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Nonadiabatic Theory of Electron-Hydrogen Scattering. II 
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The triplet 5-wave electron-atomic hydrogen elastic scattering phase shifts are recalculated by a pre
viously introduced nonadiabatic theory. The previous calculation has been improved in a number of respects 
the most important of which is the utilization of noniterative technique for numerically solving the partial 
differential equations. (This technique is expected to be useful for a large class of linear second-order ellip
tic partial differential equations.) Phase shifts are computed to better than four significant figures. The 
results are quite close to the variational results of Schwartz but on the whole somewhat larger. The devia
tions are considered significant, and the various approaches are discussed. Specifically our triplet scattering 
length (in Bohr radii) is at= 1.7683, with an extrapolated value at= 1.767. 

I. INTRODUCTION 

THE extension of the relative partial wave treat
ment to the (electron-hydrogen) scattering prob

lem was introduced1 to allow for the calculation of phase 
shifts of sufficient accuracy for experimental purposes 
and to allow for meaningful comparison by approximate 
theories. The completion of the original program2 has 
apparently met the purposes for which it was intended.3 

With regard to the original calculation it was clear 
from the first4 that the devices that were introduced to 
elicit information about the higher order corrections, 
which, exactly, involved the solutions of two-dimen
sional partial differential equations, limited the accuracy 
to significantly less than that to which the method was 
intrinsically capable. In addition a variational calcula
tion5 has appeared in which the estimated accuracy was 

much higher than in reference 2. 
The variational calculation utilized (in Kohn's varia

tional principle) a Hylleraas-type wave function with an 
increasingly large number (N) of parameters. The esti
mate of the error was based on the device, first exploited 
by Pekeris,6 of observing the results as a function of A7. 
However the variational calculations pertaining to 
scattering are not compelling to the accuracy claimed 
for at least two reasons. First the variational results at 
nonzero energies show a kind of wild behaviour as a 
function of the nonlinear parameter which has required 
a very intuitive method of interpretation.7 (For k>0 
one does not have the cushion of a guaranteed lower 
bound on the phase shifts.) More important, however, 
is the fact that a Hylleraas wave function does not 
naturally describe the complete wave function corre
sponding to a scattering problem. At zero energy, in 
fact, it has conclusively been demonstrated8 that the 

1 A. Temkin, Phys. Rev. Letters 4, 566 (1960). This method is 
called the "nonadiabatic theory." 

2 A. Temkin, Phys. Rev. 126, 130 (1962). This paper will be 
referred to as I. Equations referring to it will be prefixed by a I. 

3 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962). 
4 Cf. reference 2, footnote 17. 
5 C. Schwartz, Phys. Rev. 124, 1468 (1961). 
6 C. L. Pekeris, Phys. Rev. 112, 1649 (1958), and subsequent 

papers. 
7 C. Schwartz, Ann. Phys. (N. Y.) 15, 36 (1961). 
8 A. Temkin, Phys. Rev. Letters 6, 354 (1961). 
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long-range adiabatic tail is essential for highly quanti
tative purposes. Although the variational calculation in 
its final stages did include such a term at zero energy, it 
did not include it for nonzero energies; it is still very 
much in question to what extent this term enters at 
small but finite energies. 

For these reasons it has seemed necessary to carry out 
our intention of numerical integration for the higher 
order correction. The calculation has been restricted to 
the triplet case as discussed in the next section. In Sec. 
I l l we discuss the method of numerically integrating the 
partial differential equations. Finally in Sec. IV we 
present results and discussion. 

II. REVIEW OF THE NONADIABATIC THEORY 

It will be recalled that the nonadiabatic theory starts 
with a decomposition of the 5-wave function 

1 oo 

¥(r l f a012) = — £ (2Z+l)1/*i(fif2)P«(co^12), (12.3) 
rir2 *-° 

from which by substitution into the Schrodinger equa
tion an infinite set of coupled two-dimensional partial 
differential equations (12.4) results. One defines a zeroth 
order problem by neglecting the coupling terms of the 
1=0 equation: 

where 

Ai2+£+-Vo(0)(nr2) = 0, 
^ r 2 / 

An=d2/dri2+d2/dr2\ 

(13.3) 

The zeroth-order wave function; $o(0), is required to 
have the asymptotic boundary condition corresponding 
to a scattered wave: 

lim $o(0) (r ir2) = sin (k^+do)^ (r2). 
ri--N» 

(13.4) 

50 is the zeroth-order phase shift, and it can be inter
preted as the phase shift of a rudimentary type of three-
body problem, to which it turns out, many previous 
approximations were unknowingly addressed, 

