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Room-temperature resistivities, Hall coefficients, and magnetoresistivities at low magnetic fields are 
presented for unworked, preshaped, oriented single-crystal rods of 0.8 and 0.2% tin-doped and pure anti
mony grown at a fast rate. The data are interpreted in terms of two threefold sets of tilted mobility ellipsoids 
for the valence and conduction bands. For pure antimony our analysis yields an anisotropic hole and electron 
structure, in essential agreement with the result of an earlier analysis of somewhat different values for the 
same coefficients, and, in addition, an alternative structure for electrons. The alloy data are compatible with 
these ellipsoids upon isotropic scaling of the mobilities of each band and upon specifying unequal carrier den
sities. The latter show that each tin atom removes 0.3 carrier and that, if nonshifting overlapping bands 
of standard and inverted form and degenerate statistics apply, the hole band is 2.2 times as dense as 
the electron band at the Fermi energy for pure antimony. For 0.8% tin-doped antimony the ratio is 3.9, 
and about 2% tin should be needed for conduction by holes alone. By ascribing Shoenberg's de Haas-Van 
Alphen effective masses to the electrons, the band edge overlap is 0.19 eV and the hole Fermi energy is 
0.06 eV for pure antimony; by ascribing them to holes, the corresponding values are 0.42 and 0.13 eV, 
respectively. 

I. INTRODUCTION 

IN the recent paper of Freedman and Juretschke1 

(hereinafter designated by F-J), the 12 phenomeno-
logically independent coefficients which describe anti
mony's electrical conduction in the presence of weak 
magnetic fields were measured and interpreted in terms 
of a nine-parameter, general multivalley model of the 
valence and conduction bands. Their analysis leads to 
an ellipsoidal band structure of electrons overlapping 
from an otherwise full Brillouin zone into the next higher 
one by 10rz carriers/atom (3.7Xl019/an3), the same 
number as obtained by Shoenberg2 from de Haas-Van 
Alphen (dHvA) data. This report extends the same 
method to the determination of the galvanomagnetic 
coefficients of tin-doped antimony and their interpreta
tion in terms of F-J's model, generalized to unequal hole 
and electron populations. 

Browne and Lane3 had shown that 0.1% of tin seemed 
to suffice to bring the alloy into the region of one-carrier 
conduction. Therefore, tin was added in amounts of 0.2 
and 0.8%. These selections are somewhat arbitrary 
since it is known that, on alloying, the carrier contribu
tion per added atom is not necessarily the difference in 
the valency of the solute and antimony or bismuth.4 In 

* Based on a dissertation of the same title submitted in fulfil
ment of the thesis requirement for the Ph.D. degree at the 
Polytechnic Institute of Brooklyn (1961). 

f Work supported in part by the U. S. Office of Naval Research. 
1 S. J. Freedman and H. T. Juretschke, Phys. Rev. 124, 1379 

(1961). 
2 D. Shoenberg, Proc. Roy. Soc. (London) A 245, 1 (1952). 
3 S. H. Browne and C. T. Lane, Phys. Rev. 60, 895 (1941): 60, 

899 (1941). 
4 D. Shoenberg and M. Z. Uddin, Proc. Roy. Soc. (London) 156, 

687 (1936); V. Heine, ibid. A69, 505 (1956); D. Weiner, Phys. 
Rev. 125, 1226 (1962). 

addition to studying these alloys, measurements on pure 
antimony were repeated to establish a reference for the 
alloy data based on pure crystals grown by the same 
method.5 Both the method of growth and the specimen 
preparation differ from F-J, and actually lead to some 
differences in electrical properties. 

In Sec. II the low-magnetic-field resistivity tensor 
components are presented, and expressions are given for 
the magnetic-field-dependent electric fields which form 
the basis of our measurements. Some experimental de
tails are highlighted in Sec. Il l , and, in Sec. IV, the 
phenomenological coefficients are deduced from the ex
perimental data. In Sec. V the basic model is reviewed, 
the procedure for fitting its parameters to the experi
mental numbers is outlined, and the results of this 
procedure are given. These results are also discussed and 
interpreted in terms of simple ellipsoidal energy bands 
of standard form with degenerate carrier populations. 

II. DESIGN OF EXPERIMENTS 

For antimony, of symmetry R3ni, Ohm's law con
necting electric fields Ei and current densities / / takes 
the form 

Ei-puWJj. (1) 

If each resistivity tensor component pa{H) can be 
expanded in terms of a rapidly converging series of in
creasing powers of the magnetic field, 12 independent 
coefficients are required to describe the isothermal 
galvanomagnetic effects up to second order in £T6. These 
coefficients are most conveniently presented and defined 

5 Seymour Epstein, J. Electrochem. Soc. 109, 738 (1962). 
6 H. J. Juretschke, Acta. Cryst. 8, 716 (1955); T. Okada, Mem. 

Faculty Sci., Kyushu University, Bl, 157 (1955). 
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(2) 

by the following expressions for each p »/(#)• 

Pll(H) = pn+A nHf+A uH2
2+A lzH,2- 2 A %JBJBi, 

P22{H)=pll
JrAnH^+AllH^Al^H^+2A2Jl2Hz, 

pz^^pM+AziHf+AnHzt+AzsHs2, 

P2s(H) = R2nH1~A,2Hii+A,2H22+2A,Jl2H,, 

P 8 1 (H) = R2Z1H2- 2 A 42H2HZ+ 2 A 44^1^3, 

p1 2 (H) = ^ 1 2 3 ^ 3 - 2 A 2 4 # i # 3 + (An-A «)f f iff». 

The remaining components of PH{H) follow from the 
Onsager relation, pij(H) = pji(—H). 

This description applies with respect to an orthogonal 
coordinate system having 1 (or X) along the binary axis, 
2 (or Y) along the bisectrix axis, and 3 (or Z) along the 
threefold rotation-inversion axis. The coefficients pa, 
—Rijk, Aij are the resistivities, the Hall constants, and 
the generalized magnetoresistance (MR) constants; 
they are determined experimentally by measuring the 
electric field accompanying a given current flow in the 
presence of a magnetic field. With long, oriented single-
crystal rods of rectangular cross section, where current 
flow is uniform, convenient electric field components are 
chosen parallel and transverse to the current direction 
and in or across the lateral faces. Various directions of 
the magnetic field are used to separate the contributions 
of the various coefficients for a given crystal. 

Our experimental configurations differ from those 
described by Juretschke,6 and used by F-J. Rotations of 
the magnetic field both in a plane parallel to the current 
and the Z axis and in a plane normal to the current re
duce the minimum number of differently oriented single-
crystal rods necessary to determine the 12 coefficients to 
two. Convenient orientations are that the axis is either 
normal (the 90° orientation) or parallel (the 0° orienta
tion) to the rod axis, which defines the direction of cur
rent flow. The corresponding configurations are called 
JJLC and J\\c and are depicted in Fig. 1 where the plane 
of rotation of H is shown at an arbitrary angle rj from 
the Y—Z mirror plane. In both configurations H is 
rotated through angles <j> from the c axis in a plane con
taining this axis. Equations (1) and (2) specialize to 
Eqs. (3), (4), (5), and (6), described below for the two 
configurations. 

