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The differential cross sections for the excitation of the vibrational levels of nuclei are derived using the 
direct interaction between the projectile and the shell-model particles via a two-body force. The nuclear 
collective states are approximate solutions to the Hamiltonian consisting of a pairing plus a quadrupole 
interaction in a quasi-particle representation. The results obtained by this method are compared to those 
which follow from an interaction using collective coordinates for states of one and two phonons. Numerical 
results are given for the plane-wave first Born approximation scattering of alpha particles with a delta-
function interaction between the projectiles and the nuclear particle and for the plane-wave Born approxi
mation scattering of electrons, assuming a Coulomb interaction. 

I. INTRODUCTION 

EXPERIMENTS with medium and high-energy 
accelerators, in recent years, have produced con

siderable evidence that an important portion of re
actions takes place through processes which can be 
described as "direct" rather than "compound" re
actions; i.e., often the differential cross sections show 
patterns which can be successfully interpreted by as
suming specific initial and final channels and explicitly 
following a few of the particles involved in the reaction. 
The influence of other open or virtual channels is 
neglected, except, perhaps, by introducing a mechanism 
for absorption or by explicitly assuming a particular 
form for the projectile wave functions or the interaction 
to try to include certain physical effects of the neglected 
processes. 

The most successful application of these methods has 
been to the stripping and pickup processes, reactions in 
which one particle is exchanged between the projectile 
and the target. Often the angular distribution of scat
tered particles can be qualitatively understood by a 
simple semiclassical treatment of the kinematics.1 Using 
methods which are essentially a cutoff Born approxima
tion2 with plane waves for the projectile, Butler has 
demonstrated that these reactions can often be cor
rectly interpreted by assuming that the stripped 
(picked-up) particle is placed in (removed from) a 
particular single-particle shell-model state. Further
more, reasonable extensions of this picture, including 
the distortion of the projectile wave function, Coulomb 
effects, etc., have generally improved the agreement 
with experiment.3 

The direct interaction process which has perhaps 
attracted most interest recently is that of inelastic 
scattering. For a number of years such reactions have 
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1 W. Tobocman, Theory of Direct Nuclear Reactions (Oxford 
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3 For references see M. H. Macfarlane and J. B. French, Rev. 
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been used to identify single-particle states. That one 
can calculate cross sections which are in reasonable 
agreement with experiment using shell-model states 
with a model analogous to that of Butler's for strip
ping4-5 and that these calculations can be improved by 
using distorted waves for the scattering particle6,7 

serves as further evidence of the possibility of success
fully treating these processes by using a simple inter
action linking the initial and final channels. 

The excitation of collective states by inelastic scat
tering, first studied systematically by Cohen,8 offers 
an exciting possibility for the study of nuclear structure 
and the nature of collective states. The empirical dif
ferential cross sections for the scattering of medium 
energy nuclear particles, especially alpha particles, show 
strong oscillations, in which often the maxima and 
minima occur at regular intervals in the scattering.9 

Theoretical cross sections with such a general shape have 
been derived by a diffraction model for scattering of 
particles from a nonspherical strongly-absorbing nu
cleus; this model was introduced by Drozdov,10 ex
tended by Inopin11 to allow the introduction of collective 
coordinates for the excitation of quadrupole vibrational 
states, and further developed by Blair12 to allow any 
type of surface phonon. Blair has emphasized the 
necessity to understand the inelastic and elastic scat-

4 R. Huby and H. C. Newns, Phil. Mag. 42, 1442 (1957). 
5 N. Austern, S. T. Butler, and H. McManus, Phys. Rev. 92, 

350 (1953). 
6 C. A. Levinson and M. K. Banerjee, Ann. Phys. (N. Y.) 2, 

471 (1957); 2, 499 (1957); 3, 67 (1958). 
7 N . K. Glendenning, Phys. Rev. 114, 1297 (1959). 
8 B . L. Cohen, Phys. Rev. 105, 1549 (1957); B. L. Cohen and 

A. G. Ruben, ibid. I l l , 1568 (1958). 
9 R. Beurtey, P. Catillon, R. Chaminade, M. Crut, H. Faraggi, 

A. Papineau, J. Sandinos, and J. Thirioh, J. Phys. Radium 21, 
399 (1960), and (to be published); D. K. McDaniels, J. S. Blair, 
S. W. Chen, and G. W. Farwell, Nucl. Phys. 17, 161 (1960); 
M. Crut, D. R. Sweetman, and N. S. Wall, ibid. 17, 655 (I960); 
J. L. Yntema, B. Zeidman, and B. J. Raz, Phys. Rev. 117, 801 
(1960); H. W. Broek, T. H. Braide, J. L. Yntema, and B. Zeid
man, ibid. 126, 1514 (1962). 

10 S. E. Drozdov, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 734, 
736 (1955) [translation: Soviet Phys.—JETP 1, 591, 588 (1955)]. 

11 E. V. Inopin, J. Exptl. Theoret. Phys. (USSR) 31, 901 (1957) 
[translation: Soviet Phys.—JETP 4, 764 (1959)1. 

12 J. S. Blair, Phys. Rev. 115, 928 (1959). 
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tering in terms of the same mechanism, and has demon
strated that certain qualitative relationships which 
have been found between the experimental elastic and 
inelastic cross sections can be derived by means of this 
model. These results can also be obtained by the more 
nearly general method of distorted-wave Born ap
proximation13; however, since these latter calculations 
are quite complicated it is easier to learn of the qualita
tive features of the process in the adiabatic method. 

Using a plane-wave Born approximation, Lemmer, 
de-Shalit, and Wall have recently extended the calcula
tion of these reaction processes to the excitations of 
states of two phonons.14 These authors have pointed 
out that in the region of Fe and Ni some of the 44-MeV 
alpha-particle reaction experiments seem to suggest a 
phase rule between the maxima and minima of the 
various cross sections according to which the angular 
distributions corresponding to the excitation of the 
one-phonon states of odd / (i.e., the octopole states) 
and to the two-phonon quadrupole vibrational states 
are in phase with angular distribution for the elastic 
scattering, while the maxima in the angular distribution 
corresponding to the excitation of the one-phonon 
quadrupole state occur approximately at the minima 
of these other distributions. Because of the simplicity 
and clarity of their formulation of the inelastic scatter
ing in terms of collective coordinates, we compare 
certain limits of the derivations in terms of two-body 
forces, which is the subject of this paper, to the results 
of Lemmer et al., and, therefore, give a brief sketch of 
their work. 

They use the collective model of Bohr and Mottel-
son,15 in which the nucleus surface is sharp, but non-
spherical, with the deviation from spherical symmetry 
being expressed by collective coordinates, which are 
quantized to serve creation and destruction operators 
of phonons whose spin equals the order of the surface 
distortion. Assuming that the projectile experiences no 
interaction outside of the nuclear surface, they expand 
the interaction in terms of the distortion parameters, 
taking the zero order as a uniform potential well of 
radius R0. The first term in the expansion is an optical 
potential for elastic scattering, which predicts an angu
lar distribution of ZjiiqRtd/qRoJ, q being the momen
tum transfer and ji representing the first-order spherical 
Bessel function. The second term is simply a surface 
interaction linear in phonon creation and annihilation 
operations, the interaction which had been used by 
Hayakawa and Yoshida16 for the excitation of rota
tional states, which leads to one-phonon excitations in 
the first Born approximation with an angular distribu
tion of Q ' L ( ^ O ) ] 2 , with L being the spin of the phonon. 