250 



N O N A D I A B A T I C T H E O R Y OF 

The basic relation of the nonadiabatic-theory is given 
by 

1 oo 2 
s in(5—5 0 )= — X) 

£*=i(2 /+l ) 1 / 2 

X dn ^23>o(0) $i , (13.5) 

Jo Jo n*1 

where 5 is the exact s-wave phase shift. The integration 
domain is confined to the region ri>r2. The convergence 
of the terms on the right-hand side was established by 
noting that the significant contribution to each integral 
comes from two regions. One is the adiabatic region, 
r{^r2 and r2 small. We shall have much to say about 
this contribution in connection with the shortcomings of 
the Hylleraas wave function variational approach, how
ever for the purposes of the present nonadiabatic theory 
these contributions can readily be accounted for, and 
can be shown to go down rapidly as a function of /. The 
other region which must be considered is for inter
mediate values of ri and r2. This gives the essential 
contribution to the deviation of 5 from do. The con
vergence of this contribution can be made plausible by 
noting that each $i equation has a centrifugal barrier 
term — l(l+l)(ri~2+r2~2) which successively diminishes 
the amplitude of $i in that region. This argument is 
analogous to the argument that the contributions of 
successive partial waves go down for low impacting 
energies in the complete description of the scattering 
process. I t should be emphasized, however, that there is 
not a one-to-one correspondence in this analogy, for the 
equations of partial waves are uncoupled, whereas the 
relative partial wave equations are coupled. Thus, 
whereas one can assert rigorously that only partial S 
waves contribute to the zero-energy cross section, it is 
not true that only the S relative angular momentum 
state contributes to the 5-wave phase shift at zero 
energy. What is here being asserted is that the contri
butions from higher relative angular momentum states 
diminish in a usefully convergent manner. 

There is an additional circumstance, which was not 
really emphasized in I, which renders the argument of 
convergence particularly cogent in the triplet case. In 
that case we have the boundary conditions 

$i(r1=r2) = 01 1=0, 1, . - . (12.6) 

<t>o(0)(ri=r2) = 0. (14.3) 

From inspection of (13.5) one can see, by virtue of the 
r2

l/ril+1 factor, that the region r2<ri would tend to be
come increasingly important for the higher relative 
partial waves. HowTever because of the boundary con
dition, the contribution from this region must in fact be 
small; therefore the main contribution to each integral 
must come from r2 significantly less than r\. But in that 
region r2

l/ril+l certainly diminishes rapidly as a function 
of /. Thus one has every reason for believing the con-
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TABLE I. Zeroth order double precision results for 
&*=0.2 atomic unit (a.u.). 

Expansion 

2 
2,3 
2 ,3 ,4 
2 ,3 ,4 ,5 
2, 3, 4, 5, Jo 

2, 3, h 
2, 3, Jo, I\ 

2, 4, /o 
2, 4, Jo, If>} ho, /20 

Determinant 

0.154X10"1 

0.315X10"6 

0.541 X10"14 

0.418X10-25 

0.246X10-36 

0.621X10~12 

0.329X10"16 

0.123X10"12 

0.638X10-26 

Diagonal sum 

0.358 XIO"2 

0.141X10"4 

0.231 XIO"6 

0.137X10"8 

0.553 XIO"7 

0.823 X10"7 

0.142X10"7 

0.773 XIO"8 

0.742 X10~8 

So 

2.71098 
2.679565 
2.6794215 
2.6794197 
2.67962 

2.6794200 
2.6794192 

2.6794191 
2.6794191 

vergence will be exceedingly rapid in the triplet case. 
The same arguments should also render our perturba
tion theory 

3>*=EA /+z/2<i>i0) 

/=0 

particularly effective. 
These reasons plus the calculated values which are 

presented below give a strong expectation that including 
through quadratic terms, will yield more than four 
place accuracy in the phase shifts. This accuracy is re
quired in order meaningfully to be compared with 
Schwartz's results. 

The original calculation has been improved in two 
main respects. Firstly we have generalized the zeroth 
order technique of solution to double precision arith
metic on the IBM 7090 computer of the Theoretical 
Division of the Goddard Space Flight Center. In the 
single precision program we were plagued with vanishing 
determinants which used up very rapidly all the 8 
significant figures that the machine could store. In the 
double precision program the 16 significant figures were 
sufficient to yield zeroth-order phase shifts from better 
than 4 to almost 8 significant figures. 

