Cohen's nonellipsoidal-nonparabolic (NENP) model7 

and thus to completely specify the Fermi surface for 
the carriers we have observed. 

II. FERMI SURFACES IN BISMUTH 

1. Electrons 

Shoenberg's extensive work4,8 on the dHvA effect 
have shown that one of the elliposids (ellipsoid I) can 
be described in the crystallographic axis system by 

where 
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is the inverse effective mass tensor, w0 the free-electron 
mass, E the energy, and p is the quasi-momentum. The 

14 D. Weiner, Phys. Rev. 125, 1226 (1962). 
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other two ellipsoids (ellipsoids II and III) are generated 
by rotating (1) through ±120° about the trigonal (z) 
axis. Cyclotron masses derived from this model can be 
found in reference 8. 

In Cohen's NENP model, as judged from the band 
calculation of Mase15 and Harrison16 and the recent 
analysis by Jain and Koenig,17 one of the Fermi surfaces 
for electrons can be expressed, in Cohen's notation 
(with w2

/=w2),6'14 by 

pi2 P22 pz2 ( E\ /p22\2l 
—+—+—=E[ 1+—)- ( — ) —, (3) 
2wi 2nt2 2m% \ Egl \2mil Eg 

where 1, 2, 3 refer to the principal axis system of the 
ellipsoid, the m's are the effective masses at the bottom 
of the conduction band, and Eg is the energy gap. 
Expressions for cyclotron masses derived from (3) are 
given in Appendix A. 

2. Holes 

From the k • p approximation and by analogy with the 
conduction band of germanium, it seems reasonable to 
expect the valence band to be parabolic. Jones1 first 
suggested such a model for the hole Fermi surface which 
can be represented by 

2moEh=Pipx*+fopv*+fop,*, (4) 

where En is the hole Fermi energy and the /3's are com
ponents of the hole inverse effective mass tensor. As is 
shown later, in contrast to the large uncertainties en
countered by Brandt et at.,18 this model (with /3i=ft) 
agrees with our results very closely. 

Probable locations of these Fermi surfaces in the 
Brillouin zone are shown in Fig. 1. 

III. EXPERIMENTAL 

1. Sample Preparation 

Zone-refined pure bismuth was obtained from the 
Consolidated Mining and Smelting Company of 
Canada, Ltd. Single crystals of the required orientation 
were grown on a hot plate by a seeding technique. Good 
single crystals of sizes about 25 mmX15 mmX5 mm 
obtained by this method were then cut into a size of 
about 15 mmX15 mmX5 mm suitable for the experi
ment by a spark cutter or by a high-speed abrasive 
wheel with reasonably slow cutting rate. Preliminary 
crystal orientation was determined by cleaving in liquid 
nitrogen followed by etching in 35% HN0 3 . This sample 
surface was then electrolytically polished using the 
method given by Tegart.19 The sample was finally 
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16 W. A. Harrison, J. Phys. Chem. Solids 17, 171 (1960). 
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FIG. 1. Probable locations of Fermi surfaces in the Brillouin 
zone. The six half-elliposids for electrons are designated by I, II, 
I II at the centers of the six pseudohexagonal faces. The two 
half-elliposids for light holes are at points A, centers of the two 
perfect hexagonal faces. 

examined by x rays to ensure that it be strain free and 
of the required crystal orientation. Single crystals of 
similar size grown by the same method have been re
ported20 with residual resistance ratios of about 400 
between 300 and 4°K. 

2. Experimental Apparatus 

The experiment was performed with standard micro
wave technique at frequencies near 35 kMc/sec. Varia
tion of surface resistance as a function of H was observed 
by detecting the change in Q of a rectangular cavity of 
which the Bi sample serves as the bottom wall. The 
cavity and the sample were immersed in liquid helium, 
the temperature of the liquid helium was lowered to 
below the X-point so that the disturbance due to 
bubbling at the liquid surface was suppressed. The 
microwave power from a stabilized klystron was 
branched at a magic tee, and part of the power was 
transmitted to the cavity while the other part was fed 
into a matched load. The reflected power from the 
cavity was detected in the fourth arm of the magic tee 
by a crystal detector. The magnetic field was measured 
by a Bell model 120 gaussmeter using a Hall-effect probe. 