13 E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960). 
14 R. Lemmer, A. de-Shalit, and N. S. Wall, Phys. Rev. 124, 

1155 (1961). 
15 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. 

Selskab, Mat.-Fys. Medd. 27, No. 16 (1953). 
16 S. Hayakawa and S. Yoshida, Progr. Theoret. Phys. (Kyoto) 

14, 1 (1955). 

This particular form is obtained because a derivative 
of a square well gives a delta function at the origin; a 
more realistic surface would result in an angular dis
tribution which lacks this quasi-periodicity for large 
momentum transfer. 

The two-phonon excitation results from the second 
term in the expansion in the second order and the third 
term in the first order, the latter terms apparently being 
most important for plane waves.14 The first order calcu
lation of the two-phonon excitation leads (in the large 
qRo limit) to a matrix element which contains a spherical 
Bessel function of order L-l, giving the phase rule 
stated above. One can expect this result to be altered 
by using a diffuse surface and distorted waves for the 
particle. Recent calculations have shown the two-step 
process to be as important as the one-step one,17 but it 
is valuable to see how such a phase rule can arise from 
a calculation using a collective model for comparison 
with more nearly fundamental methods. 

The development of linear accelerators which produce 
beams of electrons with energies greater than the w-
meson rest mass has provided a valuable tool for the 
study of nuclear structure.18 One can more easily 
formulate a theory of the excitation of collective nuclear 
states by electrons than by nuclear projectiles, since the 
interaction is more nearly accurately known for the 
former and since one knows better how to handle the 
system when the electrons are near the nucleus. More
over, from the fact that electrons tend to penetrate the 
nucleus, while nuclear particles of intermediate energies 
are absorbed, one might expect to be able to learn more 
of the details of the nuclear structure from electron 
scattering. 

There have been several treatments of electron scat
tering in terms of simple particle and collective co
ordinates,19 and the shape of the differential cross sec
tions can be qualitatively understood in terms of a 
simple model in the Born approximation. Still, one 
hopes that there is a great deal more to be learned about 
the nucleus from these reactions. 

In the present work an attempt is made to understand 
the inelastic scattering from vibrational states in terms 
of two-body interactions, without introducing collective 
coordinates for the interaction. This is possible because 
of the success of the treatment of the collective states 
in terms of shell-model particles interacting with an 
interaction consisting of a short-range and a long-range 
component. In a quasi-particle interaction the short-
range force is approximately diagonalized, resulting in 
a seniority spectrum for even nuclei with a ground state 
of seniority zero (no quasi-particles) well below the 
seniority two states (two quasi-particles).20 Using the 

17 B. Buck, Phys. Rev. 127, 940 (1962). 
18 H. Crannel, R. Helm, H. Kendall, J. Oeser, and M. Yearian, 

Phys. Rev. 123, 923 (1961). 
19 K. Alder, A. Bohr, T. Huus, B. R. Mottelson, and A. Winther, 

Rev. Mod. Phys. 28, 476 (1956). J. D. Walecka, Phys. Rev. 126, 
653, 663 (1962). 

20 S. T. Belyaev, Kgl. Danske Videnskab. Selskab. Mat.-Fys. 
Medd. 31, 11 (1959). 
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dilute fermion approximation,21 which is accurate as 
long as the vibrational levels do not lie too close to the 
ground state, i.e., the number of quasi-particles in the 
ground state remain small, it has been shown that it is 
possible to approximately diagonalize a force which 
has the angular dependence of the second Legendre 
polynomial of the cosine of the angle between the inter
acting nuclear particles and that this leads to the 
quadrupole vibrational states.22 

The vibrational levels for the single closed shell 
nuclei in this (Sawada) approximation have been 
calculated with a pairing plus a quadrupole force,23 

using the same parameters which had been used for the 
calculation in which the same force had been treated 
by a deformed field approximation,24 with quite similar 
results except in the cases for which the adiabatic 
approximation is known to be a poor one. Similar results 
are obtained in the spherical region with both neutrons 
and protons outside of the closed shells.25 While the 
deformed field calculation has the advantage of clearly 
revealing the physical content of the semiclassical 
collective motion, one knows precisely which terms are 
neglected in the calculations with two-body forces, and 
therefore, is in a better position to study those processes 
which are not properly treated in the adiabatic limit. 

The assumption is made here that the projectile is 
an elementary particle which can be distinguished from 
the nuclear particles. This implies that the exchange 
terms are dropped, which might introduce considerable 
error for inelastic proton scattering,6 especially at lower 
energies, but is not expected to be so important for 
alpha-particle scattering. It is then simple to transform 
the part of the interaction which involves the co
ordinates of the nuclear particles into the quasi-particle 
representation, and this result, along with certain other 
mathematical relationships, are given in Sec. II. Be
cause of their intimate relationship to the deformed 
field approximation, these reactions are conveniently 
discussed in terms of the Sawada approximation and 
the corrections to this approximation. In this manner 
one can study in the Born approximation the elastic 
scattering, the one-phonon, and two-phonon excita
tions; and in Sec. Il l results, analogous to those ob
tained in the treatment with collective coordinates, are 
derived in terms of single-particle quantities. In par
ticular, one can see how a phase rule is obtained in 
certain limiting cases, and how it depends upon the 
filling of the single-particle states. 

21 K. Sawada, Phys. Rev. 100, 372 (1957); K. Sawada, K. A. 
Brueckner, N. Fukuda, and R. Brout, ibid. 108, 507 (1957); 
G. Wentzel, ibid. 108, 1593 (1957). 

22 K. Ikeda, M. Kobagasi, T. Maramori, Th. Shiozaki, and 
S. Takagi, Progr. Theoret. Phys. (Kyoto) 22, 663 (1959); M. 
Maranger, Phys. Rev. 120, 957 (1960); R. Arvieu and M. 
V6ne>oni, Compt. Rend. 250, 992, 2155 (1960); T. Maramori, 
Progr. Theoret. Phys. (Kyoto) 24, 331 (1960). 

23 R. A. Sorensen, Nucl. Phys. 25, 674 (1961). 
24 L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab. 

Selskab, Mat.-Fys. Medd. 32, 9 (1960). 
26 L. S. Kisslinger and R. A. Sorensen (to be published). 

In Sec. IV the method is applied to the scattering of 
alpha particles from Ni58 in the first Born approxima
tion. Plane waves are used for the alpha-particle wave 
functions and a delta function is chosen for the inter
action between the alpha particle and the nuclear 
particles. The relation between the magnitude of the 
force constant for the interaction of alpha particles and 
nuclear particles which results from this calculation 
and the optica] potential for the elastic scattering of 
alpha particles from nuclei is discussed. 

In Sec. V, the excitation of collective states by elec
trons is derived and numerical results are given for the 
scattering of 183-MeV electrons from the collective 
states of Ni58 in the first Born approximation. 

