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The quasi-deuteron model was assumed in computing the internal momentum distribution of nucleons 
in C12 using the monoergic photodata of Cence and Moyer and the bremsstrahlung photodata of the Purdue 
group. The computed quasi-deuteron momentum distribution has the form A eTq>(—p2/4MEi)/(47rMEi)lb 

+Bp* exp(-p2/4ME2)/l.5ir1-&(4ME2)2\ where Ei is 1.5 MeV and E2 is 5 MeV. The ratio B/A is approxi­
mately 2. These two components resemble the (Is) and (lp) wave functions of the shell model. The (Is) 
component is associated with a binding energy 40 MeV while the (lp) component is associated with a binding 
energy 10 MeV. The internal momentum distribution of nucleons in C12 was calculated from this quasi-
deuteron momentum distribution assuming that the nucleons exist in proton-neutron pairs in the nucleus. 

INTRODUCTION 

SEVERAL independent sources of information are 
available on the internal momentum distribution 

of nucleons in light nuclei.1-8 Two of these are the 
quasi-elastic proton-proton scattering data6"8 and the 
nucleon photoproduction data.1""5 In a quasi-elastic 
p-p scattering experiment (see, for example, reference 6) 
a target is bombarded by a fairly monochromatic 
proton beam and some suitable angular and energy 
correlations of the scattered and scattering protons are 
measured and analyzed to yield the proton binding 
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Loeffler, and T. R. Palfrey, Jr., (to be published). 
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6 R. J. Cence, thesis, University of California Radiation 
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B. J. Moyer, Phys. Rev. 122, 1634 (1961). 
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energy and momentum distribution in the nucleus. 
These experiments indicate that there are several groups 
of protons in the nucleus with some characteristic 
binding energy and momentum distribution. The 
transparent nucleus model (impulse approximation) 
is usually employed in these analyses. The binding 
energy and momentum distribution thus computed 
are reasonably consistant with the predictions of the 
shell theory.6 

In a nucleon photoproduction experiment, a target 
is bombarded by a photon beam (either bremsstrah­
lung1-3 or monochromatized bremsstrahlung45) and a 
proton with a given momentum is detected with2'3 or 
without1-4,5 a neutron in coincidence. The n-p co­
incidence rate as a function of the detection geometry 
has been seen to peak where the free deuteron photo-
dissociation n-p coincidence rate peaks.2,3 The width 
of the n-p coincidence rate as a function of the neutron 
emission angle is considerably wider than the resolution 
of the detector system and can be related to the 
intranucleus momentum distribution of nucleons in 
nuclei. In addition to the momentum distribution, the 
energy spectrum of the singly detected protons yields 
information on the binding energy of nucleons in nuclei. 
Of course, the width of the angular correlation of n-p 
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is related to the distribution function for the total 
momentum of two nucleon subunits inside the nucleus, 
and some assumptions concerning the binding of the 
two nucleons in the subunit are necessary in order to 
obtain the nucleon momentum distribution function 
from the quasi-deuteron momentum distribution.1 

In general, the quasi-elastic p-p scattering data yield 
more precise and conclusive information than the 
photodata. This is primarily due to the relatively large 
experimental uncertainties which are very nearly un­
avoidable in a high-energy photonuclear experiment. 
The transparent nucleus model (independent particle 
model) assumed in the p-p data analysis does not give 
any satisfactory result in the photodata analysis. This 
is presumably due to the correlation between nucleons 
which plays a crucial role in photon absorption.1-"5 

The analysis of the photodata can either be made to 
study the quasi-deuteron model assuming some known 
momentum distribution, or vice versa. In this paper 
the latter type of analysis is given. A somewhat modi­
fied version of the quasi-deuteron model9 is assumed 
and the bremsstrahlung photodata of the Purdue group1 

and the monoergic photodata of the Berkeley group5 

are analyzed to give the momentum distribution of the 
quasi-deuterons in C12. The intranucleus momentum 
distribution of nucleons in C12 is then related to the 
quasi-deuteron momentum distribution. 