To illustrate the gain in accuracy of our zeroth-order 
results by making the program double precision, we 
present in Table I a typical set of results for £=0.2. The 
middle two columns refer to quantities labeled "det" 
and IT in I. The first of these gives an indication of the 
number of significant figures lost in the evaluation of the 
determinant det. For example in the row corresponding 
to the expansion 2, 3, 4, 5, the main diagonal of 
det, IL==i4(ME)ii, is approximately equal to 0.6X10 -9 , 
figuring an average of 0.5 X 10~2 as the average value of 
a diagonal matrix element. Comparing this with 0.42 
X 10~25, the actual value of the determinant, we see that 
approximately 16 significant figures have been lost. 
This is the maximum that the double precision arith
metic affords, and the conclusion is reinforced by re
ferring to the next row, 2, 3, 4, 5, I0. Here almost 25 
significant figures have been lost, and the corresponding 
diagonal sum increases. If the elements of the calcula
tion have sufficient (infinite) accuracy, it is clear that 
the addition of a term to an expansion can only decrease 
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the diagonal sum. Thus the <50 for that expansion is very 
unreliable. In each of the groups of rows separated by 
blank rows each subsequent row augments the previous 
one by an additional term, and except for the above-
noted case the diminishing of diagonal sums occurs. 
This should be compared with Table III of Temkin and 
Hoover9 in which a similar set of results based on a 
single precision program was presented. There an in
crease in the diagonal sum occurred in third row. In the 
present case, we could with some legitimacy claim 
50= 2.6794194(3); however the value 50= 2.67942 is 
quite adequate for our purposes. 

The main advancement we have achieved in the way 
of computing the complete 5-wave phase shifts is the 
numerical integration of the higher order equations. 
These are elliptic equations, and it is well known that 
the usual way of numerically solving an elliptic equation 
is by some sort of relaxation or iteration technique. The 
novel feature of the technique we have used is that it is 
not iterative. Because it has worked where a relaxation 
technique has utterly failed to converge, and because it 
is applicable to a whole class of linear second-order 
equations, we have given some detail in the next section 
to the numerical solution. 

III. SOLUTION OF THE PARTIAL DIFFERENTIAL 
EQUATIONS 

The higher order effects in our expansion are given by 
the formula 

1 00 

s in(5-5 0 )=— E X " E 2(2w+l)"1/2 

k v = 1 m -\-fi = v 

$0<0) , 
f l m - l 

*mWdndrt. (15.6) 

(For the purposes of the discussion in Sec. IV we 
emphasize that this X expansion is a modification of the 
ordinary I expansion in relative partial waves, which is 
expected to hasten the convergence in the triplet case. 
It also has additional advantages discussed in I.) 

The partial differential equation for 3>o(0) has been 
repeated in Sec. II. We repeat here the remaining 
equations: 

[A1 2-2(fr2+r2-2)+2f2-1+£>i ( 0 ) 

= 2 ( 3 ) - % 2 r f V ) , (15.2) 

[A12+2f2-1+E>0
(1) = 2(3)-1/2r2rr

2<l»1<
0>, (15.3) 

CA12~6(fr2+f2-2)+2r2-1+E>2<°> 

= 2(5)-1 '2r2VrW0), (15.4) 

[A1 2- 2 ( r r 2 +f 2-2)+2r2-1+E>1(1> - f ^ V f 3 ^ 
= 2(3)-1/V2rr

2i>o(1)+4(15)-1/V2rr
2#2

(0). (15.5) 
9 A. Temkin and D. E. Hoover, in Methods in Computational 

Physics, edited by B. Alder, S. Fernbach, and M. Rotenberg 
[Academic Press Inc., New York (to be published)], Vol. I. 

In principle these equations are to be integrated over 
the infinite region 0<r2<ri< oo. In practice, of course, 
one can only integrate up to a finite point ri=R. If R is 
suitably large, one can perform the integrals in (15.6) 
from R to oo by replacing the functions by their adia-
batic forms: 

#o(0)^sin(^1+ao)^i2(r2), 

2sin(fovMo) /r2^2 r^l\ 

(21+1)^^ \l+l I J 

(14.2) 

/=1,2 (15.10) 

$ i ( 1 ) = (A5o) 

v3 

2 cos^ri+So) frj 

(T+4 (15.11) 

The do being known, these equations with r\=R then 
define the boundary conditions on the numerical solu
tion in the region 0<r2<ri<R. It must be emphasized 
that as long as R is finite there is an approximation 
involved in these equations as boundary conditions. For 
these forms require not only R —> oo, but also that r2<<CR. 
However for numerical purposes one must know the 
boundary conditions for all values of r2<R; the most 
natural thing to do is simply to use the above equations 
for all values of r2. If R is large enough, one can be sure 
that the error thus incurred is very small, because in the 
region r2<R both the above functions and the true 
functions will be negligibly small. 