(a) J±c Orientation {Fig. l(a)~] 

Here the three mutually perpendicular electric fields 
measured are Ej, the longitudinal field in the / direc
tion; Ez, the transverse field in the Z direction; and 
EZXJ, the transverse field in the ZXJ direction. In 
terms of the angles of Fig. 1 (a) the expressions for these 
fields up to second powers of H are for rj=d 

Ej=pnJ+JH2(Ai2 s i n V M i s costy 

—A 24 cos30 sin20); 

Ez=JHR2nsm<l>+JH2A42sm3dsm2<l>; 

Ezxj~ —JHRuz co$<t>+JH2A24 sin30 sin2<£. 

2,c (TRIGONAL) 

Y (BISECTRIX) 

JXc ORIENTATION 

(a) 

Z,c (TRIGONAL) 

Y (BISECTRIX) 

Jllc ORIENTATION 

( b ) 

^ FIG. 1. Experimental configurations giving specimen orienta
tions and directions of current, applied magnetic field, and 
measured galvanomagnetic fields relative to crystallographic axes. 

The binary axis is chosen at an angle 6, not equal to 
zero, since some of the terms including third-order ones 
can contribute only under these conditions. The de
pendence of these fields on <f> permits the separation of 
the measured field into contributions from the various 
individual terms. A2t appears in two fields, and will give 
comparable contributions in both for 0 = ± 1 5 ° . Seven 
coefficients, pn, JR23I, Ruz, An, An, A2\, and A42, result. 

For 17=0+71-/2, the fields are 

Ej = pnJ+JH2(An s in 20+^i3 cos20 

+^24sin30 sin20); 

EZ=JH2(—Ai2 sin30 sin2$—^444 sin2<£); 

EZXJ^ —JHRuz cosc/)+JH2Au cos30 sin2</>. 

(4) 

This arrangement yields the additional coefficients ^444 

and An) the remaining coefficients may again be de
termined, and the agreement of these values with the 
previously obtained ones serves as a check. 

(b) J\\c Orientation £Fig. l(b)2 

For this case H is again rotated in a plane containing 
/ . The three mutually perpendicular fields are: 
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Ej=puJ+JH2(Au sinfy+Az* cos2<£); 

Ex=— JHR2Z1 cosrj sin0 

+JH2 (A 42 sin2^ sin2<j>—A u sin?? sin2<£); (5) 

Ey = JHRni sinrj sin<£ 
-\-JH2(AA2 cos2t; sin2<£+^44 COST? sin2<£). 

The three as yet undetermined coefficients, P33, -4 31, and 
A 33, are obtained from E j , which is independent of 77. 
Here, the lateral rod faces are chosen to be X and Y 
planes and rj is set at either 0° or 90°. 

Ex and Ey permit additional, independent determi
nations of R2n, AM, and Aw These coefficients are also 
obtainable from the J±c oriented rods. The agreement 
of these two determinations measures the compatibility 
of the differently oriented samples and, hence, of the 
entire set of coefficients for each alloy. An additional 
arrangement in which H is rotated in a plane normal to 
J can be used as another check. The coefficients JR231, 
A 42, and A 31 enter under these conditions. 

Since expressions (3) to (5) are not invariant under 
the operation 6 —> 0+ir because the signs of Au and A42 
change, the X and Y axes are not uniquely defined. A 
consistent but arbitrary choice of axes is made by re
lating their directions to the intersections of dominant 
secondary cleavage planes with the c faces and to the 
slope of the secondary cleavage planes. For these axes, 
^24 and ^42 are both negative. 

III. EXPERIMENTAL DETAIL 

Since antimony cleaves easily, preparing specimens 
by cutting large ingots was given up in favor of re-
crystallizing molten precast rods of the desired shape in 
the two principal orientations, a technique long used for 
bismuth.7 The slow growth rate prescribed by Kapitza 
and Hasler, and used by Rausch for circular cylindrical 
antimony rods,8 was found to be not conducive to 
growth in the crystallographic oaxis direction, and led 
us to a modified apparatus and procedure whereby 
relatively unstrained and uniformly doped, square 
(3 m m X 3 mm), long (6 cm or more), single-crystal 
antimony rods with axes along or normal to the c axis 
can be easily and consistently grown.5 The technique 
introduces a very fast rate of crystallization, somewhere 
between 2 and 10 cm/min, in a crucible material of low 
heat conductivity relative to antimony. The undoped 
antimony is 99.997% pure and is used as supplied by the 
Bradley Mining Company, San Francisco, California 
from their Yellow Pine Mine at Stibnite, Idaho. Chemi
cally pure Baker's tin is the dopant. We determine the 
amount of tin added by weighing each mixture before 
and after alloying, and by spectroscopic sampling. 

The crystals selected for measurement show a re
sistivity between room and liquid nitrogen temperatures 

7 P. Kapitza, Proc. Roy. Soc. (London) A119, 358 (1928); L. 
Schubnikow, Koninkl. Ned. Akad. Amsterdam Proc. 33, 327 
(1930); M. F. Hasler, Rev. Sci. Instr. 4, 656 (1933). 

8 K . Rausch, Ann. Physik 1, 190 (1947). 

comparable with the best data reported in the litera
ture,9-10 and their galvanomagnetic (GM) coefficients 
reproduce from crystal to crystal for a given orientation 
and for the two orientations for —R2Z1, ~A^ —Aw 

Specimens 20 mm long are sharply cleaved from the 
longer rods. A set of three probes is placed in the 
unworked center region far from the ends11 on each pair 
of opposite faces. Each probe is accurately aligned on 
the center line of its face and the two longitudinally 
displaced probes on a face are separated by about 5 mm. 
The uncertainty in the geometric factors entering the 
determination of the electric fields is about 3 % for 
longitudinal and 1.5% for transverse effects. All voltage 
probes, No. 35 or No. 40 copper wire, are spot welded. 
Care is taken in all electrical connections to avoid 
contact emf's. In addition, the contacts and the rods are 
immersed in an isothermal alcohol bath. 

Magnetic fields are obtained from a Varian V-4007 
system. A slightly underdamped high-sensitivity re
flecting-type galvanometer (Leeds & Northrop Type 
HS, Model 2284b) is used for GM measurements, in 
conjunction with a Wenner thermocouple potentiometer 
(L & N Cat. No. 7559) to provide stable compensating 
voltages for the longitudinal effects, and to provide gal
vanometer calibration voltages. The system sensitivity 
is between 17 and 25 mm deflection/JUV. Primary cur
rents are determined from the voltage drop across a 
standard 0.01-12 resistor to one part in 104, the drift 
being reset by hand; the current density is 12 A/cm2. 
We define the galvanometer zero as the deflection posi
tion which does not change upon reversing the primary 
current direction in zero magnetic field. Deflections from 
this point with the magnetic field (and primary current) 
applied are measures of the transverse fields. 

Readings for the longitudinal resistance are obtained 
for forward and reverse current and are averaged. The 
unaveraged readings are usually subject to a correction 
of no more than 1 /xV in 300, because of a residual 
longitudinal temperature gradient due to the current. 
Longitudinal magnetoresistance values are obtained as 
follows. For a given current direction the resistance part 
of the longitudinal voltage is cancelled by applying a 
potentiometer voltage. The galvanometer reading is 
noted before, after, and while the magnet is on, the 
current being kept constant to one part in 104 for each 
reading, and the average deflection is used. In all, four 
such averages are obtained, dtH at a given <j> and <t>+w, 
and these are appropriately combined. 