During the experiment, the temperature of the liquid 
helium was reduced to around 1.5°K by pumping, and 
when equilibrium had been reached, the frequency of 
the klystron output was tuned to the frequency of the 
cavity resonance and stabilized by an automatic fre
quency control unit suggested by Kip.21 The output 
voltage of the crystal detector was fed into a Keithley 

20 A. N. Friedman and S. H. Koenig, IBM J. Research Develop. 
4, 158 (1960). 

21 We are indebted to Professor A. F. Kip for this private 
communication. 
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model 150AR microvolt-ammeter which was used as a 
chopper amplifier. As the magnetic field was swept, the 
output voltage of the microvolt-ammeter and of the 
gaussmeter were used to drive an X-F recorder. 

IV. RESULTS AND DISCUSSION 

For a metal under anomalous skin-effect conditions, 
AzbeP and Kaner22 have shown that the surface im
pedance can be expressed as 
Z(H) = R(H)+iX(H) = Z(0) {\-e-^-i-ce-2,iu>cryizt (5) 

In the derivation of this basic equation, it has been 
assumed that (i) the carriers obey the quadratic dis
persion law and (ii) 5<3Cr, /, where r is the radius of the 
Larmor orbit, / the mean free path of the carriers, and 
8 is a skin depth. The surface impedance is a minimum 
at resonance, i.e., when o) = no)c, n being a nonzero 
integer. When condition (i) is not fulfilled, a resonance 
can only be observed at extremal values of a>c which in 
this case is a function of momentum. The condition (ii) 
is well satisfied in most metals at liquid-helium tem
perature. But in the case of Bi, even though h<gi at low 
temperatures, the requirement that 5<3Cr can easily be 
violated at moderate magnetic fields. For Bi, we can 
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FIG. 2. Power absorption vs magnetic field with the magnetic 
field directed along the binary axis and perpendicular to the 
microwave electric field. 
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take p~10r21 g-cm-sec-1, S—IO-4 cm, r=pc/eH, and 
then we get r^8 for H of the order of several hundred 
gauss. Thus, Eq. (5) will give only a qualitative picture 
of the phenomenon for Bi as was considered by AzbeP 
and Kaner.23 Nevertheless, we would expect Eq. (5) to 
hold at very low magnetic fields and the classical con
ditions to be predominant in the high-field region. 
Unfortunately, since for Bi many resonances occur in 
the intermediate range of fields, neither extreme case 
by itself completely describes the behavior of the surface 
impedance. 

In a moderatly high field region, we can construct a 
simple model to explain the behavior of the surface 
impedance. Let us divide the electrons into two groups: 
those whose orbits are within the skin depth, and 
another group whose orbits are centered at a depth ~ r 
below the skin depth. The first group of electrons behave 
more or less classically since they remain within the 
skin depth and do not give rise to a significant reso
nance-like behavior of the surface impedance. The 
second group of electrons spend only a small fraction 
of their orbiting time within the skin depth, and can 

FIG. 3. Power absorption vs magnetic field with the magnetic 
field directed along the bisectrix axis and perpendicular to the 
microwave electric field. 
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FIG. 4. Power absorption vs magnetic field with the magnetic 
field directed along the binary axis and perpendicular to the 
microwave electric field. 
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FIG. 5. Power absorption vs magnetic field with the magnetic 
field directed along the bisectrix axis and perpendicular to the 
microwave electric field. 

22 M. la. AzbeP and E. A. Kaner, Soviet Phys.-
(1956); 5, 730 (1957). 

-JETP 3, 772 23 M. la. AzbeP and E. A. Kaner, J. Phys. Chem. Solids 6, 113 
(1958). 
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be considered to be described by the anomalous con
ditions, and it is this group which is primarily responsible 
for the oscillatory behavior of the surface impedance 
predicted by (5). As the magnetic field is increased, the 
number of the classically behaving electrons increases 
while that of the other electrons decreases. Thus, over 
some region of fields, the surface impedance passes from 
the anomalous conditions to the classical conditions. 
It must be remembered that 8 varies with the magnetic 
field and thus an exact analysis of the behavior of the 
surface impedance with magnetic field is considerably 
more complicated. 

The situation is further complicated when more than 
one type of carriers is present and gives rise to inter
ference in oscillations of the surface impedance. In this 
case, it is difficult to apply the AzbeP-Kaner theory to 
the experimental results even in the low-field region. 