The important question concerning R is how large is 
large enough? The time required for numerical integra
tion effectively limited us to an JR=10. It was our 
original intention to use the numerically integrated <f>0

(0) 

in the quadratures (15.6) together with the remaining 
numerically integrated functions. Our suspicion in this 
regard was aroused when at k=0A we found that 

/ / - ( # o ( 0 ) 

Jo Jo ri2 
)2dr\dr2 

was half the value that we got using the analytic ex
pansion of <i>0

(0) that we had as a by-product of the 
calculation of 5o. We were therefore led to examine the 
deviation of our original $0

(0), 

^0) = sm(kr1+do)Ria(r2) 

+ fahY-,e-K^Rn,{r2), (14.4) 

from the boundary values imposed on the numerical 
solution via (14.2). The results are given in Table II. 

The important thing to notice is that the values along 
the line ri=10 coming from the analytic $0

(0) change 
sign at r<£+5 whereas those defined by (14.2), being 
proportional to Rl8=2r2e~r2, do not. We concluded that 
this change of sign which was not taken care of in the 
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TABLE II. Comparison of boundary values at r\—10 ao (&=0.4 a.u.). 

rt (ao) 

*o»)(10,r2) 

sin(10&-r-5o)#i«(r2) 

1 

- 0 . 0 1 9 1 3 

- 0 . 0 1 8 5 3 

2 

- 0 . 0 1 3 6 3 

- 0 . 0 1 3 6 3 

3 

- 0 . 0 0 6 8 5 

- 0 . 0 0 7 5 2 

4 

- 0 . 0 0 2 5 9 

- 0 . 0 0 3 6 9 

5 

- 0 . 0 0 0 4 2 

- 0 . 0 0 1 7 0 

6 

0.000486 

-0 .000749 

7 

0.000722 

- 0 . 0 0 0 3 2 1 

8 

0.000612 

-0 .000135 

9 

0.000334 

-0 .0000056 

10 

- 0 . 0 0 0 0 0 3 

0* 

a The expression on the left is not 0 at this point; however, for the purposes of numerical integration this point, being at ri —n, was automatically taken 
as zero by our program. 

boundary condition (14.2) was responsible for the in
accuracy of the numerically integrated 3>o(0). 

The double integral in which we observed the dis
crepancy is, of course, part of the dipole "sum rule" 

f f #0«»r_ 2(—+—)\l^drldr2 

2 /*°° rri 

V? Jo Jo 

r2 ^)2—dndr2. (15.14) 

In the original calculation we used this relation to find 
the nonadiabatic effects of <i>i(0). In the present case, 
(15.14) together with its counterpart for <£2

(0>, plus 
additional sum rules that one can derive, serve as a 
check of the numerical integration. Now in the above 
noted case it was observed that the #i(0) found from 
(15.2) using the incorrect $o(0) gave approximate 
equality in the sum rule. At work here was undoubtedly 
the phenomenon that the (incorrect) <i>o<0) is an im
portant enough inhomogeneous term in the differential 
equation to influence <£>i(0) to be incorrect in just such a 
way as to give equality in (15.14). This experience pre
vented any complacency on our part that the satisfac
tion of sum rules of the numerical function was a 
foolproof guarantee that the functions were correct. 

The £=0.4 case is extreme in the sense that at no 
other energy have we observed the analytic <f>o(0) to 
change sign in such a prominent place along the bound
ary. (The change apparently stems from the fact that 
3>o(0) has a node very close to ri= 10 at this energy.) Ac
cordingly the differences between the integrals on the 
right-hand side of (15.14) using the numerical versus the 
analytic <3>o(0) at other energies differed only in the 
second significant figure. However since we require 
practically three significant figures in the integral 

A5 0 =-
l r r2 

+ 
r2 

$0(o)__4 > i(o)^1 j r 2 

o n2 
, (15.7) 

we could not use the numerically integrated $>0
(0). 

We therefore decided to use the <£>o(0) gotten from the 
best expansion (14.4) we had, and numerically integrate 
for the remaining functions. Our unfortunate experi
ence with the dipole sum rule gave us some confidence 
that having a reliable <i>0

(0) would make up for any 

deficiencies in the boundary conditions for the other 
functions. The sum rules, of course, still are a necessary 
condition to be satisfied; however, in view of the nu
merical integrals having to be cut off at R, they did not 
afford a critical test of the accuracy. We found that we 
did have to go a mesh size ^ = 0.1 to get reasonable re
sults. The most natural tests of accuracy, further 
halving the mesh size, integrating out to double the 
value of R, etc., were precluded by machine storage and 
particularly time considerations. As it was, it took 
ninety minutes to integrate a differential equation on 
the IBM 7090, so that at nine energies and five equa
tions per energy, we had already used a vast amount of 
time. As we have said, we feel quite confident that we 
have attained a requisite accuracy, but our present 
inability to carry out further checks provides the most 
serious weakness in the present calculation. We hope to 
carry through some of these checks as bigger and faster 
computers become available. 