Tranverse Hall and magnetoresistance readings are 
obtained for a given combination of dzH, <j>, and <£+7r 
for zhJ and averaged to minimize the effect of drift in 
the bridge balance point. The forward and reverse cur
rent averages for +H and <t> and — H and <£+7r are again 
averaged. 

9 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1924). 
10 C. T. Lane and W. A. Dodd, Phys. Rev. 61, 183 (1942). 
11 J. Volger, Phys. Rev. 79, 1023 (1950). 
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IV. EXPERIMENTAL ANALYSIS AND RESULTS 

Representative data for various runs and specimens 
in the arrangements of Sec. I I are shown in Figs. 2, 5, 
and 6. These curves usually include averaging over cur
rent direction and correction for misalignment. Figure 2 
shows the variation of the transverse fields Ez and 
EZxJ with <j> for 3.0, 3.5, 4.0, 4.5, 5.0 kG. The magnetic 
field is rotated in a plane normal to J , and / is normal 
to c. The theoretically expected variation, the last two 
of Eqs. (3), is also indicated. The differences for +H 
and —H curves are related to even effects. How the four 
constants — Rm, —R2Z1, A 24, -442 are obtained from 
these data is exemplified in Figs. 3 and 4. Plotting 
the differences [_Ez(H)-Ez{-H)y2J and £EZxj(H) 
— EZXJ(~H)2/2J against, respectively, H sin$ and 
H cos<£, we obtain the straight lines of Fig. 3 whose 
slopes give the constants — JRW and —Rnz- In a similar 
manner, the sum fields are used to obtain —-424 and 
—^42 as shown in Fig. 4. 

The data for all H of Fig. 2 fall on straight lines, 

indicating that the relevant expressions of Eqs. (3) are 
exact representations and that higher order galvano-
magnetic effects are absent in this whole range of 
magnetic fields. All straight lines pass through the 
origin, a confirmation of successful systematic removal 
of misalignment effects. 

Figure 5 shows the transverse field Ez at 5000 G for 
the case J±c, H±(ZXJ), described by Eqs. (3). The 
two contributions to this field may be separated as indi
cated in the figure; the solid curves give the best fit of 
the theoretically expected variation to the measured 
points. I t should be noted that here the ordinate scale is 
particularly small. 

The angular variation of the longitudinal field Ej for 
H±J±c, described by Eqs. (2), is shown in Fig. 6(a), 
curve (A). In this instance, values for Au, An, and ^424 
are determined from the amplitudes at <£=0°, 45°, 90°, 
135° of a smooth curve drawn through the experimental 
points. To verify that the over-all shape of the curve 
agrees with theoretical expectation, Ej is computed 

FIG. 2. Transverse galva-
nomagnetic fields, Ez and 
EzxJ> for normal and re
verse magnetic fields, dhH, 
at various angles 4> a n d 
magnetic field strengths. 
Here, H±J±c. 

-7 

_j , , r 1 « • r 

(A) E . t + H j / J - R , - . H S I N ^ + A S I N 3 0 H 2 S I N 2 * 

(B) E Z x J ( + H ) / J - - R | 2 3 H C O S * + A 2 4 S I N 3 f i H S I N 2 * 

HJLJlc, ,8%Sn, I ARBITRARY UNIT « . 4 fiV, 0 - - I 5 •» $ 

H * 3 0 0 0 , 3 5 0 0 , 4 0 0 0 , 4 5 0 0 , 5000 GAUSS 

270 
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(A) [ E Z ( * H ) - E Z ( - M ) ] / 2 J = R 2 3 | H SIN* 

(B) [ E Z K J ( - H ) - E Z X J ( * H ) ] / 2 J » R | 2 3 HCOS* 

HXJXc, .8% So, I ARBITRARY UNlT«.4/iV 

0 < ^ < 2 i r 

H» 3000, 3500, 4000, 4500,5000 GAUSS 

(A) HSIN* 
2 3 . 3 4 5 

(8) HC0S* (10 GAUSS) 

FIG. 3. Analysis of the data of Fig. 2 into difference fields at the 
various angles <£ to obtain the Hall constants — R2n and — Rns. 

with these values at other angles where data are taken 
and compared with the corresponding experimental 
value. Curve (B) plots Ej calculated vs Ej experimental 
for these points, the line with slope of unity going 
through the origin indicating satisfactory agreement. 
The expected linear dependence of the voltage on H2 is 
verified in Fig. 6(b) at the angles of <j> which allow An 
and A u to contribute separately. The values and mag
netic-field dependence of An, AM, and Azi are obtained 
in an analogous manner using the appropriate Ej of 

(A) [ E Z ( * H ) * E Z ( - H ) ] / 2 J = A 4 2 S I N 3 0 H 2 S I N 2 * 

( B ) [ E Z x J f * H ) * E Z x J ( - H ) ] / 2 J = A 2 4 S I N 3 f i H 2 S I N 2 ^ 

HXJ-Lc , .8%Sn, I ARBITRARY UNIT « . 4 M V , 0 < £ < 27r,0 = - l 5 o = l ^ 

H= 3000 ,3500 ,4000 , 4 5 0 0 , 5000 GAUSS 

b 
</> . 
»- 4 
z 
z> 
>- 3 
QC 

< cr ? 
t -
m , QC 1 

< • -y. —""J""" •f~~~** • 
• 

(A) 1 

• -—-"""""* 
S8-900 

1 — 
10 15 

H2S!N2<£ (lO6 GAUSS2) 

20 25 

5 10 15 20 

H 2 S I N 2 $ ( l O 6 GAUSS2 i 

FIG. 4. Analysis of the data of Fig. 2 into sum fields to obtain the 
magnetoresistance constants —^24 and —^42. 

Eqs. (4) and (5). With these configurations A\% and A%± 
are usually again evaluated as a check, and î 23i, A 42, A 44 
are obtained in order to establish compatibility of the 
differently oriented specimens. For these three, Ex and 
Ey of Eqs. (5) apply. 

Typical complete sets of data for one concentration 
are shown in Table I. The specified limits of repro
ducibility result mostly from the variation in specimen 
coefficient value with different experimental determi
nations. That for —Au is estimated not to exceed 0.06 
parts. The minimum accuracy for comparing values of 
like coefficients for the different specimens, already 
indicated in Sec. I l l , is ±1.5% for — Rm, —Rm, A&, 
Au, and ± 3 % for the remaining ones. 

TABLE I. Specimen galvanomagnetic coefficients for undoped antimony. 