II. INTERACTION HAMILTONIAN AND 
WAVE FUNCTIONS 

A. Interaction Hamiltonian 

The interaction between the projectiles and the 
nucleus is assumed to be of the form 

V=Y**k>vv>{kfv,\v\kv)ak>Jtbv>
JtbvaVi (1) 

in which the afc
+ (a&) are the creation (destruction) 

operators for the projectile particles and the ft,1" (bv) 
are the creation (destruction) operators for the nuclear 
particles, with k and v standing for all of the quantum 
numbers of these particles. The bj and bv obey fermion 
anticommutation rules and are assumed to commute 
with the afc1" and the a*, since the assumption is made 
that the scattered particles can be distinguished from 
the nuclear particles. Neglecting the internal excita
tions of the projectile particles, they can be treated 
approximately as bosons or fermions, depending upon 
their spin; but since only one-particle projectile states 
enter into calculation, the only property needed is that 
a^akfZ=^kkr when operating on one-particle states, so 
that the commutation or anticommutation rules do not 
have to be specified. 

The two-body interaction between the projectile and 
the ith nuclear particle is taken as 

vPi= (l+avp-Vi)v(rPi)y (2) 

in which the <F'S are the Pauli spin operators and rpi is 
the relative coordinate. To separate the interaction into 
nuclear and projectile part, the Slater expansion of the 
force and the spherical harmonic addition theorem are 
used, so that the two-body interaction can be written 

vPi=Z(-l)M-^—Mrp,ri)LY^(p)Y^(i) 
LM 2L+1 

+aY,(-iya"(p)a-»(i)YLM(p)YI^M(i)~]. (3) 

B. Nuclear States 

Let us restrict ourselves to the single closed shell 
isotopes for simplicity, although there is no difficulty 
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in extending the derivation to nuclei in which both 
protons and neutrons are outside of the closed shells. 
(If the neutron-neutron, proton-proton, neutron-proton 
quadrupole interactions strengths are the same, the 
application of these results to nonsingle closed shell 
nuclei just involves extending the sums.) The Hamil-
tonian HN from which the nuclear states are derived 
corresponds to particles moving in a shell-model well 
and interacting with a pairing force and a quadrupole 
force, a model which seems to account for many of the 
main features of the low-energy nuclear systematics.24,25 

For completeness, we briefly state the picture which is 
presented by such a model. In second quantized form 
the Hamiltonian is 

2 ^ 2-*33fmm' Oj'm' Oj'—mr Oj—mOjm 2"X>t'vl> v*j 

in which Q is the nuclear quadrupole operator 

Q/ i^ Hjj'rnn'iftn' \ t*YM* | jn^b^bjm. (5) 

In a quasi-particle representation, obtained by means 
of the transformation26 (with w>0) 

jm Vjbj—^rn > 

in which the transformation coefficients Vf, the proba
bility of occupation of the jth level, are chosen to ap
proximately diagonalize the first two terms in (4), for 
even-even nuclei the nuclear Hamiltonian can be ap
proximately written as 

-hcZulZirlMVr+UrVMHSyi*! 

X (j'\\fsnj)LA^LMf+ ( - 1 ) ^ , " / - " ] 12, (7) 
with 

^ y y L M t = ( - l ) w T « / ^ t ] M L (8) 

representing the operator formed by vector coupling 
the quasi-particle creation operators (a/A*) with 
(ay *,&•'*) to an operator of angular momentum L and 
z component M [with a phase (— 1)I+Z']. The first 
term, EQ in Eq. (7) is the ground-state energy, the Ejm 

are the quasi-particle energies, and in the third term 
the sums and the quasi-particle operators are to be 
taken to give a scalar quantity. The accuracy of keeping 
only the first two terms to approximate the single-
particle energies and the pairing force has been dis
cussed in references 20 and 24 and has recently been 
checked by comparison with exact calculations.27 The 
third term is the quadrupole interaction of Eq. (4) in 
the quasi-particle representation without terms which 
arise from the scattering of quasi-particles (see Sec. 
II C). In the deformed field approximation, i.e., re-

26 N. N. Bogoliubov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 58, 
73 (1958); N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958); 
J. G. Valatin, ibid. 7, 843 (1958). 

27 A. Kerman, R. Lawson, and M. H. Macfarlane, Phys. Rev. 
124, 162 (1961). 

placing one of the factors in the last term by the 
average quadrupole moment and assuming that the 
particle motion is rapid with respect to the quadrupole 
vibration, this Hamiltonian fits the main systematics 
of the single-particle and collective states in the single 
closed shell isotopes.24 The error of dropping of the terms 
in scattering of quasi-particles is of the same order as 
using the approximate commutation rules, 

ZA12
IM

}AurM'fl 
*$irtMM'Z*i*u- ( - ly^'^&uSnl, (9) 

and analogous ones for the other combinations of quasi-
particle operators. The eigenstates of the Hamiltonian 
(7) with the approximation (9) can easily be found.21'22 

The ground state can be expressed in terms of the 
quasi-particles by an expansion 

*o=*o(0)+*o(4H 
= * 0 ( 0 ) + Ll234 Cl234[^122 t^342 t]0°^0 (0 )+- ' ' , (10) 

The energy of the phonon, the excitation energy of the 
first 2+ state, is given in the Sawada approximation 
as the smallest value of ha> which is a solution to the 
relation 

(2x/5)Eyi' (^nEi+Erym+E?)*- (fco)2] (H) 

with 
&,=<j'Vv\\iKUjVj>+ VfVi), (12) 

in which (|| ||) represents a reduced matrix element. 
In (10) the wave function >J>o(0) is the quasi-particle 
vacuum, except for normalization, and the constants 
C1234 are determined from the condition 

5*o=0. (13) 

The excited collective states are obtained from the 
ground state by the phonon creation operator 

BML'=T,rMMr3LM'+{-^)MbMr3^M) 

%J'3T 1 

i? SMLEi+Ej—fka 

-(-VjMAj,^ 1 (14) 
Ey+Ej+fuaA 

with 

JW-2= (8««/S){Eii'(«i'/)2(£rf£yO/ 
C(£i+£yOJ-(««)2?}. (15) 

C. Corrections to the Sawada Approximation 

As is shown in the next section, the Sawada ap
proximation, described in the preceding paragraph, 
leads to the inelastic excitation of the one-phonon 
states, but does not allow the two-phonon states to be 
excited. In this section the various corrections to this 
approximation needed for the present work are given. 
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Including the quasi-particle scattering terms, the 
operators which we need for the Hamiltonian given by 
Eqs. (1) and (2), under the Bogoliubov-Valatin trans
formation (5) are 

Ei/'mm'OW I YM
L I jm)hj>m>%i 

= Eii4*Lo(2i+l)^7/8^H 
(f\\YL\\j) 

(2Z,+1)1/2 

x 
-(UjVr+UrVi) 

(Arfrt+WArfr*) 

+ (UiUi.-ViVi.}ni.f"\ (16) 

and 

'E(j'm'\<T"YM
L\jm) 

(f\\T1L-J\\j} 

J a- (2/+1)1 '2 

X {WiVf- UrVifiArfrt+ir-1)^/-«] 