ANALYSIS 

Introduction 

It has been observed (see, for example, reference 1) 
that the photonucleon production cross section for 
high-energy gamma rays has several unique character­
istics: (1) angular dependence of the form a+b sin20 
X (1+c cos0), characteristic of the El and E2 transi­
tions with a large isotropic term a, (2) E~n energy 
dependence, (3) linear dependence on Z, and (4) 
emission of correlated nucleons somewhat consistent 
with the free deuteron photodisintegration kinematics. 

Several authors1-5 have studied these characteristics 
in terms of the quasi-deuteron model originally sug­
gested by Levinger.9 The quasi-deuteron model assumes 
that the pairing effect of nucleons in nuclei is large 
and that photons are absorbed by pairs of nucleons in 
the photoemission of nucleons in complex nuclei. In 
the Born approximation such pairing is necessary to 
account for the large number of high-energy nucleons 
observed. The pairing effect is presumably due to the 
short-range two-nucleon forces. 

An approach, somewhat more fundamental, is made 
in terms of the isobar model (see, for example, 
reference 3). For photons with energy above the 
pion production threshold the photopion production 

9 J. S. Levinger, Phys. Rev. 84, 43 (1951). 

cross section from hydrogen is by several orders of 
magnitude larger than the free deuteron photo-
dissociation cross section.10-14 In the light of the 
impulse approximation15 and the available experimental 
data on photopion production cross section (see, for 
example, reference 13), we can assume that the high-
energy photonucleon production process goes via the 
pion-production-reabsorption channel, as is well known 
in the case of the free deuteron photodissociation 
(see, for example, reference 14). If the reabsorption 
process were random, one would expect an isotropic 
distribution for the emitted nucleons.13 

If two nucleons were in a sphere of radius h/fic 
when a pion is produced from one or the other nucleon 
in the sphere, the phase-space factor strongly favors 
the two nucleon emission over pion emission. Therefore, 
if the probability that two nucleons are confined to a 
sphere of radius h/fxc were appreciable, then we could 
assume that the photoemission of high-energy nucleons 
from complex nuclei proceeds via the two nucleon 
photodissociation process. There is much evidence for 
pairing of a proton and a neutron in light nuclei 
(see, for example, Sachs16). One classic example is the 
fact that for most of the stable light nuclei the mass 
number A is twice the charge number Z, and adding 
one proton or neutron results in instability of the 
nucleus. 

If indeed the nucleons in C12 existed in n-p pairs, 
then instead of the conventional random coupling of 
nucleons12 which results in the familiar ZN factor, one 
would have a factor Z multiplying the free deuteron 
photodisintegration cross section. Furthermore, if the 
shell theory prediction of the nucleon grouping is 
correct as it is in the case of the quasi-elastic scattering 
of protons,6 then one can assume that two (Is) pairs 
and four (lp) pairs contribute to the nucleon photo­
emission. The "pairing" of a (Is) nucleon with a (lp) 
nucleon [i.e., the probability of finding a (Is) nucleon 
and a (lp) nucleon in a sphere of radius h/\xc\ is much 
less probable than the pairing of two nucleons belonging 
to the same shell.17 And in the spirit of the shell theory17 

one can assume that these two types of pairs—(Is) 
and (lp) pairs—have different binding energy and 
momentum distribution. 

10 D. H. Wilkinson, Ann. Rev. Nucl. Sci. 9, 1 (1959). 
11 J. S. Levinger, Proceedings of the International Conference on 

Nuclear Physics, Paris, July, 1958 (Crosby Lockwood & Son, 
Ltd., London, 1959), p. 145. 