Phen. 
coef.a 

P11 
P33 
— R231 
— Rl2S 
A12 
An 
Azi 
An 
An 
—Au 
—An 
—Aa 

5 1 - 9 0 ° 

45.2 ±0.8 

2.04±0.00 
2.32±0.02 

16.00±0.00 
4.66±0.02 

6.5 ±0.1 

1.48 
2.75±0.06 
2.0 ±0.2 

5 2 - 9 0 ° 

44.7 ±0.2 

2.07±0.05 
2.34±0.00 

16.82±0.00 
5.03±0.03 

6.79±0.03 

1.73 
2.3 ±0.4 
2.06±0.06 

Specimen identification number 
5 3 - 9 0 ° 

44.0 ±0.3 

1.99±0.00 
2.36±0.03 

16.06±0.02 
5.3 ±0.2 

6.6 ±0.1 

1.34 
2.73±0.05 
2.1 ±0.5 

5 1 - 0 ° 

33.4 ±1.2 
2.05±0.05 

10.6 ±0.3 

1.95±0.12 
1.56 

2.24 

5 2 - 0 ° 

34.9 ± 1 
2.06±0.00 

10.8 ±0.2 

2.01±0.04 
1.40 

2.23±0.06 

5 3 - 0 ° 

35.1 ±0.2 
2.04±0.00 

11.1 ±0.1 

2.08±0.00 
1.41 

2.25 

« Units: p, 10~« Q-cm; R, lO"" Q-cm/G; A, 1<T" G-cm/G*. 
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I t is evident from Table I that the limit of repro
ducibility for a particular coefficient varies from speci
men to specimen and is different for the different 
coefficients on a given specimen. Although this may be 
due to fluctuations in the composition of the crystal 
specimens, differences in probe contact properties are 
their most probable cause. Systematic variations from 
specimen to specimen in some of the alloy coefficients 
suggest slight differences in specimen doping concen
tration. 

An additional source of error is the small longitudinal 
thermal gradients observed on some current-carrying 
specimens. Such effects and the resulting thermomag-
netic effects of the same symmetry as the isothermal 
galvanomagnetic effects are most likely small since truly 
systematic variations from specimen to specimen are not 
observed. 

Because the coefficient values for specimens of a given 
tin concentration seem to fluctuate and because the data 
of any one specimen are equally likely to be correct, 
representative values are averages of all data taken. Our 
choice for representative values and their limits, are 
presented in Table I I which also includes the pure 

6 

4 

A
R

B
IT

R
A

R
Y

 
U

N
IT

S
 

1 
l 

- 6 

(A) 

- (B) 

(C) 

_ 

-

-

i 

E z ( * ) = JH2 (-A42SIN 30 S IN 2 * -A 4 4 SIN 2<*>) 

(E z ( ^ ) + E z ( 7 r - ^ ) ] / 2 = JH2(-A42)SIN3esiN2^ 

[ E Z ( £ ) - E Z ( T T - < £ ) ] / 2 = J H 2 ( - A 4 4 ) S I N 2 < £ 

HlZxJ .J lc 

i 
/ 

\ 0 = - l 5 ° « » i - ¥ / 2 
#\ (C) H = 5000 GAUSS 
\ 0% Sn 
\ 2 ARBITRARY UNITS 

[ \ « . 0 9 / A V 

\ \ 

f 

n 
/ / " ' 

r i 
\ ! 

Si-90* 

L .... i . i i 
90 180 

^ - D E G R E E S 

FIG. 5. Transverse galvanomagnetic field Ez for various <j> and 
#=5000 G, curve and Eq. (A), and analysis of Ez into sums and 
differences, curves and Eqs. (B) and (C), respectively, to obtain 
—Aa and —A42. In this case, H is always normal to the ZXJ 
direction. 

0 1 2 3 4 

EJ=JHlA l 2SlN2^)-»-A l 3COS2^-A24COS3eSIN2^) 

HJ.JJLC 
/ .8%Sn 

I ^~*^Ji ' ARBITRARY UNIT 
I /[ / X «.33M"V~ J 

/ • / 
| (A) / A 

/ /^ 
\^^yy<B> 

^/ V H = 5000GAUSS 
/ • Jv e = -i5°= »i 

/ < < 

\/£\, , I . 58-9°: I 
80 120 

(A) ^-DEGREES 

(a) 

160 200 

Ej(<£=0°) = A , 2 JH 2 

EJ(^>=90°)=A|3JH2 

H1J1C 
f .8%Sn 

1 ARBITRARY UNIT A I2 
« . 3 3 M V • / 

h ^ y ^ 

L^~-"~*'"'Li 1 

^ I 3 _ J 

S8-900 

J i 1 

1 1 r 

0 5 10 15 20 25 
H 2 (lO6 GAUSS2/ 

lb) 

FIG. 6. (a) Curve (A): Longitudinal galvanomagnetic field Ej 
for various <f> (lower abscissa) and #=5000 G, showing amplitudes 
and angles used to evaluate A12 and An. The lack of symmetry 
about these points results from ^24's contribution. Curve (B): Ej 
observed vs Ej calculated (upper abscissa) at remaining angles to 
verify formula shown, (b) Demonstration of H2 dependence of 
magnetoresistive fields associated with A12 and An, typical for 
4̂11, ^33, An, and —Au. 

antimony values of F-J. These data are next compared 
with known published values. 

For pure antimony, our results reproduce the measure
ments of pn and P33 by Bridgman9 and by F-J, but our 
Hall and most of magnetoresistance constants are lower 
than F-J's by 10 and by about 20%, respectively. Our 
lower values may be due to real differences in properties 
of our regrown precast and their cut crystals, or due to 
differing measurement techniques. That the difference 
in results are not merely due to systematic error in cur
rent or field measurement is seen by the large fluctuation 
among the individual magnetoresistance coefficients 
about this average reduction. For —^44 an unusually 
large discrepancy obtains which we ascribe mainly to the 
fact that in the work of F-J —Au is calculated from 
separate measurements on three differently oriented 
crystals. In this work —Au is more directly evaluated; 
moreover, it is twice obtained from separate measure
ments on differently oriented specimens, and the re
sulting values agree. 
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TABLE II. Representative pure 

Resistivity Hall 
%tin 

0, F -p 

0 
0.2 
0.8 

Tot. ± % 

p n 

43 

44.3 
41.8 
38.7 

4 

P3J 

36,44 

34.6 
38.4 
44.4 

6 

—i?231 

2.2 

2.05 
2.07 
1.74 

5 

—Ri2i 

2.51 

2.34 
2.10 
1.34 

5 

An 

19.9 

16.5 
11.8 
4.4 

8 

» Units: p, 10"« fi-cm; R, 10"1* fi-cm/G; A, 10"16 Q-cm/G2. bSee reference 1. 

Without a systematic comparison of both sets of 
crystals it is difficult to ascribe the discrepancies to a 
single cause, and neither set of values for pure antimony 
has been fully established as the better one. However, 
since it is felt that we have introduced a more system
atic approach towards growing and handling the crys
tals, and towards reproducibly preparing and measuring 
specimens, our pure antimony data are to be preferred. 

With respect to the alloys, the only data in the litera
ture refer to the variation of pu with tin doping. In 
agreement with Lane and Dodd,10 at room temperature 
pn decreases and at liquid-nitrogen temperature it in
creases with increasing tin content for concentrations in 
our range. We also duplicate their variation in pn with 
temperature for pure and 0.2% doped antimony over 
this temperature range. Our 0.8% alloy, however, corre
sponds to their 0.5% alloy. Unfortunately, no other 
data exist giving the variation of the remaining coeffi
cients on alloying. However, the regular decrease in the 
magnetoresistivities and Hall coefficients, the former 
faster than the latter, is in agreement with what one 
would expect if the number of majority carriers in
creases while the scattering time and mobilities decrease 
faster with changes in Fermi level. The fact that p33 
increases while pn decreases, and that one of the Hall 
coefficients increases slightly before decreasing, suggests 
that a more detailed explanation must also include 
minority carriers. The model for such an explanation is 
developed in the following Section. 