We shall only include a few remarks concerning the 
numerical solution of the partial differential equations.10 

It is well known that if one uses a linear finite difference 
formula to represent the partial derivatives in a linear 
elliptic partial differential equation: 

—H r-gfe jO^/fey) , 
dx2 by2 

(3.1) 

then the equation can be written as a matrix equation 

A^=k. (3.2) 

In the above A is an A72XAT2 matrix operating on the 
solution 0 at the N2 interior points, k is a column vector 
depending on the inhomogeneous term and the boundary 
values (assumed known). A72 being of the order of the 
square of the number of mesh points (N) along one 
boundary, a direct inversion of (3.2) is considered 
unattainable. It is for this reason that an iterative 
technique is usually employed. 

In our own case it was found that various iterative 
techniques would not converge. We therefore utilized a 
direct inversion technique. The point is that although A 
is of gigantic dimension, it is of a special form and most 
of its elements are zero. 

10 Because of limitations of size and content the detailed de
scription of this technique is not being included here. Nevertheless 
we feel that this method is of great importance to physicists as well 
as others faced with the problem of solving elliptic partial differ
ential equation. The interested reader is referred to our NASA 
Technical Note D-1702 (unpublished). 
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TABLE III . Risume* of higher order results. 

k 
(a.u.) 

0a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

A50 
0-10 

-0.20256 
0.01895 
0.03136 
0.03530 
0.03373 
0.03129 
0.02939 
0.02766 
0.02605 

10-co 

-0.3526 
0.01049 
0.00510 
0.00166 
0.00159 
0.00188 
0.00131 
0.00085 
0.00096 

A V > 
0-10 

-0.012304 
0.001168 
0.002016 
0.002418 
0.0024685 
0.002384 
0.002263 
0.002145 
0.002047 

10-oo 

-0.00322 
0.000199 
0.000119 
0.000029 
0.000026 
0.000041 
0.000028 
0.000015 
0.000019 

0-10 

-0.001032 
0.000369 

-0.000325 
-0.00132 
-0.00228 
-0.00140 
-0.00141 
-0.00132 
-0.00130 

A V 1 } 

10- oo 

-0.00822 
0.000129 

-0.000052 
-0.000021 
+0.000019 
0.0000049 

-0.00000875 
-0.0000003 
-0.0000045 

* For the purposes of the scattering length, the k =0 entries are negative 

In particular, in our own equations the matrix A can 
be written in diagonal form with elements which are 
themselves matrices. The diagonal elements are square 
matrices. Using some matrix manipulation, and known 
properties of tridiagonal matrices,11 one of us (E. S.) has 
succeeded in reducing the problem to the sequential in
version of matrices of the same dimension and trivially-
related to these diagonal "elements." Thus the direct 
inversion of (3.2) in our case involves the inversion of 
matrices varying from 99X99 to I X 1 in size. This could 
be readily handled on our computing machine. 

IV. RESULTS AND DISCUSSION 

In Table I I I we have tabulated our results for the 
higher order corrections. The formula for A50 has been 
given in the previous section. The remaining two inte
grals are 

A250
(2) = — w$ ^0)—^2(0)dridr2 

o rx
3 

+ff 
J R J 0 

ft 
$o«i)—4>2io)dr1dr2 , (15.8) 

A 2 § ! ^ = 
&v3 

$o ( 0 ) —^ 1 ) dr id r 2 
r,3 

J R JO 
*o(0>—*i(1)<fridra 

n1 
(15.9) 

The significance of the breakup of the integrals at R= 10 
has also been explained. In this connection it can hardly 
be overstressed that for small k a significant contribu
tion comes from the region R<ri<oo. 

In Table IV we have collected results to show the 
convergence of the terms multiplying successive powers 
of X in the nonadabiatic series [cf. I equation (5.6)]. 
The convergence appears to be even more rapid than an 
order of magnitude per power of X. In second order this 
is due to a partial cancellation of the terms multiplying 
X2, a circumstance which may very well have an in-

11 A. S. Householder, in The University of Michigan Engineering 
Summer conferences, Numerical Analysis, No. 6207, 1962 (un
published) 

creasingly important effect for high powers of X due to 
the increasing number of terms which enter. (It is also 
possible that it might have the opposite effect.) The final 
d in each row is then the sum of the entries to its left to 
the accuracy that we believe it is meaningful. As a 
simple extrapolation of the convergence, we take this to 
mean an uncertainty of 5 units in the last figure given 
for the phase shifts. (The scattering length will be dis
cussed below.) 