12 K. G. Dedrick, thesis, Stanford University, 1955 
(unpublished). 

18 C. E. Roos and V. Z. Peterson, Phys. Rev. 105, 1620 (1957). 
14 J. C. Keck and A. V. Tollestrup, Phys. Rev. 101, 360 (1956). 
16 G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950); 

G. F. Chew and G. C. Wick, ibid. 85, 636 (1952). 
16 R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing 

Company Inc., Reading, Massachusetts, 1955), Chap. II, p. 10. 
17 E. Feenberg, Shell Theory of the Nucleus (Princeton University 

Press, Princeton, New Jersey, 1955), Chap. X. 
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Monochromatic Photodata 

The differential cross section cP<r/dQdTp of Cence 
and Moyer5 gives the number of protons detected per 
proton MeV per photon per sr per C12 nucleus per cm2. 
According to the quasi-deuteron model described pre­
viously, this second-order differential cross section is 
related to the momentum distribution of the quasi-
deuterons and the free deuteron photodisintegration 
cross section da/dQ, through Eq. (1) 

d?<r 

dttdTv •J dPdXF(Pd) (1 -f t , co$dd) Jda/dQ, (1) 

where the subscript d refers to the quasi-deuteron 
variables in the laboratory system, (l—ftd cosdd) is the 
Doppler shift correction factor for the photon flux, / 
is the laboratory-quasi-deuteron rest system trans­
formation Jacobian as given in the Appendix, X is the 
energy resolution function of the electron counter as 
given in reference 5, and F is the quasi-deuteron 
momentum distribution function. The free deuteron 
photodissociation cross section is evaluated in the rest 
system of the quasi-deuteron, and the triple integral is 
evaluated under the four momentum conservation con­
straint as given in (A6) and (A7) in the Appendix. 
The conventional constant L (see reference 9) which 
multiplies da/d2 is contained in F for reasons explained 
later in this paper. In Fig. 1 it is seen that the cross-
section peaks near 120 MeV and its shape is very 
suggestive of a superposition of two independent 
curves, one with a broad width peaking near 140 MeV 
and the other with a narrow width peaking near 110 
MeV. It is interesting to note that for the free deuteron 
photodisintegration by 240 MeV quanta 133-MeV 
protons will be emitted at 60° in the laboratory system. 

In evaluating the integral the distribution function 
F was broken into two parts as shown in Eq. (2) and 
Fig. 2. 
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FIG. 1. The calculated differential cross section is compared 
with the experimental data of Cence and Moyer. The best fit is 
achieved with Ei«1 .5 MeV, £ 2 = 5 MeV, JB0i=40 MeV, 5 0 2=10 
MeV, .4=0.37, and 5 - 0 . 8 3 . 
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FIG. 2. F(Pd) is plotted as a function of Pd for illustration only. 
The scales used are arbitrary. 

F(Pd) = A 
exp(-2V/4ATEi) 

{^TMEX)1^ 

Pd
2exp(-Pd

2/4M£2) 
+B . (2) 

1.5TT1/2(4M£2)2-5 

The parameters Ex and E% determine the width of the 
curves while the parameters i?oi and JB02 determine the 
position of the peak of the curves in Fig. I.18 As shown 
in the figure the computed differential cross section 
agrees very well with the experimental data for £ x = 1.5 
MeV, £oi=40 MeV, £ 2 =5 MeV, #02= 10 MeV, 
,4 = 0.37, and 5=0.82. It should be noted that the 
absolute value of the cross section both experimental 
and theoretical should not be taken too seriously and 
only the shape of the cross section should be dealt 
with. Thus the absolute value of A and B are not 
important but the ratio B/A is important and is 
related to the relative weight of the (Is) and (1^) 
contributions.19 

Bremsstrahlung Photodata 

The bremsstrahlung photodata of the Purdue group1 

give the number of protons detected in a given energy 

18 £01 and BQ2 are the energy balance terms contained in the 
four-momentum conservation constraint. 