The inverse galvanomagnetic coefficients needed for 
theoretical interpretation, and the limits within which 
fits of the model to the data are explored, are listed in 
Table I I I . 

V. ELLIPSOIDAL BAND STRUCTURE AND ANALYSIS 

This section discusses the interpretation of the ex
perimental data in terms of the ellipsoidal band struc
ture model developed by F-J and also by Drabble and 
Wolfe12 and Okada.12 For application to the alloys, the 
model has been generalized to include unequal electron 
and hole carrier populations. 

12 J. R. Drabble and R. Wolfe, Proc. Phys. Soc. (London) B49, 
1101 (1956); T. Okada, Mem. Faculty Sci., Kyushu University Bl, 
168 (1955). 

J . J U R E T S C H K E 

doped antimony coefficients.* 

Au 

6.4 

5.1 
3.6 
1.8 

8 

^ 3 1 

13.6 

10.8 
9.3 
5.1 

4 

Magnetoresistivity 
An AM 

7.3 

6.6 
4.9 
1.95 

5 

5.2 

2.0 
1.8 
1.07 

10 

~ ^ 4 4 

2.8 

1.5 
1.1 
0.44 

20 

—An 

3.5 

2.6 
2.1 
1.0 

25 

— A 42 

1.4 

2.1 
1.7 
0.85 

25 

a. The Basic Model 

Surfaces of constant energy in the neighborhood of 
the Fermi level are represented by a family of three 
ellipsoids in momentum space. Each ellipsoid is char
acterized by three principal axes, and an angle of tilt of 
one principal axis with respect to the 3 axis; symmetry 
requires one of the axes to lie along a binary direction 
and the remaining two in the mirror plane. This is, 
therefore, not the most general ellipsoidal structure. I t 
is the simplest one which does not require any of 
the phenomenological coefficients measured to vanish 
identically. 

This energy structure is related simply to transport 
properties by the assumptions that interellipsoid scat
tering can be neglected, and that within each ellipsoid 
scattering is describable by a relaxation time tensor r (k) 
diagonal in the principal energy coordinate system. In 
such a model the observed electrical properties arise 
from the independent additive contributions of each 
ellipsoid separately, and the usual definition for the 
principal mobilities, /**•, in terms of the principal effective 
masses, m^ and principal scattering times, r,-, applies: 

fja=eTi/mi, (6) 

where i= 1, 2, 3. For one type of carrier of density N in 
a family of three ellipsoids the observable inverse 
galvanomagnetic coefficients are given by the following 
functions of the mobilities: 

2(rii = A7<CMi+aV2+02/x3], 

cr33 = AMj#2M2+a2M3], 

-2CP231=±MM2M3+Ml(/?V2+«2M3)], 

2 ^ 1 3 = ^[Mi+a2M2+^2M3][Mi(«2M2+/52M3)], 
2c^3i = iYe[>2/x2+^M3][M2M3+Ml(/32M2+a2iU3)]> 

c2B^c2(3B12-Bn-2Bu) ( ' 

= iY^1+a2
M2+^3]CM2iU3+/xi(/52M2+a2M3)], 

- 2c*Bu = A^2M2+a2
M3][>i («2M2+/52M3)], 

2c2B,^c2(-Bu+SB11-2Bu) = Nea^^1(^-^y7 

4^24=iVea/5Ml( iu2-M3)[-Mi+«2M2+/32M3]) 

4c2^42=iVmiS(M2--M3)Dx2M3~-Mi(/32/X2+a2M3)]. 
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TABLE III. Representative pure and tin-doped antimony coefficients. 

% t i n 

0, F-J» 
0 
0.2 
0.8 

Tot. =b% 

Conductivity 
o-n 

(ioya 
23.2 
22.6 
23.9 
25.9 

6 

cm 
-cm) 

27.5 
29.0 
26.1 
22.5 

6 

Inverse Hall 
— - ^ 2 3 1 

(lo-yo-
1.44 
1.34 
1.25 
1.01 

17 

- P l 2 3 
cm-G) 

1.36 
1.19 
1.20 
0.9 

17 

B12 

11.5 
9.0 
7.4 
3.4 

19 

Bn 

4.2 
3.2 
2.6 
1.5 

24 

Bzi 

11.2 
9.9 
7.0 
3.0 

18 

Magnetoconductivity 
B i i 

(lo-yc 
4.0 
3.3 
2.2 
1.3 

17 

-S33 

5-cm-G2) 

3.9 
1.7 
1.2 
0.54 

22 

—Bu 

2.2 
1.4 
1.01 
0.43 

38 

±B2* 

1.9 
1.33 
1.20 
0.66 

37 

±#42 

0.87 
1.39 
1.06 
0.50 

37 

•See reference 1. 

For each ellipsoid, the " 1 " direction is along a binary 
axis, while " 2 " and " 3 " lie in a mirror plane, " 3 " making 
an angle ^ with the 3 axis. In the above equations, 
a=cos\l/y ^=sint^; an are the conductivities; —Pijk are 
the inverse Hall coefficients; and Bpq are the magneto-
conductivities. 

For more than one carrier the right-hand sides of 
Eqs. (7) consist of a number of similar contributions. 
Thus, for two ellipsoid sets characterized by A7i, jui, JJL2, 
M3, «i, 0i and N2, vh v2, vz, <x2, ft, 

2<Tn = A7ie[Mi+Q!i2M2+/5i2M3] 

-2^231=— iVie[jLt2M3+Ml( l̂2M2+ai2M3)] 
+x¥2e[^2^3+^i(/322^2+a2V3)], etc. 

(8) 

The inverse Hall coefficient is written on the assumption 
that N2 refers to holes and A7i to electrons. By the ex
plicit introduction of such signs, all mobilities and 
densities are always taken as positive. 

Equations (7) define all twelve phenomenological con
stants. If the model contains fewer independent parame
ters, it requires certain identities among the observed 
coefficients. The number of such relations depends on 
the general band structure features. Thus, for two 
bands, with Ni = N2, the nine independent parameters 
predict three identities. Two of the identities are known: 

2Z?33=3i?ii — B\2—2$44 (9) 

and 

4P231L°rll (~" 2-B44) — 0-33JB13] 
= i:>123[4(riiI33i— (733 (3J3i2-•Bn-2BU)-]. (10) 

For unequal carrier densities, Eq. (10) no longer holds, 
and only Eq. (9) and an unknown identity exist. I t is 
of interest, however, that in this case, the difference in 
carrier densities is easily expressed in terms of observed 
coefficients. We have 

(N2-Ni)ec-
^P2nL(Tii(~2Bu)-^zBlz2~PinZ4anBzl-azz(SB12~B1i-2Bu)l 

IBisBzi- (-2Bu)(3Bl2-~B11-2Bu) 
(ID 

This is a useful relation for checking the trend of the 
coefficients with known alloying. If Ni=0 we obtain the 
single carrier case which involves seven identities. All of 
these are known. Among the useful ones, in addition to 
Eq. (9), are the two following relations: 

N2ec = o-11(~P12z)/B1z = (Tzz(—P2zi)/Bzi 

= (Tzz(-Pi23)/(-2Bu) 
= 4<rn(-P2zi)/(SB12-Bll-2Bu)J (12) 

and 

4BUBU= (-2B«)(3B1S-Bn-2B«). (13) 

These identities serve as the first check on the general 
applicability of the model to the experimental numbers, 
and may also be used to differentiate between the single 
or multiple carrier possibilities. The fact, as F-J have 
noted, that Eqs. (7) require a negative definite value for 
B44 is also of importance. 