Typical experimental curves of power absorption, 
which is proportional to the surface resistance, are 

400 800 
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FIG. 6. Power absorption vs magnetic field with the magnetic 
field directed along the trigonal axis and perpendicular to the 
microwave electric field. 

shown in Figs. 2-6. Measurements were done at 
r ^ l . 5 °K and at a microwave frequency 34.5 kMc/sec 
with an o>r estimated to be 20. It can be seen that 
periodic oscillations occur at low fields with the shape 
resembling those predicted by (5) (Figs. 3 and 7). For 
H higher than ^-200 G, the oscillatory behavior becomes 
complicated probably because of the physical argument 
given above. It has been found experimentally11*12 that 
many maxima in the absorption curve are better defined 
than the minima, as is also seen in our data. If we use 
the positions of the maximum in power absorption to 
identify the resonances, we can find many subharmonics 
in a series of peaks. Without a theory giving the quanti
tative behavior of the surface impedance in Bi over the 
whole range of magnetic fields, we adopt the same 
criterion to obtain the cyclotron masses as was used by 
Aubrey and Chambers.11 Cyclotron masses are obtained 
either from the fundamental peak (first maximum in a 
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FIG. 7. Plot of R(H)/R(0) vs E for two independent 
carriers using (5) with Z(0)=2R(0) exp(iw/3). 

FIG. 8. Values of 1/H for 
the maxima in the power 
absorption curve of Fig. 2 
vs successive integers. -^ 

series) or by averaging over the periods of oscillation 
when a long series is observed. 

For example, from Fig. 2 we obtain five peaks in the 
low-field region for a magnetic field parallel to the binary 
axis. These maxima occur at H—134.2, 61.8, 38, 27.1, 
21 G; they are identified as the series of fundamental 
and subharmonics of the electron resonance, with »= 1, 
2, 3, 4, 5, respectively. If we plot 1/H vs the integer n, 
we should get a straight line of slope e/m*o)C. This plot 
is shown in Fig. 8. From the slope we have determined 
w*=0.0107w0. This is the case when there is only one 
cyclotron mass involved. However, it is frequently ob
served in the experiment that several masses are present 
in the same curve, in which only one or two subhar
monics can be identified for each mass. In those cases, 
the position of the fundamental peak instead of the 
slope of the straight line is used to determine m*. This 
procedure of identification may lead to a systematic 
error in tn* by as much as 20%. 

However, in the case when the angular variation of 
m* calculated from certain models are compared with 
that observed in this experiment, the mass parameters 
in the different models are determined from the same 
observed maxima in the power absorption curve for H 
along some particular directions. Based upon the as-



1126 Y I - H A N K A O 

sumption that the systematic error in m* is presumably 
insensitive to the angular variation, comparison of 
calculated and observed values of m* for H in the other 
directions are then essentially subject to the random 
experimental errors, which are estimated to be around a 
few percent. Thus, although the absolute uncertainty in 
mass determination is large, comparison of angular 
variation can still be made with reasonable accuracy 
provided all the points to be compared are determined 
by the same criterion. 

For each given relative orientation of the bismuth 
crystal and the dc magnetic field H, linearly polarized 
microwave fields are set at two different directions, one 
with H±ETi and one with H±HT{. No significant change 
in either the position or the intensity of the resonance 
lines was observed in our experiment by measuring the 
power absorption. This is in contrast to the case of 
copper,24 in which the resonances are largely due to the 
stationary orbits and there is a change in the intensity 
of absorption with two different directions of polariza
tion. Another possibility is that mode mixing takes 
place in the resonant cavity. Since the bismuth crystal 
is anisotropic, linearly polarized waves become ellipti-
cally polarized in the cavity and the effect due to differ
ent linear polarizations is washed out. 

The fact that there is no change in the intensity of the 
resonance lines also indicates that electron spin reso
nance and combined resonance25 were not observed 
since these resonances occur only with H±_HTi. Failure 
to observe these two types of resonance is presumably 
due to insufficient sensitivity in our experimental 
arrangement. 

We now consider the following cases. 

L i f in the Binary Plane 

A. Electrons 

Since ayz=azy are the only nonvanishing off-diagonal 
components of the inverse effective mass tensor, the 
principal axis (123) system is generated from the crystal-
lographic (xyz) system by a rotation through an angle 
St about the binary (x) axis; Bt is the tilt angle. Hence 
for H in the binary plane, the angular dependence of 
w* in the principal axis system differs from that in the 
xyz system only by a constant angle of rotation; the 
cyclotron mass is a maximum when H is parallel to 
axis 3 and a minimum when H is parallel to axis 2. 