I t must be reemphasized that this (X) series is not 
identical to the more traditional series strictly in powers 
of I. The latter may be thought of as derived by trun
cating the original set of Eqs. [cf. I Eq. (2.4)] after 
l=L; i.e., 

[An-Kl+l)(rr2+r2-*)+-+ A f M T # , 
L fi r2 J 

= E M £ A , /=0,1, ••-,£. (4.1) 
m=0 

Assuming that one could solve each of these problems 
exactly, one would obtain a sequence of phase shifts 5<L> 
which would approach the exact phase shift: 

lim5(L) = 5. 
L—*oo 

5(0) is of course our 50. Beyond that, Schwartz12 has re
cently used his variational technique to solve for 5(i>. 

TABLE IV. The convergence of the nonadiabatic series. 

k 
(a.u.) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

X° 
h 

2.3482 
2.907728 
2.67942 
2.46158 
2.25800 
2.07102 
1.90189 
1.75070 
1.61666 

X 
A50 

-0.55516 
0.02944 
0.03646 
0.03695 
0.03532 
0.03317 
0.03070 
0.02853 
0.02701 

X2 

A 2« 0
( 1 )+A^o w 

-0.02477 
0.001865 
0.001758 
0.00111 
0.000235 
0.00104 
0.000872 
0.00084 
0.00076 

5 

1.7683 
2.9390 
2.7176 
2.4996 
2.2936 
2.1052 
1.9335 
1.7801 
1.6444 

• C. Schwartz, Phys. Rev. 126, 1015 (1962). 



N O N A D I A B A T I C T H E O R Y O F E L E C T R O N - H S C A T T E R I N G 1255 

TABLE V. Comparison of Schwartz's and nonadiabatic results. 

k 
(a.u.) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

Schwar tz 
AS 

0.5670 

0.0362 

0.0340 

0.0302 

0.0250 

Non
adia
bat ic 

Ago +A25o<1) 

0.5644 
0.02986 
0.03608 
0.03561 
0.03306 
0.03178 
0.03038 
0.02721 
0.02571 

Schwar tz 
00 

2 A«>5 
$-2 

0.0126 

0.00t5 

0.0018 

0.0008 

0.0017 

Non
adia
bat ic 
A25o«) 

0.01552 
0.001367 
0.002135 
0.002447 
0.002495 
0.002425 
0.002291 
0.002160 
0.002066 

Schwar tz 
5 

1.7686 
2.9388 
2.7171 
2.4996 
2.2938 
2.1046 
1.9329 
1.7797 
1.643 

Non
adia
bat ic 

S 

1.7683 
2.9390 
2.7176 
2.4996 
2.2936 
2.1052 
1.9335 
1.7801 
1.6444 

There is, however, a somewhat more fundamental, 
albeit more idealized, sequence 6(L> which can be defined. 
Assume one had the exact wave function ^r(rhr2,di2). 
Then one could obtain the exact <i>i{r\r2) by suitably-
projecting Pi(cosdi2) on ty. One could then obtain a 
sequence of 8(D from the basic relation 

sin (5—50)=-
1 L 2 

- z 
£*=i(2H-l)1/2 

X 

r2* 

Clearly the second of these sequences of 5(L> cannot be 
worse than the first (although the first obviously comes 
from a variational principle). 

In Table V we have collated the results of Schwartz's 
and our calculations which bear on the latter sequence 
of 5(£). The column marked A5 is the difference 5(i)~50 

in Schwartz's calculation.13 The approximation here is 
the neglect of the back coupling of the higher <£>* which 
distinguishes between the first and the second sequences 
of 8iL). The analog of Ad in our case is A250+A260

(1). Here 
the back coupling is consistently taken into account, but 
we have only included two terms of a (presumably 
rapidly convergent) infinite series. In the column 
marked A250

(2) we have presented only the first term of 
the relevant infinite series. The corresponding column 
of Schwartz has been obtained by subtracting his final 
phase shifts from Sa). If his ansatz for the wave function 
were exact, one could conclude that this was the con
tribution of all remaining multipoles, 

However the ansatz for the complete wave function 
contains (presumably) about the same number of 
parameters as that used in obtaining 5(1). Therefore it is 
by no means clear that projecting out $1 from his ^ will 
give the same accuracy as his explicitly calculated fyi). 