A possible way of relating the alloy data to pure 
antimony introduces isotropic scaling of all mobilities of 

a given carrier, in addition to changes in carrier density. 
Let re represent the ratio of the electron carrier density 
in the alloy to that in pure antimony and we the ratio of 
each electron mobility in the alloy to the corresponding 
pure antimony mobility, and define rh and Wh similarly 
for holes. The alloy coefficients, in this section denoted 
by 

&ii,aj Pijk,aj BPQta, may be written as 

0'ii,a=rhWhCTiith-\-reWe(Tiite^(llO'ii,h-{-bi(Xiite, 

— Pi3k,a=—rhWh2Pi3k,h+reWe
2Pijkie 

^ — a2PiJk,h+b2Pijk,e, (14) 

Bpg^^rhWh^Bpg^+reWe^Bpq^ 

= azBpgjh-\-bzBpq,e. 

Here the pure antimony coefficients with subscripts e or 
h are, respectively, the electron and hole contributions 
given by Eqs. (7); a; and hi correspond to rhWhi and 
rewe

i and satisfy 

a2
2 = aiaz, and b2

2=bibz- (15) 
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TABLE IV. Mobility and tilt angle ellipsoidal parameters for pure antimony. 

Solu. No. 

318 
430 
p-ja 

Carrier density 
No 

(1019/cm3) 

4.3 
4.3 
3.7 

V\ 

4.07 
3.80 
3.56 

Holes 
Mobilities 

(103 cm2/V-sec) 

0.20 
0.13 
0.13 

vz 

2.4 
2.42 
3.30 

Tilt angle 

20° 
22° 
27° 

Mi 

1.45 
0.17 
0.15 

Electrons 
Mobilities 

jU2 M3 

(103 cm2/V-sec) 

0.18 
1.63 
1.18 

2.68 
2.43 
4.05 

Tilt angle 

10° 
54° 
60° 

a See reference 1. 

least. Moreover, the changes are compatible with an 
increasing hole population (rfc> 1), a decreasing electron 
population ( r«<l ) , decreasing hole mobilities (wh<l), 
and increasing electron mobilities (we>i) all of which 
can be reasonably expected to happen on adding tin. 

c. Computational Analysis 

Although according to the preceding discussion the 
experimental test of the identities of each of the various 
models does not rule out any one absolutely, the data 
are well compatible with two carriers and appear to 
scale. Hence, we have applied the two equal carrier 
model to the pure antimony coefficients and then tried 
to scale the pure antimony electron and hole contribu
tions for the best set of at- and bi for each set of alloy 
data. Obviously, by adopting scaling we neglect possible 
changes in the energy band structure with doping. 

Pure antimony band structure parameters are ob
tained from the measured coefficients by an IBM 650 
computer analysis by means of the program developed 
by F-J. A modification was introduced to restrict ac
ceptable solutions to those whose computed coefficients 
are within the calculated tolerance in addition to those 
having a low weighted mean-square deviation or figure 
of merit. The two best among the many good solutions 
found in the same neighborhood are shown in Table IV. 
They are characterized by highly anisotropic mobilities 
and nonzero tilt angles, have 7V=4.3Xl019/cm3, and are 
remarkably similar in their hole structures. They differ 
primarily in the size of JJLI and in the remaining electron 
ellipsoid parameters. The fits to the data of either solu
tion, shown in Table V, are uneven and neither electron 
structure can be favored. Consequently, the scaling 
property of the alloy coefficients in relation to both 
complete solutions is examined. I t is important to note 
that the common hole solution and electron solution 
No. 430 are in the same neighborhood already found by 
F-J with slightly different experimental coefficients. 

Alloy solutions are based on scaling of the electrons 
and hole contributions to the twelve coefficients ac
cording to the scheme already outlined. These separate 
contributions are shown in Table VI. Because their fit to 
the pure antimony data is not uniform, a scaled alloy fit 
must be considered satisfactory if it lies within or near 
compounded limits determined by the experimental 

b. General Ellipsoidal Features of the Results 

We consider the application of the various models by 
determining how well the inverse data, presented in 
Table I I I , satisfy the identities and by examining the 
prediction of the various relations. Trends in the coeffi
cients with increasing alloying are discussed and ex
amined for scaling properties and reasonableness. 

The initial and simplest indication of the applicability 
of the general ellipsoidal model is the negative experi
mental value of Bu for pure and alloyed antimony. We 
also find, because of the inherently large calculated 
limits of the inverse data, that the relevant pure and 
alloy coefficients—B24 and B42 not included—more or 
less satisfy the identity relations of each arbitrary 
specific model within our wide calculated tolerances. 
Equation (11), nevertheless, does point to a net increase 
in the effective number of positive carriers, N2—N1. For 
pure and 0.2 and 0.8% tin-doped antimony, there ob
tains 3.7, 4.6, 8.3Xl019/cm3, respectively, with a toler
ance of roughly ± 2 0 0 % . 

The possibility of scaling the alloy coefficients is 
evident from Table I I I . On the addition of 0.8% tin a n 
increases about 15% and 0-33 decreases about 22%, while 
the inverse Hall coefficients and the eight magneto-
conductivities, respectively, decrease about 25 and 70% 
of their corresponding pure antimony values. Similar 
changes occur for the 0.2% alloy. 

These changes are consistent with the scaling model 
where the B's are most sensitive to alloying and the c's 

TABLE V. Calculated coefficients for undoped antimony. 

Phen. 
coef.b 

(Til 

0-33 

-F123 
-P231 

2Bu 
2Bn 
-2Bu 
Bi 
-B33 

- 4 B 2 4 

-Bn 

Solution 318 
Calcu
lated 

21.2 
30.7 
0.98 
1.34 
5.95 

18.1 
2.9 

30.1 
1.33 
7.0 
4.1 

a Reference 1. 

Calc/exp 

0.94 
1.06 
0.82 
1.00 
0.93 
0.91 
1.04 
1.14 
0.78 
1.3 
0.74 

Solution 430 
Calcu
lated 

22.6 
26.9 
0.98 
1.34 
5.84 

17.0 
3.02 

30.8 
1.75 
6.86 
3.29 

Calc/exp 

1.00 
0.93 
0.83 
1.00 
0.91 
0.88 
1.08 
1.16 
1.00 
1.31 
0.59 

Solution of F-J * 
Calcu
lated 

23.2 
27.5 

1.36 
1.44 
8.27 

21.6 
5.01 

36.2 
3.59 
7.16 
3.45 

Calc/expo 

1.00 
1.00 
1.00 
1.00 
0.97 
0.96 
1.14 
1.04 
0.92 
0.94 
0.99 

b Units: <r, 10VQ-cm; P, 10-w/«-em-G; B, 10-«/G-cm-G2. 
0 In this computation of calc/exp, F-J's experimental values are used. 
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data and the pure antimony agreement. With this ad
justment of effective limits of error the scaling consists 
of finding the best sets of a*, bi from an overdetermined 
set of equations, subject to Eq. (15). Although the solu
tions are not unique, they fall into well-defined neigh
borhoods. 