19 The integrals in (1) and (3) were numerically evaluated with 
an error of less than 1%. 
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interval per effective quantum per MeV per steradian 
per C12 nucleus per cm2. In analogy to (1) this differen­
tial cross section is related to the quasi-deuteron 
momentum distribution and the free deuteron photo-
dissociation cross section through Eq. (3). 

ffi<r r 
= / dPd(l-/3dCos0d) 

dQdTpQ J 
XF(Fd)da/dttJdE'/dTp

fB(EmiE)/E. (3) 

The notations used in (3) are explained in the Appendix. 
B(Em,E) is the Schiff bremsstrahlung distribution 
function for peak energy Em and photon energy E. The 
free deuteron photodissociation cross section as in (1) 
is given in the rest system of the quasi-deuteron. The 
momentum distribution function F has the same form 
as in (2). 

In Fig. 3 the calculated cross section is compared 
with the experimental data of the Purdue group.1 

Here instead of an energy distribution as in Fig. 1 the 
angular distribution of the 156-MeV protons is studied. 
The fit is quite reasonable. It should be noted that the 
same parameters except A and B are used for F as in 
the monoergic case. The absolute values of A and B are 
larger than in the monoergic case but the ratio B/A is 
approximately the same. 

Discussions and Conclusions 

The ratio B/A is seen to be a little over 2 (2.2), but 
as mentioned earlier the constants A and B contain 
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FIG. 3. Comparison of the calculated differential cross section 
with the Purdue data for 156-MeV protons produced by 340-MeV 
bremsstrahlung in C12. The fit is made with JEi = 1.5 MeV, E2—S 
MeV, J3„i=40 MeV, £02=10 MeV, A «0.63, and A «1.4. 

the conventional L factor which multiplies the free 
deuteron photodissociation cross section. It is reason­
able to assume that the pairing strength20 of (Is) is 
stronger than that of (1^) pairs and since L depends 
on the pairing strength, (Is) pairs and (lp) pairs 
would have different L values.9 Nevertheless, in view 
of the large experimental errors contained in the 
photodata analyzed here, a 10% fractional deviation 
from 2 may be insignificant and all pairs may contribute 
with equal weight to the emission of photonucleons.21 

Now since the nucleons were assumed to be paired22 

in the nucleus in our analysis, the intranucleus nucleon 
momentum distribution is equivalent to the quasi-
deuteron momentum distribution except for the mass 
involved. Thus, the (Is) nucleons have a momentum 
distribution (3TM)-ZI2 exp(-p2/3M) and the (lp) 
nucleons have a momentum distribution f 7f"1/2(10M)~5/2 

Xexp(—p2/10M). The binding energy of the (Is) 
nucleons is about 20 MeV, and that of the (lp) nucleons 
is about 5 MeV. Of course, this is only a rough estimate 
and neglects the Coulomb effects and the intranucleus 
collision loss which may be quite appreciable at the 
intermediate energy.8 The Harvard group6 gives a 
range of binding energy 13-20 MeV for (lp) protons 
and 27-47 MeV for (Is) protons. Their analysis of the 
proton momentum distribution is not quite complete,6 

but their E% is roughly 4 MeV which compares very 
well with our 5-MeV value. 

The excellent qualitative agreement between this 
analysis and that of the Harvard group is very signifi­
cant and encouraging. With the advent of faster logic 
circuitry and solid-state detectors, it is now possible 
to obtain sharper monochromatization of bremsstrah­
lung. And with the advent of spark chambers, one can 
accumulate sufficient amount of data in a reasonably 
short time interval. It is hoped that with these means 
better and more precise photodata will be made available 
for our analysis in the very near future. Measurements 
of the coincident p-n emission using sharply mono-
chromatized photon beam will be immensely valuable in 
testing the photonuclear interaction models and study­
ing the intranucleus momentum distribution of nucleons. 
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APPENDIX 

Some of the kinematic relations used in the text are 
derived here. The general form of the Lorentz trans­
formation of the four-momentum is 