In the EP model, when H is in the binary plane, 
ellipsoids I I and III always give the same cyclotron 
masses. Thus, in general, there are two cyclotron masses 
due to all the electron ellipsoids. When H is parallel to 
the trigonal axis, these masses become degenerate. In 
the previous work on cyclotron resonance,11-13 the 
value of m* for H parallel to the trigonal axis is used as 
one of the four conditions to determine the mass param
eters. In our case, in order to make a convenient com-

24 A. F. Kip, D. N. Langenberg, and T. W. Moore, Phys. Rev. 
124, 359 (1961). 

30 60 

6 (DEGREES) 

FIG. 9. Angular variation of the electron cyclotron masses with 
H in the binary plane. $ is the angle between H and axis 2. Direc
tions of the bisectrix (y) axis and the trigonal (s) axis are indicated 
by arrows. Solid curve is the angular variation of mi* calculated 
from the NENP model by using (A8) and the mass tensor com
ponents determined in (19). Dashed curve is the angular variation 
of mo* ( — mm*) calculated from the EP model using (1) and (15). 

parison of the EP model with the N E N P model, we 
replace this condition by the value of m* for H parallel 
to axis 3. Moreover, without relying on data from other 
experiments, we use the measured tilt angle to be the 
fourth condition. 

The observed angular variation of m* for electron is 
indicated by points in Fig. 9. We identify axis 3 and the 
trigonal axis, respectively, by observing through rota
tion of II in the binary plane the directions along which 
m* is maximum and along which all the electron cy
clotron masses become degenerate. We measure the 
angle between these two directions to be 6°; this is in 
close agreement with the value 5.7° obtained by Shoen-
berg.4,8 The accuracy in determining the tilt angle is pri
marily limited by one's ability to prepare crystals of the 
required orientation. 

The following results obtained with H in the binary 
plane are used to determine the effective masses: 

H along principal axis 2: m2* = 0.009±0.0009wo, (6) 

H along principal axis 3: w3* = 0.11±0.01m0, (7) 

0«=6°±O.2°. (8) 

In analyzing the data, the angular variation of tn* 
calculated from the EP model using the mass parameters 
given by Gait et al.n was used as a guide to select the 
cyclotron masses and to associate them with the corre
sponding ellipsoids. This method was used to obtain the 
points shown in Fig. 9. However, for "ellipsoids" I I and 
III, the deviation from the EP model is large beyond the 
region shown by Fig. 9 and the structure of the power 
absorption curve is complicated by the presence of 
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additional peaks probably due to spin resonance ab
sorption or dielectric anomalies. Identification of m* for 
these two "ellipsoids" becomes very difficult. At the 
present time, no attempt has been made to definitely 
identify these absorption peaks beyond the region which 
we have plotted in Fig. 9. Of course, a calculation of the 
angular variation using the N E N P model may serve as 
a guide to resolve this question, but as we see later, the 
complexity of the electron Fermi surface in the N E N P 
model indicates that an analytical calculation of this 
entire angular variation is almost impossible. 

For H parallel to the binary axis, we have found that 

wi* = 0.14±0.02w0. (9) 

With the values given in (6) to (9), we can determine 
all the mass parameters in the EP model (1) and in the 
N E N P model (3) when appropriate values of E and 
Eg are used. 

We consider the EP model first. In the principal axis 
system, components of the inverse effective mass tensor 
are given by 

a i=Wi* /w2*w 3 * , 

a2=tn2*/wiz*?fti*, (10) 

az=m*/m*m*. 

In the crystallographic axis system it can be shown that 

oiyy=a2^+az'n2
J 

azz=a27)2-\-(Xz£2, 

% z = ( a 3 - 012) &, 

where 
£=cos0«, rj = smdt. (12) 

From Eqs. (6)-(12), we obtain the following values for 
the EP model: 

a i = 1 4 1 , a2=0.584, c*3=87.3, (13) 

wi=0.00709mo, m%= 1.7 Into, m3=0.0115m0, (14) 

aXx=141, ayy=l.S3, aZ 2=86.3, ay«=9.01. (15) 

In the N E N P model, tn* is given by (A8) for H in 
the binary plane. From this expression, we get 
H along axis 2: 

m2*= {\+2E/Eg){mlniz)m. (16) 

H along axis 3: 

w 3*= (2/w)(l+2E/Eg)(m1m2/2)^G(0). (17) 

Applying (A10), we obtain: 

H along axis 1: 

i»i*= (2/T)(l+2E/Eg)(nt2tnz/2y'2F(0). (18) 

From Eqs. (16)—(18), using Weiner's value14 of 
E/E0=0.50f Eqs. (6)-(9), and F(0) = G(0) = 1.686, we 
determine the following values for the N E N P model at 

TABLE I. Angular variation of m*/mo for the "ellipsoid" I with 
E in the binary plane calculated from the EP and the NENP 
models. 0—angle between H and axis 2. Values at 0=0° and 0=90° 
in both models are chosen to fit the experimental data. 