13 Some time ago we requested Dr. Schwartz to utilize his 
Hylleraas variational approach to calculate d0 by omitting all 
terms depending on rn. Dr. Schwartz kindly carried out these 
calculations which served as a check on our original zeroth-order 
results (reference 2). The calculations were subsequently expanded 
to comprise the contents of Tables I I and I I I of reference 12. 

For these reasons it can hardly be expected that there 
would be equality between the corresponding entries in 
Table V. Nevertheless the rather wide deviation of the 
individual entries bespeaks of the possibility that the 
agreement to almost 5 significant figures in the final 
phase shifts may be somewhat coincidental. For the 
purposes of later discussion it should be noted that our 
quadrupole contribution is larger than all the remaining 
multipoles in Schwartz's calculation. (Thus his results 
suggest a more rapid rate of convergence of the I ex
pansion than our own!) 

Schwartz has also commented12 on the relative angular 
momentum expansion in these types of problems. (The 
part of his scattering calculation which concerns the 
triplet phase shift has been given in Table V.) The bulk 
of his calculation is concerned with the second order 
energy (for the singlet spin state): 

• (?+ / • 

\ |<0|2/r„[»>|» 
an J 

/ Eo—En 

(4.2) 

Using the well-known expansion of 2/ru in Legendre 
polynomials, 

r<L 

— = 2 E Pi(cos012), 

he can put (4.2) into the form 

E2= L £2(0, 
J=0 

(4.3) 

where the E2(l) can be well defined.14 With each E2(l) 
there is associated a wave function ^Ti(l) which, aside 
from the angular dependence Pj(cos0i2), is a function of 
the two radial variable f\ and r2. Reduced to its bare 
essentials, Schwartz's argument runs as follows: if one 
treats each / problem variationally with the usual type 
of smooth polynomial trial functions, then the 1=0 and 
1=1 problems can be well approximated whereas the 
higher / problems become increasingly difficult. The 
reasons for the increasing difficulty of approximation by 
conventional means is due to the fact that the functions 
^i(£) have discontinuities in their second derivates 
coming ultimately from different analytic forms of 
r<Vr>z+1 in the regions r\>r2 and ri<r2. The dis
continuities correspond to the ^i(l) becoming more and 
more sharply peaked about the line t\=r2. On the basis 
that the bump itself provides the dominant contribution 
to the energy, Schwartz has derived the asymptotic 
formula for large I 

E2(l)^-~ (45/256) (l//4). (4.4) 

This then, defines, the convergence of this specific 
problem, rather than any inaccurate calculations for 

14 C. Schwartz, Methods in Computational Physics edited by 
B. Alder, S. Fernbach, and M. Rotenberg [Academic Press Inc., 
New York (to be published)]]. 
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E2(l) for /> 1, which in general will tend to give the idea 
of a much more rapid convergence.15 

Formula (4.4) applies to the specific problem of the 
second-order energy in the singlet (space-symmetric) 
state, however it is not unreasonable to assume l~n 

characterizes the complete energy (or other physical 
property) in the I expansion. Whether l~~n constitutes a 
rapidly convergent series depends on the type of 
problem with which one is dealing. In bound state 
problems where much greater experimental accuracy is 
in general available, one must be quite demanding in 
this regard. Even here, however, the convergence of 
(4.4) is not in principle uncompetitive with traditional 
techniques. Thus if one associates the inclusion of an 
additional I component with the inclusion of an addi
tional parameter in conventional expansions, in which 
the use of 100 and6 even 1000 parameters16 has now been 
accomplished, one would get a competitive 8 to 12 
significant figure accuracy. The fact that one cannot use 
a (presently) conventional approach in accomplishing 
this, is not an a priori objection to the rate of con
vergence of the I expansion. 

In his discussion of the extension of the relative 
partial wave treatment to the scattering problem, we 
find that Schwartz has insufficiently stressed the differ
ent physics involved. First it is clear that because of the 
disparity in experimental accuracy one does not need 
anything like the accuracy of a bound state problem to 
correlate theory with experiment. 

In order further to discuss the scattering case, it is 
necessary to clear up some points. In scattering calcu
lations rxr2 times the wave function has a nonvanishing 
component: 

limrir2^=A sin(krx+5)Rn(r2), 
r\—»oo 

which must be included in order to make any kind of 
analysis. In discussing the aspects of r\r<8i below, we 
shall always disregard this nonvanishing component. 

The main difference between the bound state wave 
function (with any kind of forces) and scattering wave 

16 Reference 12 must be read very carefully here; otherwise it 
may give the erroneous impression that 

2 £ 2 ( / )^(2/3) 2 E2(l) 

which, if it were true, would be a more serious criticism of the 
convergence. What, in fact, is being asserted is that Schwartz's 
conventional calculation of 

2 E2(l) 

must be in error in such a way as to give a spurious rate of con
vergence. Nevertheless one can be quite sure that the correct 

4 oo 

2 £ , ( / )> (0.99) 2 £,(/). 