+ (UjUy+VjVy)Vi^}. (17) 

In (16) and (17) the quantity 

an operator carrying angular momentum L and z 
component M corresponding to the scattering of a 
quasi-particle from state j to / , has been introduced 
for convenience, and the quantity t1L;J is defined as 

W=£<rYLy, (19) 

the tensor of rank / formed from the vector coupling 
of the spin operator to the spherical harmonic of order L. 
In the dilute quasi-particle approximation the terms in 
77 are dropped, so that the neglect of these terms intro
duces errors of the same order as the use of the com
mutation rules (9). For this reason, for the study of the 
excitation of the second vibrational state it is necessary 
to use the correct commutation rules. The basic com
mutation rule for the double quasi-particle operators is 

+ ( _ 1)Wt+h+H+M £ ( _ lyCM'rU.M'-M1'1' 

X[(2J+1)(2J'+1)]1/2X ( -1) I'tlthlBml 
1=3, 4=p?±l 

m = 1 , 2 =g5*£wt 

XrijtiSV'-VBpaWil'jJMJiS), (20) 

with C and W being the Clebsch-Gordan and Racah 
coefficients, respectively. The last term in this relation 
represents the deviation of the fermlon pairs from 
bosons and becomes small if the fermion density is 

small. Another commutator useful for this work is 

[>h2*M '^34J M t] 

= L [ ( 2 5 + 1 ) ( 2 / + 1 ) ] 1 / 2 C M , M ' , M + M ' J 8 8 ' 

+ ( _ i)ij+/H-«H-/H-i-i524i413»'Jtf+Jf't 

XW(sjiIjf,jV)l. (21) 

The commutation rules (20) and (21) are exact. 

III. ELASTIC AND INELASTIC SCATTERING 

A. Elastic Scattering 

In the Born approximation the elastic scattering is 
calculated from the expectation value of V in the states 
given by (10). For a Wigner force there is a con
tribution from the part of the interaction independent 
of quasi-particle operators. From Eqs. (10) and (16), 
the matrix element from this part of the interaction is 

<^o|'U|^o> = Ey W*(rp)^t(fp)/o(fp,f) 
XRni2(r)V2r*drd*rp, (21) 

with <pk(rp) the wave function of the projectile and Rni 
the radial wave function of the nuclear particle in the 
state nlj. 

To see the relation of this result to the derivation in 
terms of collective coordinates, let us consider the 
plane-wave Born approximation with a S-f unction 
interaction between the projectile and the nuclear 
particles; i.e., 

<Pk(rP)=(l/VW)e*-<*, 

h («V) = gl(2L+ l)/4x][5 (f-rp)/rr,l, 
(22) 

with V the normalization volume and g the force 
strength. In this case the matrix element (21) becomes 

4TT r 1 
<¥o | V | ¥0> = —gdr-r sinqrp (r), (23) 

V J q 

where q is the momentum transfer. 
The quantity p(r) appearing in (23), defined by 

p(r) = T,iV?Rnt(r) (24) 

is the radial density function. If one assumes a uniform 
distribution 

P W = PO, r<R0 

~ ( ' 
= 0, r>R0, 

the elastic scattering differential cross section becomes 

(da/dQ)^ (4MW)(gPoWUi(qRo)/qRoJ, (26) 

which is identical to the plane-wave Born approxima
tion scattering from a square well of depth gpo and 
radius RQ by a spinless particle with a reduced mass p.. 
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Because the ground-state wave functions consist of 
zero, four, etc., quasi-particles, the terms which corre
spond to the destruction and creation of two quasi-
particles, the A t and A terms in the interaction, do not 
contribute to the elastic scattering. Therefore, only the 
quasi-particle scattering parts of the interaction, the 
terms containing the operators rjj>j, which are neglected 
in the Sawada approximation, cause deviation from the 
above result. These corrections to the Sawada approxi
mation are second order and higher in the expansion 
coefficients, since they connect only the parts of the 
wave function with four or more quasi-particles. The 
correction to the matrix element (21) arising from the 
four quasi-particle terms in the ground-state wave 
functions, with the neglect of the contribution from the 
quasi-particle scattering terms in the matrix element of 

<*o(4)N*o(4)> 
^ E i <P^(rP)MrP)fo(rP,r)Rnnr)Sl(U^-V^ 

+^EM(-D^(i>)01klli)M(2i+i)1/2] 
X D L I 2 3 4 Cl2342(5li+52j+53j+54j)/ 

1 + 8L1234C12342]. (27) 

(k'*oBM
L\V\*ok) 

47T 

So long as the vibrational energy does not fall too 
low in the gap, as in the single closed shell nuclei, these 
contributions are small compared to the zero-order 
matrix element. 

B. Excitation of the One-Phonon States 

The matrix element needed in the Born approxima
tion for the inelastic scatterings of the one-phonon 
state is 

(k'*oB\V\*ok). (28) 

Because of the relation (^o|£|^o) = 0, the interaction 
term independent of quasi-particle operators cannot 
lead to this inelastic process. Moreover, the quasi-
particle scattering terms cannot lead to this process in 
any order since the operators t\yj do not change the 
number of quasi-particles while the state B^Q has no 
component with the same number of quasi-particles as 
the ground state. Thus the matrix element is 

{VyVi+UiVy) 47r r 
Z E / dhpdrr*fL>(rP)r)<pk>*(rp)<pk{rp)YM>L\%)Rn>u{r)Rnl{r)\ 

L>M> if 2L'+lJ 1 2(2L'+1)1/2 

x<il|r*i|y>^^ 

0"l|7™||i> 
X-

Using Eqs. (14) and (20), one easily finds that 

(kf^QBM
L\V\^0k) 

4TT 

2(27+1)! 
-(*OBML\ (Aj,i'-tf+(--l)"'Aj,j™')\*o) . (29) 

n 2L+1 
/ / dhpdr ryL{rPjr)<p^{rp)^{rp){ayj-by3)- (J7i'Fy+^7,v)l?n'r(f)*ni(f)F-ML(0,) 

J J (2L+1W2 (2L+1)1/2 

+ « I I —?— [ fd*rJrf*fL,(rp,r)vk.*(rp)^ Ei . ( - l )^(#)(0; ' i -&i ' i ) 
ii' L' 2 Z / + 1 ' J 

X «i1N1L ' ;L | |i)/5^2)CM,_M1L 'L(^-^- UyVj). (30) 

In Eq. (30) terms in <*o|ifo',|*o>, which are of order /Ar\lph^/*2g2*r 0 1 3 

2, have been dropped. In the second term, which arises ( ~ ) — 7 7 7 ^J . 
rom the •Ra.rt.lett fnrre the na r t with 7 7 = 3 is PVTwtPrl XdU/ % ™u'i {bj+Ej' 

ifwni) 
y- (fay from the Bartlett force, the part with L'=2 is expected 

to be most important for the excitation of the 2+ state. 
The matrix element (30) is precisely the Sawada 
approximation. For comparison with the derivation 
using collective coordinates, let us consider in the 
plane-wave Born approximation a spinless projectile 
interacting via a 6-function interaction with the nuclear Since V? and U,2 represent the probability of occu-
particles. Using Eqs. (30) and (22), one finds that the pation and nonoccupation of the j level, respectively, 
cross section for the one-phonon excitation is the products V,Vj are nonzero only for the levels which 