e 
0° 

10° 
30° 
50° 
60° 
70° 
80° 
85° 
90° 

m*/mo from 
EP model 

0.009 
0.092 
0.0104 
0.014 
0.0178 
0.0257 
0.0469 
0.0752 
0.11 

m*/niQ from 
NENP model 

0.009 
0.092 
0.0104 
0.014 
0.0180 
0.0260 
0.0486 
0.080 
0.11 

the bottom of the conduction band: 

wi=0.00354m0, m2=lA9m0, w3=O.OO573w0, (19) 

a i=282 , a 2=0.671, a 3 =175, (20) 

axx=282, ayy=2.5S, azs=173, 0 ^ = 1 8 . 1 . (21) 

I t can be seen from Eqs. (16)—(18) that the cyclotron 
masses at the bottom of the conduction band are about 
half the cyclotron masses at the Fermi energy. In the 
EP model, E/Eg is assumed to be negligible, thus when 
the cyclotron masses measured at the Fermi energy are 
used to determine the effective masses at the bottom 
of the hand, a factor of 2 is introduced on the effective 
masses m\ and m3 [comparing (14) with (19)]. 

With values given in (19) and £ / % = 0.50, we apply 
(A8) to calculate the angular variation of m* for 
"ellipsoid" I with H in the binary plane. The result is 
given by the solid line in Fig. 9. Agreement with the 
experimental result is seen to be fairly good. In this plot, 
the cyclotron masses for H along axis 3 and axis 2 are 
chosen to fit the experimental points. The deviation of 
the experimental values from the calculated curve in 
the neighborhood of axis 3 may be either due to crystal 
misorientation or to approximations in the theory or 
our calculation. 

In order to compare the N E N P model and the EP 
model in the present case, we have calculated the angu
lar variation of tn* in the EP model using the values 
given in (13). From the EP model (1), it can be shown8 

that 

m*/m0 = (cos2eaia^+sm2eaia2)~
1/2. (22) 

Here 6 is the angle between H and axis 2 in the principal 
axis system. 

Values of tn* calculated from both models are listed 
in Table I. I t should be noted that measured values of 
m* at 0=0° and 0= 90° are used to deduce the <*'s which 
in turn are used to calculate the angular variation of tn*. 
We see that both models yield the same cyclotron masses 
except in a region close to axis 3, where the values ob
tained from the EP model are smaller by — 7 % . When 
comparing these calculated values with the experi
mental points as shown in Fig. 9, we notice that in the 
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region where these two models do not agree, the experi
mental results reveal better agreement with the NENP 
model although the fitting is not perfect. 

In order to obtain m* for "ellipsoids" II and III from 
the NENP model, one has to perform rotations of (3) 
through ± 120° about z axis in the crystallographic (xyz) 
system which differs from the principal axis (123) 
system by a rotation of Bt about axis 1. The presence of 
the term containing p2

A complicates the expression for 
the Fermi surface under these rotations. In the (xyz) 
system, (3) becomes 

(py^+pzY+6py
2pg^

2v2-ipy
3pzeri-^pyp^Vz) 

(2m2Eg)
2 

pi2 pv2e+pz2V2-2pvpgfr 

2miEg Im^Eg 

Pv2ri2+pz2e+2pypzh Ef E 

2m%EQ 

Ef E\ 
= - ( 1 + - ) . (23) 

Eg\ Eg/ 

From this equation, an analytical form for tn* with H in 
an arbitrary direction seems almost impossible to obtain. 

We thus used the EP model to calculate m* for 
ellipsoids II and III with H in the binary plane. This 
was done by rotations of (1) using the values determined 
in (IS) (appropriate formulas can be found in reference 
8). The results are plotted as the dashed curve in Fig. 9. 
When compared with the observed values of m* which 
are identified as belonging to these two ellipsoids, we 
see that experimental points agree with the dashed curve 
only in the vicinity of the bisectrix (y) axis. In other 
directions, the values given by the EP model are too 
small. 

B. Holes 

When H is in a direction near the trigonal axis, the 
hole cyclotron mass is nearly equal to the electron 
cyclotron mass. Thus, for the AzbeP-Kaner type reso
nance, it will be difficult to select the right mass with 
H parallel to the trigonal direction. We, thus, start with 
H along the bisectrix axis, since for H along this direc-
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FIG. 10. Angular varia
tion of the light-hole 
cyclotron mass with H 
in the binary plane. 6 is 
the angle between H and 
the trigonal direction. 
The curve is a plot of 
Eq. (26) using & = £ , 
= 14.8 and 0,=1.32. 

tion, the cyclotron mass of the holes is well separated 
from that of the electrons. 