Scaled values of the coefficients and the experimental 
values are shown for the two solutions in Table VII. The 
quality of the fits is about the same as for pure antimony 
and the fit is better for the 0.2% alloy than for the 0.8% 
alloy data. Both pure antimony solutions yield nearly 
the same scaling factors, though particularly the bi are 
not very significant as the electrons contribute relatively 
little to most coefficients. None the less, all possible 
combinations of the a^ bi yield essentially the same 
relative changes for the carrier densities and mobilities. 
The most probable values are summarized in Table VIII . 
They point to a net increase in positive carriers for the 
0.8% tin-doped alloy, of 8Xl019/cm3, in agreement with 
the results of Eq. (11). 

TABLE VI. Electron hole contributions to calculated coefficients 
for undoped antimony. 

TABLE VII. Scaled alloy solutions and experimental alloy values. 

Phen. 
coef.a 

0"11 

0"33 

— ^ 1 2 3 

— ^ 2 3 1 

2Bn 
2Bzi 
—2Bu 
B, 
Bz3 
-4J524 
-4J542 

Solution 318 
Hole 

15.4 
13.0 
1.23 
2.79 
5.53 

10.6 
2.3 

25.2 
1.16 
6.5 
3.2 

Electron 

5.8 
17.7 

-0 .25 
-1 .45 

0.42 
7.5 
0.6 
4.0 
0.17 
0.5 
0.9 

Solution 430 
Hole 

14.7 
14.2 
1.23 
2.82 
5.27 

11.09 
2.56 

24.04 
1.73 
6.94 
4.24 

Electron 

7.9 
12.7 

-0 .25 
-1 .47 

0.57 
5.45 
0.46 
6.75 
0.02 

-0 .08 
-0 .95 

a Units: cr, lOV^-cm; P, 10~7Q-cm-G; B, 10_8/^-cm-G2. 

Because of the uncertainity in and the relative small-
ness of the electron contributions, we have also tried to 
scale the alloy solutions entirely to the hole part of the 
pure antimony solutions. For the 0.2% alloy, the fit is 
definitely poor; and for the 0.8% alloy, pure antimony 
solution No. 430 allows such a solution, though still of 
lower quality than the solutions of the two-carrier 
scaling model. 

The analysis of the experimental data in terms of the 
model leads to the following conclusions: 

(1) Two alternative well-defined sets of mobility 
ellipsoids explain the pure antimony data; they have a 
common structure for the holes, while the electron 
ellipsoids differ appreciably. 

(2) The alloy data can be explained by carrier densi
ties and mobilities which scale isotropically from either 
undoped antimony solution, with scale factors of similar 
magnitude. 

(3) In all cases, the hole density more than doubles, 

Inverse 
GM 

coeffs.a 

<m 
^ 3 3 

• — ^ 1 2 3 

— Pm 
2Bn 
2Bn 
— 2Ba 
B* 
Bzz 
- 4 £ 2 4 
- 4 B 4 2 

Exp. 
value 

23.9 
26.1 

1.20 
1.25 
5.2 

14.0 
2.02 

21.0 
1.2 
4.8 
4.24 

0.2% tin 
Scaled values 
Solu. 
318 

20.7 
29.0 

0.90 
1.28 
4.82 

14.5 
2.4 

24.3 
1.08 
5.68 
3.36 

Solu. 
430 

22.8 
25.8 

0.91 
1.39 
4.15 

12.6 
2.2 

22.2 
1.23 
4.80 
2.21 

Exp. 
values 

25.9 
22.5 

0.90 
1.01 
3.0 
6.0 
0.86 
9.8 
0.54 
2.64 
2.00 

0.8% tin 
Scaled values 
Solu. 
318 

22.5 
24.8 

0.60 
1.16 
2.02 
6.89 
1.03 

10.51 
0.46 
2.34 
1.47 

Solu. 
430 

22.4 
24.0 

0.71 
1.26 
2.10 
6.13 
1.08 

13.0 
0.62 
2.48 
1.20 

» Units: <r, 10VG-cm; P, 10-i/fi-cm-G; B, lO-s/a-cm-G*. 

the electron density decreases to about half its original 
value, but both carriers still exist in the 0.8% alloy. 

(4) The hole mobilities decrease with increasing tin 
content, whereas the electron mobilities are practically 
unchanged. 

VI. DISCUSSION 

In this section we review various properties of the 
pure antimony solutions in order to estimate their re
liability, and extend a similar estimate to the alloy 
solutions. We propose locations of the bands and com
pare our models with those proposed by others. The new 
information gained from the alloy data on the electronic 
properties of antimony is then summarized. 

Our pure antimony solution 430, Table IV, agrees 
with F-J's solution within small differences in the values 
of the parameters. All major features, such as the rela
tive sizes and magnitudes of the mobilities and the tilt 
angles, are recognizable, if, as we have already done in 
Table IV, their " 2 " and " 3 " mobilities are interchanged 
and the complementary tilt angles specified. [Such a 
transformation only changes the signs of B24 and J342 

which is to be expected when the reference system is 
changed. See Eqs. (7).] 

This good agreement is somewhat surprising in view 
of the differences in experimental values for the input 
cr's and P's . However, it is not accidental, for these 
solutions are characteristic of the whole neighborhood, 
and vary relatively smoothly with the input data. One 

TABLE VIII. Alloy representative scaling factors and 
carrier contribution.8 

% S n 

Holes 

P/No vi/vi{0%) 

Electrons 

Carrier 
contri
bution 

re= w€= per tin 
N/NQ fn/fxi(0%) atom 

0 
0.2 
0.8 

1.0 
1.3 
2.5 

1.0 
0.84 
0.52 

1.0 
0.8 
0.5 

1.0 
0.98 
0.92 

0.27 
0.33 

* Units: No =4.3X 1019/cm*; »», m = (0.1 to 4)X 10s cm2/V-sec. 
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may conclude that within rather wide variations of the 
input data a basic pattern of the parameters satisfies all 
the requirements imposed by the model. Similarly, this 
relationship also establishes the adequacy of the ma
chine search procedure. Furthermore, the fact that the 
hole structure is common not only to our two solutions, 
but also to F-J's, is good evidence about its reality, and 
we conclude that these experiments define the major 
features of the hole ellipsoids with some certainty. How
ever, the exact values for the mobilities and, in many 
cases, for the tilt angle are sensitive to the computer 
search parameters. 