X / * . , •(r)R„i(r)r2jz(qr)dr • (31) 



1322 L . S. K I S S L I N G E R 

are partly occupied. Furthermore, the Ej represent 
elementary excitations above the ground state, with 
the smallest Ej corresponding to the single-particle j 
levels nearest the Fermi energy, i.e., the partly filled 
levels which are in the outer orbits. Therefore, the co
efficients of the radial integrals tend to be largest for 
the j level corresponding to the lowest quasi-particle, 
e.g., the /6/2 level in the Ni62 isotope. If this is the case, 
the cross section is approximately given by 

/da\lptl | r m 
(qryRf(r) (32) 

with R/(r) the radial wave function of the particle in 
the outer orbit. Since the quantity r2Rf

2(r) tends to be 
peaked near the surface, one has the qualitative result 

(da/day^MqRdl*. (33) 

This is the result of Lemmer et al.u and of Hayakawa 
and Yoshida16 using collective coordinates with a uni
form potential well as the zero-order approximation. 
In the extreme limits of a uniform density function and 
a particle in the outer orbit assumed to have a precise 

radial position, a comparison of Eqs. (32) and (26) 
shows that the phase rule is obtained and that the 
angular distribution for the excitation of the 2 + state 
is approximately out of phase with the elastic scattering. 

This same derivation is applicable to other collective 
modes. For example, the octopole state would be de
scribed by a phonon operator Bz, and the result would 
be Eq. (33) with J2(qRo) replaced by jz(qRo) which 
gives the one-phonon phase rule mentioned in Sec. I. 
For alpha-particle scattering this phase rule should be 
quite good due to the strong absorption within the 
nucleus. 

C. Excitation of the Two-Phonon States 

In order to calculate in the first Born approximation 
the inelastic excitation of the two-phonon states, one 
needs the matrix element (fe'SEr

0[55]Af7|'U|^rofe), with J 
taking the values 0, 2, 4, corresponding to the three 
second vibrational states. The results are given only 
for the Wigner force, as the corresponding results with 
the spin-dependent force can be immediately obtained 
from these. Writing out this matrix element, one has 

<ft '¥o[BLBL] j f^l*o*> 

4x 

2L+1 

+ bnbu[A 12*A 34+] ji- J + anbu[A nAu 

f 4TT / \ 
= L E / dhpdrr2 Wfc*(rp)^(rp)FML(Qp)/L(rp^ 

•M' j}' J 2L+1 \ I 1234 

X \8LoV3%fj(2j+iyH 
(J'\\YL\\J)\ 

(2L+1) 1/2 

•(JJiVr+UrVi) 
(Ay^^+i-iyA^n 

+ (UP?- ViVrhrf^j | * o ) . (34) 

In the Sawada approximation ( 2 ^ 0 = 0 , r?^0=0) the 
only terms in the approximation which occur are those 
in Aj'^ and Ayj. Since the operator [BB~\J can change 
the number of quasi-particles by zero or four, the 
matrix elements which appear in the Sawada approxi
mation vanish in all orders, i.e., 

(MoLBBj\A^\^0)={k^olBB2I\A |¥0> = 0. (35) 

This can be expected from the fact that the dilute 
fermion approximation for a separable force, TL-TL, is 
equivalent in the adiabatic limit to the deformed field 
approximation, i.e., TL'TL^TL-(TL) for the collective 
states arising from the interaction. In other words, in 
this approximation one has linearized the interaction 
in terms of the phonon operators, so that the excitation 
of the one-phonon state is allowed but the second 
vibrational state cannot be reached from the ground 
state. Thus, in the language of the particles properties 
the expansion in higher powers of the collective co
ordinates is explained as the interactions between the 
quasi-particles. Moreover, one can see that it is possible 

to find certain qualitative features, such as phase rules 
for the two-phonon excitation, in terms of the single-
particle properties. 

If one includes the terms which arise from scattering 
of quasi-particles, not only do new terms appear in 
the interaction, but also the relation B$ro=0 is no 
longer satisfied, even though the matrix element 
(^foB^o) vanishes. Using the commutation rules (20), 
one finds 

or 

£ ¥ o = L avvfci2%^Avv>Hf^-\-0{avy'C
z) (36) 

(37) 

Therefore, for the two-phonon 1=0 state there is a 
contribution to the inelastic scattering from the terms 
independent of quasi-particle operators which is of the 
same order as the contribution from the rjyj terms. This 
could have an important effect on both the magnitude 
and shape of the cross section for the excitation of the 
two-phonon state of angular momentum zero compared 
to angular momentum two and four, as is seen below. 
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Comparing Eq. (34) with Eq. (21), one finds that with the elastic cross section. Although this result 
the cross section which results from the part of the seems to be in agreement with the phase rule of Lemmer, 
interaction free of quasi-particle operators, (^a-/JO)noq.p., de-Shalit, and Wall,14 its origin and physical content 
is (with K a constant) seem to be quite different, as is obvious from the fact 

(d<r/dQ)no q.p
 2 ph*7 =°=K(da/dQyi; (38) 

that it does not pertain to the excitation of the two-
Mo q.p. — \ / J > \ ) phonon states of angular momentum 2 and 4. 

i.e., for this part of the interaction the cross section for From the part of the interaction involving the opera-
the excitation of the 7 = 0 two-phonon state is in phase tors 77, one finds 

< ^ O [ £ £ ] M ^ I ^ (39) 

where 

/ 5 \ > NJ 
- ( 2 / + l)1/2CoM

2 '" '*(2i+l)1/2(2/+1) 1/2 

(2J+1) (2 /+1) 1 / 2 

X E i i WiJj'lJ!; j2)Co^Coi^HUjVh+ UhV,){Uj>Vh+ UhVs.) 

X (j I r21 ji)(f I r21 j \ ) / (Et+Eh+k*) (E^E^-tut). (40) 

I t should be pointed out that in deriving the expres
sion (40) one just uses the relation (13) and the com
mutation rules (20) and (21); the precise form of the 
wave function and the coefficients C1234 do not enter 
into the calculation. 

In order to study the qualitative features of this 
result, let us evaluate the cross section in the plane-
wave Born approximation. In this approximation 

t (d*/day»*=K'\ E hsiUjUr-ViVy) 

while the cross section for the excitation of two phonons 
might be approximately 

(da/dtty^K2[ fRiJ{r)ji(qrydr~\, (43) 

since the £3/2 level is the other level which is being filled 
in this region. Since the one-node p radial wave func
tion approximates the shape of the derivative of the 
nodeless / function, one finds (with these very rough 
assumptions) 

X 

/da\*>* r f/dR0f\
2 -f 

fR*r(r)R*WMry*] • (41) U **{] \HTJ ' " ' ^ J ' 

As one can see from Eqs. (31) and (41) the most im
portant qualitative difference between the cross section 
for the one-phonon excitation compared to that for two 
phonons is the difference in the occupation number 
factors. For the one-phonon excitation, the factor 
(UjVj'+VjUj>) ensures that the states at the Fermi 
level contribute most to the process, while the factor 
(UjUj'—VjVj>) does not allow any contribution from 
these states for the two-phonon process. If the radial 
wave functions of the states which do contribute to the 
two-phonon process differ markedly from the states at 
the Fermi level, one can expect cross sections for the 
one-phonon and two-phonon processes to be out of 
phase. 