We then follow the angular variation of the hole 
cyclotron mass nth* by rotating the magnetic field 
carefully towards the trigonal direction. With this 
procedure we are able to identify the hole resonance 
lines in the neighborhood of the trigonal direction. Our 
results are shown in Fig. 10. Only two conditions are 
needed to fix the inverse effective masses in the hole 
Fermi surface (4) since /3i=/?2. The following observed 
hole cyclotron masses are used: 
H along trigonal axis: 

wA*=O.O67dbO.OO7fw0. (24) 

H along bisectrix axis: 

wA*==0.226±0.02wo. 

Analogous to (22), angular variation of nth* in the 
present case is given by 

(25) 

mh*/m0= (sin^/JA+cos2^!2)-1 '2. (26) 

Here 6 is the angle between H and the trigonal axis. 
From the values given in (24) and (25), we have deter
mined that 

ft=ft=14.8, &=1.32. (27) 

These values are then used in (26) to calculate the 
angular variation of W/»*. The computed curve is shown 
in Fig. 10. The agreement with the observed values is 
quite satisfactory. 

2. H in the Bisectrix Plane 

A. Electrons 

When H is in the bisectrix plane, no analytic form for 
m* can be obtained from the NENP model. We, thus, 
compare our results with the EP model. Since we have 
shown that a% is much smaller than a\ and a3, the EP 
model is a good approximation when p2 is small. This is 

e (DEGREES) 

FIG. 11. Angular varia
tion of the electron 
cyclotron mass with H 
in the bisectrix plane. 8 
is the angle between H 
and the trigonal direc
tion. The solid lines are 
calculated from the EP 
model using (1) and 
(15). 
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the situation when H is nearly parallel to axis 2 and has 
been shown by Table I. In the present ease, with H 
nearly perpendicular to axis 2, we would expect to see 
deviations from the EP model. 

Using the reciprocal mass parameters obtained in 
(15), we have calculated values of tn* for the three 
ellipsoids from (1). The results are plotted in Fig. 11. 
As was also found in the previous case, the EP model 
gives tn* too small compared with the experimental 
values. The fairly good agreement observed in the 
neighborhood of the binary direction is partially due to 
the fact that the calculated value of tn* was chosen to 
fit the experimental point for that particular direction. 
Deviations from the EP model for H in the other 
directions are observed as expected. 

B. Holes 

The same orientation studies as were done with H in 
the binary plane were carried out for the hole cyclotron 
masses with H in the bisectrix plane. Again good agree
ment with the experimental data was obtained by using 
the spheroidal model with the inverse effective masses 
determined in (27). These results are plotted in Fig. 12, 
where the solid curve is the same as that of Fig. 10. 

3. H in the Trigonal Plane 

A. Electrons 

The NENP model, owing to its complexity, gives no 
analytical expression for m* in this orientation; thus, 
we use the EP model to fit our data. In this case, the 
experimental points are in almost perfect agreement 
with the theoretical curves derived from the EP model. 
This is the particular case in which the EP model enjoys 
great success. 

The three curves shown in Fig. 13 are calculated 
from Eqs. (1) and (15). The observed values of tn* are 
shown to be fitted very well by these curves. Small 
deviations for H in the vicinity of the binary direction 
are observed. It can be seen from Fig. 13 that the ob
served points at 0=20°, 40°, 80°, 85° are not fitted as 

FIG. 13. Angular varia
tion of the electron 
cyclotron mass with H 
in the trigonal plane. 6 is 
the angle between H and 
the bisectrix direction. 
The solid lines are calcu
lated from the EP model 
using (1) and (15). 
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well as those at other angles. Those small disagreements 
may also reveal a deviation of the electron Fermi 
surface from the EP model. 

B. Holes 

Within the experimental accuracy, the hole cyclotron 
mass is shown to be unchanged when H is rotated from 
the binary direction to the bisectrix direction. This 
behavior of nth* is shown in Fig. 14. 

From these constant values of w&*, and the same 
angular variation with H in the binary and bisectrix 
planes as shown in Figs. 10 and 12, we now come to the 
conclusion that the light hole Fermi surface is, indeed, 
of spheroidal shape with its long axis directed along the 
trigonal axis. 

Using the values given by (27), we calculate the 
density-of-state mass of the light hole to be 

Affe=0.15m0. (28) 

Our results cannot determine the hole Fermi energy Eh. 
Using Brandt's26 value of the extremal cross-section 
area and our values of the hole cyclotron masses, we 

FIG. 12. Angular varia
tion of the light-hole 
cyclotron mass with H 
in the bisectrix plane. $ 
is the angle between H 
and the trigonal axis. 
The curve is a plot of 
Eq. (26) using fr^ftj 
= 14.8 and & = 1.32. 