Although solution-430 electron bands are also in 
agreement with F-J's solution, their reality is much less 
certain than that of the holes. Solution 318 gives a very 
different answer for the electrons, and other good solu
tions usually show a larger variation in the ellipsoid 
parameter values for electrons than for holes. Further
more, many electron solutions are near one or another 
of the existence limits of their parameters where the 
machine computation accuracy is very low. Because of 
this, structures whose the electron tilt angles are at 
either 0° or 90° may be automatically rejected by the 
machine and solutions having values close to either limit 
are an indication that such extremal solutions may exist. 
Moreover, a family of electron structures has not been 
explored in which the " 2 " and " 3 " mobilities of the 
electrons are interchanged, the complementary tilt angle 
designated, while the respective hole parameters remain 
fixed. This transformation is not equivalent to a refer
ence frame change and leads to changes in the sign of the 
electron contributions to $24 and B^ An examination 
of the contributions to JB24 and £42, Table VI, shows that 
the electron parts are not more than roughly 25% of the 
hole contributions. Adding or subtracting such small 
quantities neither materially improves nor worsens the 
general fit. The possibility of such additional solutions 
together with the ones already found leaves considerable 
uncertainty in the specification of the electrons. 

The placement of the ellipsoids in the Jones zone by 
matching the tilt angle to the normal direction of a zone 
face allows various possibilities. Our hole structures, as 
well as F-J's, may be placed at the center of the (221) 
faces. The electron structure of solution 430 can also be 
located at this point, using the complementary tilt 
angle, so that overlapping bands obtain at the same 
point in reciprocal space. Such overlapping, predicted 
for reflection symmetry points of sixfold multiplicity,13 

would require doubling the number of ellipsoids, with 
each pair symmetrically displaced about or along the 
reflection plane trace. Our data allow equally well either 
set of ellipsoids at the centers of the (110) faces. These 
centers are also suitable locations for the electron part of 
solution 318, of tilt angle 10°. If this angle should really 
be 0°, the structure would have rotational symmetry 
and could be either along the zone axis, as suggested 

13 M. H. Cohen, Phys. Rev. 121, 387 (1961). 

independently by Mase and Harrison,14 at points of 
single or double multiplicity, or both, and/or at the 
intersections of adjacent (110) faces, with their " 3 " axes 
parallel to the trigonal direction. 

Our interpretation of the alloy data is subject to all 
the uncertainties of the pure antimony solutions from 
which it is derived and, in addition, must be judged in 
light of the rather arbitrary assumptions inherent in our 
procedure of scaling the solutions. As shown in Sec. V, 
the pure antimony solutions can be scaled by changes in 
carrier density and by proportional changes of each 
carrier's mobilities to give a fit to the experimental alloy 
data. The fit is not intrinsically poorer than the unsealed 
fit to the pure antimony data, so that the alloy solutions 
obtained in this fashion have the same quality as that 
found by the computer for pure material. Better fitting 
nonscaling solutions which may be related to the pure 
antimony solutions found perhaps also exist. However, 
in terms of the model, it would be surprising if the alloy 
data are, indeed, more exactly interpret able than those 
of the pure material, for the model takes no explicit 
account of, for instance, impurity scattering or fluctua
tions about homogeneity15 which may have an effect on 
the observed coefficients. Nonscaling solutions of the 
same quality also cannot be ruled out. (Although a 
formalism for searching for such solutions was set up, 
and trial hand calculations were carried out, we have no 
information on nonscaling good solutions. A search for 
such solutions is continuing.) 

The new information obtained from the alloy meas
urements concerns the changes in carrier concentration 
with doping. From these it is possible to draw some 
additional conclusions about the band structure of 
antimony. As tin is added, the density of holes increases, 
while that of electrons decreases, Table VIII. The 
difference between the carrier densities is much smaller 
than the density of tin added. Thus for the 0.8% alloy, 
adding 26X1019 tin atoms/cm3 produces a carrier un
balance of only 8Xl0 l 9 /cm3 . A discrepancy between 
these numbers is not surprising, in view of the similar 
differences in the effect of doping on other properties of 
antimony and bismuth already mentioned in Sec. I. 
Within the uncertainties of our results, we may conclude 
that tin contributes about 0.3 hole per atom when added 
dilutely to antimony. 

The fact that the hole population increases much 
faster than the electron population decreases implies 
that the density of states in the two bands differs. 
Employing degenerate statistics and overlapping ellip
soidal bands of standard and inverted form, and as
suming that on dilute alloying (1) no relative shift of the 
band edges occurs, (2) the effective masses are essen
tially unchanged, and (3) for the 0.8% alloy, the 
number of holes about doubles while the number of 

14 S. Mase, J. Phys. Soc. Japan 13, 434 (1957); 14, 584 (1959); 
W. A. Harrison, J. Phys. Chem. Solids 17, 171 (1960). 

16 C. Herring, J. Appl. Phys. 31, 1939 (1960). 
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electrons is halved, we obtain for the ratio of the Fermi 
energy (measured with respect to the band edge) in pure 
antimony 

ee/eh=mh/me^2y 

and a hole density of states about 2.2 times that of the 
electrons at the Fermi level of pure antimony. Our 
estimates for the separate overlap and carrier Fermi 
energies are based on the low-temperature effective mass 
values available.2 With Shoenberg's values (wiw2w3)

1/3 

= 0.17w0. If assigned to electrons, as cyclotron reso
nance experiments suggest,16 the overlap energy for 
three ellipsoids is 0.19 eV, and the hole and electron 
Fermi energies are, respectively, 0.06 and 0.13 eV for 
pure antimony and 0.10 and 0.08 eV for the 0.8% alloy. 
The principal scattering times at room temperature are 
of order of magnitude 10~13 sec. F-J obtained an iso
tropic relaxation time by attributing the masses to the 
holes. For such an assignment we find for the overlap 
energy 0.42 eV, and the hole and electron Fermi energies 
are, respectively, 0.13 and 0.29 eV for pure antimony. 
These energies may be judged to be not in line with 
Jain's17 gap and overlap energy variation for the Bi-Sb 
alloys, provided an extrapolation of his limited data to 
pure antimony is meaningful. Additional evidence for an 
electron assignment is the hole band mass of ~0.34wo 
that our model yields. This value, while it cannot be 
resolved into principal mass components, is approxi
mately the cyclotron resonance mass Datars18 tenta
tively ascribes to heavy holes. 

Irrespective of assignment, our assumptions about the 
form of the bands and their relative positions, together 
with our result that 0.3 carrier are removed for each tin 
atom added, predict that about 2% tin in antimony is 
required to establish conduction by holes only. Some 
support for this figure may be found in the change of 

16 W. R. Datars, Phys. Rev. 124, 75 (1961). 
17 A. L. Jain, Phys. Rev. 114, 1518 (1959). 
18 W. R. Datars, Can. J. Phys. 39, 1922 (1961). 

resistivity with added tin by Lane and Dodd,10 where at 
about 1.2% pn at room temperature begins to increase 
after passing through a minimum, indicating the turning 
point of two competing mechanisms. 

By their nature the alloy solutions considered do not 
add information about the topology of the band struc
ture, though the existence of a common mobility scaling 
factor for each carrier type corroborates that it remains 
unchanged. Based on the mobilities, r for holes de
creases rapidly with hole density whereas that for elec
trons remains essentially constant, in agreement with 
the behavior expected from degenerate carriers of low 
density. 

The over-all agreement between the experimental 
data and reasonable values for the parameters of our 
model, including their changes with alloying, indicates 
that galvanomagnetic measurements on antimony can 
be successfully interpreted in terms of a multiple 
ellipsoid two-band model. A more detailed interpreta
tion, while possible in principle, is not justified by the 
data and their margins of error, unless it leans also on 
independent information about features of the band 
structure, especially the effective masses of the carriers. 
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