¥p
/=Pp-ydlyE^-yd-?p(T- l)]/vA (Al) 

£ p '= T (£ p -v<rP P ) , (A2) 

where the primed system is moving with a velocity v<* 
in the unprimed system. Let the rest system of the 
quasi-deuteron be primed and the laboratory system 
unprimed. Assume that the photon is incident along 
the positive Z axis. The proton makes an angle, 0P' and 
0P, respectively, in the primed and the unprimed 
system, with the polar axis. These two angles are 
related by 

cos0p'= (Pp/Pp%cos6p+cosBda(y-l)2 
-yEjficQsed/Pp', (A3) 

where a is the cosine of the angle between Pp and v<*, 
and 6d is the angle between v<* and the polar axis, a is 
given by 

a = cos0<* cos0p+ sin0p sin0d cos (<£<*—<t>P). (A4) 

The partial derivative of a with respect to cos0p is 

a! = cos0<*— cot0p sin0d cos (<£<*—<t>P). (A5) 

For small detectors <f>p is very nearly 90° and 
cos ((f>d—<t>P) in (A5) can be replaced by sin^d. 

The four-momentum is conserved in the following way: 

and 
Ey-\- Td= BQ-J- TP-\- Tn, 

P-y+ Pd^ Pn+ Pp, 

(A6) 

(A7) 

where the subscript d stands for the quasi-deuteron 
and the rest are the standard notations. £0 is the 
energy balancing term and includes the binding energy 
of the two nucleons. Solving (A6) and (A7) for Ey and 
eliminating the neutron coordinates, we obtain 

Ey=D/(Mn-B- Tp-Pd cosdd+Pp cos0p), (A8) 

and 

dE/dTp =(A- PpEpaPd-^D-'E 
- (Ep cosBpP-1-1)/)-1^2, (A9) 

where B=B0-Td, A = MP+Mn-By 2C=Pd
2-B2 

+2MnB, and D= TpA+C-PpPda. 
In the rest system of the quasi-deuteron 

&=iy/(Mn-Bo- Tp'+Pp' cos0p'), (A10) 

dE'/dTp'= {Mn+Mp-B,)E'D'-1 

- {Ep' cos0p 'Pp '-1- l)E'2D'-\ (All) 
and 

where 
dTp'/dTp= (l-fcoEpP,-!), (A12) 

D'= Tp'(Mn+Mp-B,)-B<?/2+MnB,. 

Now the solid angles d£l' and dQ are related by 

where 

/= d cosOp/d cosdp d cosdp/dfa 
d<t>P'/d cos0p d<j>p/d<t>p 

The elements of / are given by 

d cos0P7d cos0p= (Pp/PP
/)[l+cos0z )(7-l)a ,] 

+cos0p V/3Ppa/(£P-a/3Pp)Pp/-2, (A13) 

d<j>p/d<t>p= [Pp sin0p—sin0d coŝ >d 

X (y-l)Pp(da/d<t>P)l/(Ppf sin0p' sin^') 
— co$tj>p'L/sm<t>p, (A 14) 

d cos0p7a<^p= (Pp/PpO[cos0d(7-l)^a/#p] 
+co$dpy

2(Ep—vdPp(x)vDPp 

Xda/d<t>pPp
f-\ (A15) 

d<t>'/d cos0p=Pp sin0rf cos0d 

X (l-y)a'/(Pp' sin0p' sin0p' 
— cos^p'iT/sin^p', (A16) 

where 

da/d<t>p= — sin0p sin0d cos^d, 

L=72 (Ep- vdPPa)vdPpda/d4PPp,-tl 

+cos0p'(sin0/)-2, 
and 

K= y2 {Ep- VdPpa^dP^/P^ 
+cos0p'(a cos0p7a cos0p) sin"V-

For 6D=0 these reduce to the usual solid angle 
transformation factor. 