FIG. 14. Angular varia
tion of the light-hole 
cyclotron mass with H 
in the trigonal plane. 6 is 
the angle between H and 
the bisectrix axis. 
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TABLE II . Comparison of m*/mo obtained by other cyclotron resonance experiments with the corresponding 
values observed in the present work. 

l/||binary axis #||bisectrix axis #||trigonal axis 
Electrons Holes Electrons Holes Electrons Holes 

Source mi* mu*} mm* mn* mi* mu*, mm* mn* mi*, mu*} mm* mh* 

Aubreya 0.119 0.009 0.15 0.0078 0.0156 0.15 ~0.06 ~0.04 
Galte/a/.b 0.13 0.0105 0.25 0.0091 0.0180 0.25 0.08 0.068 
Present work 0.14 0.0107 0.226 0.0091 0.0196 0.226 0.081 0.067 

« See reference 12. b See reference 13. 

obtain the value of E^=0.012zb0.002 eV by assuming 
a parabolic valence band which is reasonable. 

Cyclotron masses for the electrons and the light holes 
obtained by other cyclotron resonance experiments are 
listed in Table I I in comparison with the corresponding 
values determined by the present work. 

C. Dielectric Anomalies 

The absorption peaks at ~500 G with H in the 
trigonal plane (Figs. 4 and 5) can be interpreted as 
"dielectric anomalies." The presence of these absorption 
peaks has also been observed in other cyclotron reso
nance experiments in Bi at different frequencies.12,13 

This behavior in Bi can be qualitatively explained by 
the classical magneto-ionic theory. When a plasma con
taining more than one kind of carriers of the same sign 
but with different charge-to-mass ratios is in the presence 
of a dc magnetic field and high-frequency electromag
netic waves, cancellation of the total dielectric constant 
will take place depending upon the concentration and 
cyclotron frequencies of these charge carriers. This gives 
rise to a large power absorption when the dielectric 
constant becomes small. However, for a plasma in solid 
Bi at low temperatures, the classical theory is unable to 
calculate the exact position of this absorption peak 
because of the complication due to the anomalous 
skin effects. 

With E in the trigonal plane, the EP model has been 
used successfully to identify every resonance line ex
pected from the electrons and the holes as shown in 
Fig. 13. We may associate the remaining absorption 
peaks, which are not explained by the EP model, with 
the dielectric anomalies. We have found that the posi
tion of this particular absorption line remains almost 
unchanged when H is rotated in the trigonal plane. 

Using this interpretation, we have identified all ab
sorption peaks with H in the trigonal plane. For H in 
the other two planes, because of the complexity of the 
N E N P model and the inaccuracy in the EP model, 
some absorption peaks cannot be interpreted unam
biguously. Identification of the dielectric anomalies in 
those cases becomes difficult. 

4. Number of Ellipsoids 

From the values of mi, m2, and m?, determined in 
Eq. (19) for the N E N P model, we can calculate the 

total volume in momentum space enclosed by one 
"ellipsoid" from 

Ve= (ST/3)(2m1m2m3)
1^E^(l+6E/SEg). (29) 

Using values of £=0 .022 eV and E/Eg=0.50 as deter
mined by other experiments,14 we obtain the following 
value of the electron concentration per "ellipsoid": 

We=2F/^3=(1.29±0.2)X101 7 /cm3 . (30) 

In the EP model, we have 

Ve= (47r/3)(2m0£)3/2(aia2a3)-1/2; 

with values of the a's given by (13) and £=0.022 eV,27 

we obtain 

ne= (1.35±0.2)X 1017/cm3. (31) 

Comparing either value of ne obtained here with the 
total electron concentration N per cm3 deduced by 
Jain and Koenig17: 

A r=3.9X1017/cm3, (32) 

we see that there can only be three ellipsoids for the 
electrons in Bi as has already been shown by Jain and 
Koenig. 

We calculate the hole concentration by using the 
values determined in (27) and the following expression 
for volume in momentum space: 

Vh= (47r/3)(2wo£A)3/2(^i2/33)-1/2, 

with Eh=0.012 eV, we obtain 

^=(3 .5±0 .4 )X10 1 7 / cm 3 . (33) 

Comparison of (32) with (S3) indicates that there can 
only be one spheroid for the light-hole Fermi surface. 
This result also reveals the possibility of the existence 
of another hole band with perhaps 10% as many holes 
in order to maintain charge neutrality by assuming 
there is only one electron band as we have discussed 
before. 