For example, let us consider the Ni62 isotope, in 
which the neutrons are mainly filling the /5 / 2 level. 
Presumably, the one-phonon cross section, to a large 
extent, is given by 

(da/dny^Ki [JRof(r)J2(qrydr~] , (42) 

which, by comparison with Eq. (32), predicts that the 
one-phonon and two-phonon cross sections have the 
phase rule of reference 14. 

However, even under these extreme and unrealistic 
conditions this phase rule cannot be expected to be 
universally valid, and the shape of the differential cross 
section will generally depend upon the levels which are 
filled. For a-particle scattering, since these projectiles 
are so strongly absorbed within the nucleus, the tails 
of the particle wave functions contribute most to the 
scattering. Therefore, one might expect in this case that 
the positions of the maxima and minima of the cross 
section for excitation to a particular state depend 
largely upon the nuclear radius and the angular mo
mentum transfer, although the magnitude of the cross 
section might be quite sensitive to the details of the 
structure of the wave function. On the other hand, for 
excitation of collective states by particles which are not 
strongly absorbed, Eqs. (30) and (39) show that both 
the magnitude and shape of the theoretical cross sec
tions will depend upon the construction of the collective 
states in terms of the single-particle states. 



1324 L. S. K I S S L I N G E R 

D. Excitation of the Two-Phonon States in the Second Born Approximation 

In addition to the one-step process described in the previous section, the two-phonon states can be excited 
by a two-step process through the one-phonon state. The second Born approximation matrix element is 

(k^olB^^M'lV^l^o^ £ 
(mff2/2»)+tu*-(m*/2ii) 

(44) 

The matrix element for excitation of the one-phonon state is given in Eq. (30). Using the arguments given 
at the beginning of Sec. I l l B, one can see that only the Ayf and Ayf* parts of the interaction can lead to the 
excitation of the two-phonon states from the one-phonon state. Using the commutation rule (8) and condition 
(13), one easily finds that in the Sawada approximation the matrix element is (for a spinlessprojectile) 

ST r (UrVj+UjVi*) 
£ ^rrV^*W^^^)/L(v)^H^)^W(-l)M-M'FM-^L— —-(j'\\YL\\j) 
n J (2Z+1)1/2 

X (on-bn)CM:M-M'LLI. (45) 

2L+1 

For a 5-f unction interaction the matrix element (44) 
can be written approximately as 

g2 4M 
^- ikZ E [>(2/,+ l)]1/2 

V (2Z,+ 1)1/2 imiiaiii 

X ( 2 / a + l ) ( 2 ^ + l ) 1 / 2 ( 0 ? a - ^ ( - l ) L C o o o W L C 0 o o ^ L Z 

XWiLleLlaimCoMM^YM^ik'tk) 

jdrdr' r V l R i M i ^ M i ^ ' ) ^ ' ) 

Xjia{krf)jl,{kfr)jl{kr<)hl^ (ftr >), (46) 

X 

in which r> (r<) stand for the larger of (smaller of) 
r and rf in the integrations. In the derivation of (46) 
(which is similar to the analogous derivation in the 
appendix of reference 14), the excitation energy fuc has 
been neglected in the energy denominator of Eq. (44). 

A comparison between expressions (46) and (39) 
reveals that the second Born approximation matrix 
element is essentially of the same magnitude as the 
first Born approximation for the excitation of the two-
phonon state. This is not surprising, since the two-step 
process proceeds via the Sawada terms and thus in the 
second order is of the same magnitude as the one-step 
process to which the Sawada terms cannot contribute. 
Thus one has a close analogy between the nature of the 
Sawada approximation with the corrections to this 
approximation and that of the linearized collective 
interaction with the addition of nonlinear terms. 

Although the evaluation of Eq. (46) is straight
forward it is quite complicated. For this reason it has 
not been included in the rough numerical calculations 
described in the following part, 

IV. INELASTIC SCATTERING FROM Ni58 

A. Alpha Particles 

In this section the cross sections for the excitation of 
the one- and two-phonon states are calculated in the 
first Born approximation, using plane waves for the 
alpha particles and a 5-function interaction 

vpi=g8 (rp- u) = gQ{fiz/m^c)h ( r p - r%) (48) 

between the alpha particle and the ith nuclear particle, 
where g is the interaction strength. For convenience, 
the dimensionless coupling constant go is introduced in 
terms of the 7r-meson mass. Only the /- and ^-state 
neutrons are explicitly considered and the wave func
tions are taken as simple harmonic oscillator functions, 
neglecting all energy splittings. This calculation is an 
attempt to further study the method described above 
and is not intended to be quantitatively accurate. Also, 
it should be noted that Ni58 is not a particularly favor
able isotope. It contains only two neutrons outside of 
the neutron and proton 28 shells. These shells are not 
very strongly closed, so that both protons and neutrons 
are involved, and they occupy approximately the same 
shell-model levels. Since the short-range neutron-proton 
force is neglected in finding the nuclear wave functions, 
this could be quite important. 

The parameters used to determine the states are the 
same as those used in reference 24, with a pairing force 
strength of 0.331 MeV and the single-particle states 
chosen as £3/2(0), /5/2(0.78), and p1/2 (1.56). The very 
small contribution of the g9/2 level to all of the processes 
discussed here is neglected. In each case the calculation 
is redone including the /7/2 level of the 20-28 shell. 
This is not intended as an improvement (in fact, to be 
consistent one would have to at least include the /7/2 

protons also), but as a test of the sensitivity of the 
method to the choice of parameters. 
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TABLE I. Coefficients dj>j for 1.45-MeV one-phonon cross section. ; n which K\ is a constant, q is the momentum transfer, 
• and the dfj are given in Table I. The radial integrals 

fm Pm A 5/2 Pm 
Gij'/iqRo), denned as 

fm 0.146 
put 0.553 
fm 0.0649 
Pm 0 

0.553 
0.345 
0.0683 
0.123 

0.0649 
0.0683 
0.172 
0.0774 

0 
0.123 
0.0774 
0 

)= f d 
jRo 

<*i>iin W = / dr **MF)RJ'(r)Rj(r)9 (50) 

are cut off at RQ, a radial parameter, to take into 
T- T- / o 4 \ ^ r ^ -. *.- t account the strong absorption. Since the radial wave 
JTJ* f?!h?!l " 0 S S SC ° n e x c l t a t l 0 n o f functions in (49) are taken from a degenerate oscillator, 

there are only three radial integrals. In terms of them, 
(49) the cross sections in the two cases are 

one phonon is written as 

(d*/<toy*h (no /7 /2) = ^0
2X4.14Xl0-24(0.S91(RJ,p<2)+0.172(R//(

2>+0.291(Rp/<2))2 cm2, 

(da/dQ)^h (with /7/2) = go2X2.10XlO-24(0.591(R^2>+0.172(R//<
2)+1.397(R3,/<2))2 cm2. 