16 C. L. Pekeris, Phys. Rev. 115, 1216 (1959). 

functions (involving Coulomb forces) is that the bound 
state wave function vanishes exponentially in all asymp
totic regions of configuration space whereas the scat
tering wave function does not. It has been one of the 
primary points of the nonadiabatic theory in the de
composition of rir$? in terms of Pi(cosdi2), (12.3), that 
the associated <f>j can be shown to have slowly vanishing 
adiabatic forms 

2 sinOb-i+5) /r2
z+2 r a m \ 

lim#z^ e~rH 1 1. 
(2J+1)1'2 r i m \l+l I J 

It has further been derived as one of the main results of 
this theory that the scattering length due to the dipole 
term will be diminished by an amount 

9/1 a+a0 \ 
a=a(R)—( + . . . ) , 

2\R 2R? J 

where a(R) comes from a wave function which is more 
sharply cut off and hence more characteristic of a 
problem in a finite "sphere" of radius R. This predic
tion17 was tacitly confirmed by the calculation of 
Schwartz5 in which, when the variational counterpart of 
$1 was included, his scattering length was reduced by 
over 5%. Thus, whereas the nonadiabatic theory in
corporates both short-range correlations (via the con
vergent expansion in /) and long range effects naturally, 
the Hylleraas type wave function by itself cannot 
practically deal with the latter. [Tables II and III of 
Schwartz's paper12 include $i in the calculations of the 
k=0 entries for \(s+p) as well as X (complete).] 

That a Hylleraas-type wave function does not natu
rally describe the long-range correlations can be further 
brought home by reference to the paper of Ohmura and 
Ohmura.18 In their deduction of the singlet scattering 
length, these authors required the coefficient C(«>) in 
the adiabatic form 

lim*=C(oc) (4.4) 
r i-°° fi r2 

of the H~ wave function. Here y is the square root of the 
electron affinity and being small it makes the term 
simulate the nonvanishing term in a scattering calcula
tion. This form is not the analytic form of the Pekeris or 
Hylleraas wave functions both of which have the 
exponential dependence 

exp[-§ |£ | i"(rH-r 2 ) ] , 

where E is the total energy of the H~ ion. In order to 
evaluate C(oo), Ohmura and Ohmura used the 161 and 
203 parameter Pekeris wave functions.6 They concluded 
that, whereas the wave function reproduces the adia
batic form (4.4) quite accurately in the region rx= 10 

17 A. Temkin, private communication to C. Schwartz. 
18 T. Ohmura and H. Ohmura, Phys. Rev. 118, 154 (1960). 
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^12 (f2=0), deviations in the variational approxima
tions for ri> 12 were quite noticeable. 

We shall now show that the inability of Schwartz's 
zero-energy wave function to describe the adiabatic 
part of the quadrupole term can explain the difference 
between his triplet scattering length 1.7686 (in units of 
Bohr radii), and our own, 1.7683. To repeat, at zero 
energy Schwartz's ^ is made to contain $!<**«*) but not 
<f>2(adiab). Using the same type analysis that we made on 
the dipole effect, we can write the long-range contribu
tion of the quadrupole term as 

2 r°° rri r2
2 

a(R)-a= lim / / 3>0
(0)—<MMr2 

r l 5 rx sin (fir+8Q) sin (kr+d) dr~\ 

Lk2JR r« J*_o 

/ 1 1 (a+a0) \ 

\3R* 4 R* J 

If we associate Schwartz's value with a(JR), a very 
reasonable choice of R (R=2S) will reproduce our own 
value for a. Although from the experimental point of 
view the difference between the two numbers is com
pletely negligible, it is worth noting that the new scat-
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tering length is outside of Schwartz's limit of error.5 We 
are inclined to think that the unaccounted for higher 
multipole may subtract an additional unit in the fourth 
significant figure (cf. the k=0 row of Table IV). We 
would extrapolate the triplet scattering length to be (in 
units of Bohr radii) 

ot= 1.767. 

A question remains at nonzero energies as to the effect 
of the slowly vanishing multipoles. The answer obvi
ously depends on the accuracy in question. Schwartz 
finds5 that the effects are "washed out" to his accuracy 
whereas our own calculation suggests that particularly 
the dipole contribution is not negligible. It may very 
well be that our inclusion of these effects as opposed to 
Schwartz's inclusion of the higher multipoles balance 
each other out, and that both calculations give lower 
bounds for the phase shifts. 
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