26 G. E. Smith, J. K. Gait, and F. R. Merritt, Phys. Rev. 
Letters, 4, 276 (1960). 

26 N. B. Brandt, Soviet Phys.—JETP 11, 975 (1960). 
27 D. H. Reneker, Phys. Rev. 115, 303 (1959). 
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TABLE III. Comparison of de Haas-van Alphen dataa with the 
NENP model using the mass parameters determined in (19). 

Calculated Observed 
value valuea 

II 78° from Cyclotron mass 0.0092w0 0.0088m0 
trigonal dHvA period 7.6X10"5 G"1 7.8X10"6 G"1 

H 168° from Cyclotron mass 0.029w0 0.025w0 
trigonal dHvA period 2.5X10~5 G""1 2.75X 10"6 G"1 

a See reference 14. 

5. Comparison with the de Haas-van Alphen 
Effect Data 

In order to demonstrate the consistency of our deter
mination of the mass parameters in the N E N P model, 
we now use the values of Wi, m2i and m% determined in 
(19) to calculate the values of the cyclotron mass and 
the dHvA period in pure Bi to make a comparison with 
the corresponding values observed in the dHvA effect 
experiments by Weiner.14 

In the principal axis system, Weiner14 observed the 
dHvA oscillations for two directions of the magnetic 
field in the binary plane and making angles 78° and 
168°, respectively, with the trigonal axis. Referring to 
Fig. 9, since the solid curve is symmetric with respect 
to axis 3, these two directions correspond to 0=18° 
and 0=72°, respectively. Results of our calculation are 
listed in Table I I I together with Weiner's observed 
values, the agreement is reasonably good. 
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APPENDIX A 

Let a be the area of intersection with a plane through 
axis 1 of the surface described by (3) and denote the 
angle between this plane and axis 2 by 6h then it can 
be shown that 

4 cos20i /•* 
a= {2tmJEg)

lts [ ( / 2 +X 2 ) ( M
2 - / 2 ) ] 1 / 2 ^ , (Al) 

2m2Eg Jo 

where 

M 2 = (b1^-vl)2m2Eg/cos2dh (A2) 

X2= (b1^+P1)2m2Eg/co^dh (A3) 

J i = (E/Eg)(E/Eg+l)+Vl*, (A4) 

*i = ! [ l + (W*»8) tan20x]. (A5) 
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The following relation is useful: 

rl / l - £ 2 x 2 \ 1 / 2 l r l - & 2 2 & 2 - l -i 
/ = / A ) dx=~\ K(k)+ 6(A) , 

JQ \ 1-x2 J 3L k2 k2 J 

where 

Jo ( l - ^ s i n V ) 1 ' 2 

and 
/.*72 

e(k)= / dp (I-k2 sin2<p)V2 

Jo 

are elliptic integrals of the first and second kinds. Let 

£ 2 = M V ( M 2 + A 2 ) , * 2 = M 2 ( 1 - * 2 ) ; 
we obtain 

a= (4 cos2d1/2m2Eg)(2m1Egyi2(fJl
z/k)I. (A6) 

Taking the derivative of (A6), we get 

da 4(wiw2)1 /2/ 2E\ / 1 \ 
— = [l+—K2bl^)^2K[ ). (A7) 
dE cos0! \ EgJ H l + T i ) 1 ' 2 / 

where 

T I ^ I 1 / 2 + ^ I ) / ( * I 1 / 2 - - > > I ) ; 

thus the cyclotron mass m* for the present case can be 
written as 

m*= (2/ir)(l+2E/Eg)(m1m2/2y^G(61)7 (A8) 

where 

G(0i) = (cosflift!1'4)-1*/ \ 
\(l+r01/2/ 

and 

G(w/2) = (T/2)(2tnz/m2)V
2, 

when v1K^(E/Eg)(E/Eg+l)f (A8) reduces to 

( 2E\ f Wiw2w3 \ 1 / 2 

1 + — ) ( ) . (A9) 
Eg/ \m 3 cos20i+w2 sin20i/ 

Similarly, for a plane through axis 3 making an angle 
03 with axis 2, we obtain 

m*= (2/w)(l+2E/Eg)(m2mz/2y^F(dz), (A10) 

where 

F(0Z) = (CQS0J>I"*)-IK( Y 
\ ( 1 + T 3 ) W 

b3=(E/Eg)(l+E/Eg)+vz
2, 

^ 3 = i [ l + ( W w i ) tan203], 

T 3 = ( ^ 1 / 2 + ^ ) / (&3 1 / 2 -^3 ) , 

andF(0) = G(0). 