(Sla) 

(51b) 

The results are given in Fig. 1 for a cutoff radius of 
i?o=l-6XlO~13 cm, which is reasonable. One can see 
that for a suitable choice of interaction strength go 
either cross section is suitable, although there is a 
factor of five different in their magnitude for one 
choice of the constant. Of course, with a sharp cutoff 
and degenerate wave functions one almost eliminates 
the differences between the states insofar as the 
periodicity of the oscillations is concerned, which would 
not be true in an accurate calculation. With systematic 

TABLE II. Coefficients #'/7 ) for 7=2 and 4 two-phonon 
cross sections with fi/2 state. 

V 

studies, one probably could learn a good deal from the 
one-phonon cross sections. 

Using the assumptions described above, the cross 
section for the excitation of the two-phonon state of 
spin / in the first Born approximation is 

(d*/dn)j**=Ki«> E ^ ft'/OW"(qRo) (52) 

in which K2
(I) is a constant, and the g y / are given in 

Tables I I and I I I for the calculation without and with 
the /7/2 level, respectively. For the case of Ni58 one has 
for the scattering from the 4 + and 2 + two-phonon 
levels without and with the /7/2 level, respectively. 

TABLE III. Coefficients gyy(/) for 7=2 and 4 two-phonon 
cross sections without fn2 state. 

yv/2 Pm fm Pm 

fm 
Pm 
fm 
Pm 

fm 
Pm 
fm 
Pm 

0.909 
0.782 
0.0226 
0 

1.674 
0.724 
0.0079 

-0.698 

&<;(4)X102 
0.553 
0 

-0.331 
0 

&'/2>Xl02 

0.558 
-0.433 
-0.0898 
-0.562 

0.0208 
-0.397 
-0.200 

0 

0.0070 
-0.0718 

0.0769 
0 

0 
0 
0 
0 

0 
-1 .07 
-0.655 

0 

V Pm fm Pm 

Pm 
fm 
Pm 

Pm 
fm 
Pm 

0 -0.387 
-0.322 -0.229 
0 0 

-0.147 
0.0769 

-0.698 

gn*>XW 
-0.119 
-0.0682 
-0.562 

-1.068 
-0.655 
0 

(dtr/da)4+**h (no/7 / 2) = go2X0.537XlO-21 cm2(-0.00229(R / /(
4)-0.00710(Rp/(

4))2, (53a) 

(^/^0)4+2 p h (with /7 / 2)=go2Xl.375XlO-2 2 cm2(0.00753(R//<
4)+0.00606(Rp/(

4))2, (53b) 

(d<T/<m)^h (no /7/2)=go2X0.533X10-21 cm2(-0.0191 (RP3><2>-0.000682(R,/2>-0.0102(Rp/
(2))2, (53c) 

(d<r/dQ)2+2»h (with /7/2) = go2Xl.36XlO-22 cm2(-0.0220(Rpp(2>+0.0177(R//<
2)-0.0O0955(R3,/<

2))2. (53d) 

The cross sections are plotted in Figs. 2 and 3. One 
can see that the positions of the maxima and minima 
are in approximate agreement with experiment for the 
same value of the radial parameter J R 0 = 1 . 6 X 1 0 ~ 1 3 cm 
as was used in the one-phonon calculation. The fact 

that this method predicts the correct phase relation
ships, which in this case are that the one-phonon and 
two-phonon 2 + states are in phase with each other 
and out of phase with the two-phonon 4 + state, indi
cates that the main factor in determining these rela-
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tionships is the angular momentum transfer and not 
the number of phonons. This result depends upon the 
strong absorption with sharp cutoff, the use of de
generate harmonic oscillator states, and the neglect of 
the second Born term, but seems to be closer to the 
actual situation than the phase rule of reference 14. As 
has been pointed out by Glendenning7 and others, 
whenever the reaction is concentrated at the surface 
the angular distribution is insensitive to the mechanism 
producing it. However, because of the possibility of 
coherent interference of the second Born terms, to 
which single-particle states contribute in a different 
manner than the first Born terms, the phase rule for 
the two-phonon states can provide a deeper dependence 
upon the reaction mechanism even for such strongly 
absorbing particles as alphas. 

It is interesting to see that the one- and two-phonon 
2+ states can be fit with approximately the same value 
of the coupling constant go =27.4. The 4 + state needs 
a force constant 14 times this value, but because of 
the neglect of the two-step process (as well as the other 
approximations) one should not consider this to be 
significant. Taking the value of 21A(fi/MTc)zMc2 for 
the magnitude of the 5-function interaction between 
a particles and nuclear particles, one can make an 
estimate of the optical model potential which would 
result for the elastic scattering of a particles from the 
nuclei. Assuming that the alpha-particle wave function 

scattering angle 

FIG. 1. The differential cross section for 45-MeV alpha-particle 
excitation of the 1.45-MeV one-phonon state in Ni58. The experi
mental curves for Figs. 1-3 are taken from the results of Beurtey 
et al. (reference 9) and are consistent with those of Broek et at. 
(reference 9). See the text for a discussion of the two theoretical 
curves. The coupling constant used for the theoretical curves is 
go=27.4. 
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.008 

0021 

2.5 MeV44 Two phonon level in Ni58(Alpho) 
a) 4 +Two phonon, exp. 
b)4* Two phonon, theor.(nof7/2) 
c) 4+Two phonon, theoc(with f 7At) 
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scattering angle 

FIG. 2. The differential cross section for 45-MeV alpha-particle 
excitation of the 2.45-MeV 4-f- two-phonon state in Ni88. The 
magnitude of the interaction constant is go= 14X41.1. 

and the optical potential are both constant within the 
nuclear volume Fjsr, one has 

VN/A 
go= Vo £*1.44X 10-2F0, (54) 

(fh/mrc)zmrc
2 

where Vo is the depth of the uniform potential in MeV. 
The nuclear radius used to obtain Eq. (54) is R=1.6 
XlO~13Xl/3 cm, the radius which results from the 
present work. This gives a value of V0= 1900 MeV. 

The elaborate optical-model calculations by Igo28 for 
a particles on nuclei give the real part of the optical 
potential, 1100 exp[-(r-4.53)/0.574] MeV for Ni, 
so that a value of 1100 MeV is obtained at the nuclear 
surface, which is consistent with the results of this 
work. On the other hand, Igo's results are quite in
sensitive to the real part of the optical potential, and 
one can see by comparison to other calculations29 that 
the real part of the potential can be altered by a factor 
of 10 or even 100 in the optical-model calculations with 
rather minor changes in the imaginary part. In the 
present work, since we have used a sharp cutoff with 
wave functions having a small tail outside the nucleus 
and have neglected distortion, we find a coupling con
stant which is probably far too large. It would be ex
tremely interesting to learn of the value of this inter
action strength from an accurate calculation and to see 
if one force constant can systematically fit the data 
for various nuclei. 

28 G. Igo, Phys. Rev. 115, 1665 (1959). 
29 G. Igo and R. M. Thaler, Phys. Rev. 106, 126 (1957). 
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B. Electrons 
The cross sections for excitation of the one- and 

two-phonon states in Ni58 are calculated in the first 
Born approximation using the simple nonrelativistic 
Coulomb interaction. Because of the well-known 
relationship 

/ 

1 4ir 
6tq-rP e-rpy== g i q - r (55) 

the plane-wave Born approximation scattering by the 

Coulomb interaction follows immediately from the 
calculation with the 8-iunction interaction. The rela
tion between the matrix elements for the scattering of 
an alpha particle from momentum k to k' is 

(kf | ̂ Coulomb | k) 

= (47reWg2)(l / l^-^|2)^>a-/cn|^), (56) 

where eeu is the effective charge of the nuclear particle. 
Relationships analogous to Eqs. (49) and (52) are 

obtained, but with a factor of q~A and in terms of radial 
integrals without cutoff. The result is 

(d<r/dny»h (no/7/2)' 

(da/dO)1^ (with f7/2)-

(da/dtt)^ (no f m ) -

(da/d2)4+2ph (with/7/2) : 

( J (7 /^ )2 +
2 p h (no / 7 / 2 ) : 

(da/dtiW»h (with /7/2) 

= 3.56XlO-28cm2[e-92/4"(0.156-0.0299^2/^+0.00202^/^2)]2, (57a) 

= 1.80X 10-28 cm2[e-^4"(-0.0370+0.0223g2/v-0.000116?
4/^)]2, (57b) 

= 4.6lXl(H6cm2[e-«2/4'(0.W^^ (57c) 

= 1.18X 10-26 cm2[e~«2/4"(0.000746+0.0000284^/^-0.0000045^/J/2)]2, (57d) 

= 4.58Xl(^26cm2[e-^4y(-0.00345+0.000725^2/^-0.0000585g4/ (57e) 

= 1.17X 10-26 cm2[e-^4"(0.00106+0.000652g2/^-0.0000684g4/^2)]2. (57f) 

Using an effective charge of 1.4e, which is consistent 
with the B(E2),U the scattering cross sections for the 
2+ one-phonon and two-phonon states are in reason
able agreement with experiment for the calculation 
without the /7/2 level, while the 4+ two-phonon state 
is too small by two orders of magnitude (Figs. 4, 5, 
and 6). These results are quite similar to those for the 
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FIG. 3. The differential cross section for 45-MeV alpha-particle 
excitation of the 2.9-MeV 2+ two-phonon state in Ni68. The 
magnitude of the coupling constant is g0=41.1. 

a-particle scattering and suggest that the two-step 
process is especially important for the 4 + state. 

The most striking result is the strong dependence of 
both the shape and the magnitude of the cross sections 
upon choice of single-particle levels, which is borne out 
by the tremendous differences in the results when one 
includes the /7/2 state. Since the cross sections result 
from a coherent sum of scatterings of the particles in 
the various levels, even small changes in the wave 
functions can shift the positions of the maxima and 
minima and generally produce important alterations in 
the results. For this reason it is clear that the informa
tion from the excitation of collective states by electrons 
might prove to be an excellent test of the single-particle 
structure of the collective wave functions. For quanti
tative calculations one must consider the magnetic 
moment scattering, purely relativistic effects, and the 
distortion of the electron wave functions, especially for 
large-angle scattering. 

V. CONCLUSIONS 

In conclusion, there are many similarities between 
this method of deriving the excitation of collective 
states by direct interaction between the scattered 
particle and the nuclear particles and that of the 
collective models. The dilute quasi-particle approxima
tion leads to the first Born excitation of the one-
phonon states and to excitation of the two-phonon 
states by a two-step process, in analogy to the collective 
Hamiltonian linear in the phonon operator. The correc
tion terms, which occur both in the commutation rules 
and the operators and correspond to the interaction of 
quasi-particles with each other, give rise to a first Born 
excitation of the two-phonon states, in analogy to the 
nonlinear terms in the collective Hamiltonian. 



1328 L . S . K I S S L I N G E R 

x!0-3 

xlO-4-| 

o 

' G i l 
. W O 

s 
xl0-5-| 

xlO"« 

1.5 MeV One phonon level in Ni58 (Electron) 

I I one phonon,exp. 
q> one phonon, theor: (no f 7/2) 
bj one phonon, theor.(with f 7/z) 

2 3 

V 6 0 x q 

6 7 8 

FIG. 4. The ratio of the differential cross section to Mott 
scattering for 183-MeV electron excitation of the 1.45-MeV one-
phonon state in Ni88. The experimental results of Figs. 4r-6 are 
taken from Crannell et al. (reference 18). See the text for a discus
sion of the two theoretical curves. The effective charge of the neu
tron is taken as e*u = 1.4c. 
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FIG. 5. The ratio of the differential cross section to Mott 
scattering for 183-MeV electron excitation of the 2.45-MeV 4-f-
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FIG. 6. The ratio of the differential cross section to Mott 
scattering for 183-MeV electron excitation of the 2.9-MeV 2-f 
two-phonon state in Ni68. The effective charge of the neutron is 
taken as ee«

=i2.0e. 

In the first Born approximation, the main qualitative 
feature is that single-particle states which tend to be 
most important for the one-phonon process often con
tribute little to the two-phonon excitation. Although 
this will not lead to a specific phase rule between the 
one-phonon and two-phonon differential cross sections 
in general and, in fact, does not seem to be very sig
nificant in determining the relative phases for alpha 
scattering because of the strong absorption, in certain 
limits it results in a phase rule approximating that of 
Lemmer, de-Shalit, and Wall14 for a surface interaction 
of alpha particles. 

Because of the interference between the one-step and 
two-step process for the two-phonon excitation, one 
cannot expect a general phase rule to hold for the 
two-phonon excitation cross sections in comparison to 
the one-phonon ones. Since the two-step process takes 
place largely via the Sawada-type mechanism, which 
tends to emphasize different single-particle states than 
the quasi-particle scattering of the one-step process, the 
data on the phase as well as the magnitude of the two-
phonon cross sections might involve many of the details 
of nuclear structure even for strongly absorbed particles. 

The theoretical first Born differential cross sections 
for 44-MeV alpha-particle scattering in Ni58 agree with 
the experimental results as well as can be expected. The 
one-phonon and two-phonon 2+ states can be explained 
by the same coupling constant, while the 4+ two-
phonon state is too small by two orders of magnitude, 
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presumably due to the neglect of the second Born 
terms. In the rough approximation of a constant alpha-
particle wave function inside the nucleus, the inter
action needed for the one-phonon process leads to an 
optical potential in agreement with the phenomeno-
logical calculation for elastic a scattering, but both 
results can be changed by one or two orders of magni
tude. An important result of accurate and systematic 
calculations would be this interaction parameter. 

The results for electron scattering indicate that one 
can obtain reasonable agreement between theory and 
experiment for the 2+ states with effective charges 
known from the B(E2). The scattering from the 4+ 
two-phonon state in the first Born approximation is too 
small, just as with the alpha scattering. For electrons, 
the cross sections are extremely sensitive to the particle 

makeup of the states, which suggests the importance 
of further systematic studies—particularly for heavier 
isotopes where the method used in this work should be 
more nearly accurate. 
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