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Over-all electromagnetic transitions for the photodisintegration of the deuteron are examined in the 
energy range 162 to 833 MeV. The virtual meson exchange interaction is not considered. The electromagnetic 
interactions are treated without any series expansion. Therefore, all multipole transitions and their retarda­
tions are completely taken into account in the calculations. 

The pion-theoretical deuteron wave function and plane waves are used for the initial and final states, ne­
glecting the effects of the hard core in the nucleon-nucleon potential. It is then shown that the angular 
dependence of those terms which are simply isotropic in the electric dipole approximation is given approxi­
mately by the isotropic part in the electric dipole transition, plus a cosine curve due to the overlap effects 
of the higher multipole transitions, as well as overlap effects due to all retardations. The terms which reduce 
to the anisotropic terms in the electric dipole approximation give angular distributions which are shifted for­
ward from sin% but which tend to flatten out with increasing energy. The separate retardation effects due 
to the dipole and other multipole terms cannot be distinguished in the present calculation. 

For some reason the total cross sections seem to fit the experimental data fairly well at energies higher 
than 400 MeV when only the electric transitions are taken into account. However, the total cross sections 
including magnetic transitions are about four times the experimental data at 800 MeV. The contribution 
of the magnetic transitions to the cross sections does not decrease as much with energy as does the con­
tribution due to the electric transitions and remains relatively large at high energy. The effect of disregard­
ing the hard core is large for the spin magnetic transitions. 

I. INTRODUCTION 

FOR the photodisintegration of the deuteron in the 
energy range below 100 MeV,1"-7 the experimental 

data have been satisfactorily reproduced within the 
framework of the present information concerning nu­
clear forces and radiative interactions, without re­
nouncing the Siegert theorem for the electric transitions. 
A ground-state deuteron wave function, which contains 
a somewhat large percentage of d state (6.7%), and a 
final-state wave function consistent with nucleon scat­
tering, have formed the basis of calculations of the 
transition probabilities; for example, a strong positive 
tensor potential in triplet odd states and inclusion of the 
triplet F-state contribution in final states, satisfactorily 
account for the large isotropic part in the observed 
angular distributions. 

Concerning the radiative interaction, it appears that 
one can regard the entire effect as essentially a classical 
one with no meson contributions of importance. The 
main features of the reaction can be described through 
electric dipole and electric quadrupole transitions; how­
ever, other contributions, such as the magnetic dipole 
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and magnetic quadrupole transitions, as well as the re­
tardation8 effects for each multipole transition, must be 
taken into account. Extensive investigations in this field 
for the magnetic dipole and quadrupole transitions have 
been worked out by Breit and his collaborators,4 and by 
Kramer and Werntz.7 These authors have shown that 
these effects are smaller than 5% of the electric dipole 
transition cross section; however, the interference terms 
between the electric dipole and the magnetic transitions 
to the triplet final states account for the large asym­
metries of the angular distributions. 

On the other hand, the relative smallness of the re­
tardation effect has been reported by Nicholson and 
Brown,3 and also by Kramer and Werntz9 in a more 
detailed manner. The latter used a Hulthen wave func­
tion for the deuteron with 4% d-state probability, and 
a final-state wave function calculated from the Signell 
and Marshak potential.10 The difference between the 
electric dipole interaction including the retardation and 
the usual one becomes significant at a distance of about 
one-fourth of the photon wavelength. Thus, the retard­
ation contributions may be expected to be effective at 
energies such that one-fourth of the photon wavelength 
is smaller than the nuclear force range. The cross section 
due to the electric transition in the range 80 to 300 MeV 
has been calculated by the author, taking into account 
all retardations and all multipole transitions11; it was 

8 We use the term retardation here in a special sense, viz., to 
describe the difference in an expansion of the interaction in powers 
of the wave vector and in spherical harmonics. 

9 G. Kramer and C. Werntz have shown only 4% Estate 
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transitions. 
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shown in this work that rather remarkable effects do 
appear in the angular distributions. It might be noted 
that even for electric dipole transitions only, the re­
tardation effect has been reported to be large.12 These 
conclusions, however, differ from those of Nicholson and 
Brown, and of Kramer and Werntz. 

The interference of the magnetic triplet transition 
with the electric transitions makes a particularly large 
asymmetry in the angular distributions, as has been 
pointed out by Breit et al.4 The purpose of the present 
paper is to complete the calculations of the electric, 
magnetic triplet, and magnetic spin-flip transitions, in­
cluding all multipole transitions and their retardations, 
and then to clarify their relative effects in the energy 
region 162- to 800-MeV incident photon energy. The 
experimental data18 at energies around the virtual meson 
threshold show effects of overlap from the contributions 
of the virtual mesons and the electromagnetic inter­
actions. The virtual meson effects should, in principle, 
provide a check on the internal consistency of the meson 
theory14; unfortunately, this energy region is not suit­
able for the test since the exact cross sections for the 
pure electromagnetic interactions would have to be 
known. The comparison between experimental data and 
theoretical results in this energy region is also not very 
significant, since the phenomenological potential used is 
known to give very poor values for the scattering of 
nucleons. The final-state continuum radial wave func­
tions consistent with nucleon scattering data are un­
known at the present stage. The plane wave approxima­
tion (no interaction in the final states) is generally used, 
but without complete justification, in the energy region 
higher than the virtual meson threshold. Our calcula­
tions are based on the expression for the interaction 
between the deuteron and the photon field which was 
derived by Foldy.15 

The excitation curve for the photodisintegration of 
the deuteron, excluding pion emission, was measured 
by Myers et aLu The experimental results show that 
the total cross sections decrease monotonically from 
7.0±1.0 /ib at 508 MeV to l.Oil.O nb at 913 MeV and 
give no indication of a second resonance due to virtual 
mesons. On the other hand, these results compare very 
well with the calculations of the present paper. We take 
this to be good evidence for the significant role played 
by the electromagnetic retardations. 
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In Sec. II, the electric transition, the magnetic spin-
flip and triplet transitions, and the transitions due to 
the convection current interaction are calculated in the 
same fashion as in reference 11 taking into account 
relativistic effects in the energy calculation. In Sec. I l l , 
the results of all calculations are shown, and the multi-
pole effects and their retardations are compared with 
the dipole transition. Discussion of the results and con­
cluding remarks are given in Sec. IV. 

II. CALCULATION OF TRANSITION MATRIX 

The electric and magnetic transitions from the 
deuteron ground state \f/g to the final state \pf are speci­
fied by selection rules. The 2L-pole transition has parity 
change (—)L for electric and (—)L+1 for magnetic 
transitions. These selection rules for multipole transi­
tions are satisfied automatically when the electromag­
netic interaction is used without multipole expansion. 
The expression for the complete interaction including 
all multipoles has the disadvantage of being rather 
cumbersome. It is usual to reduce it to the corresponding 
dipole terms for comparison. 

In order to include all possible transitions, we use a 
plane wave for the final-state wave function. We then 
have for the triplet and singlet final-state wave func­
tions, respectively, 

^ / = (l/v5)[7ri^2exp(ik-x)-7r2J'iexp(-fk-x)]x', (1) 

tfy'= (1/V2)[>IJ>2 exp(;k-x)+7T2*>i exp(-ik-x)]x*, (2) 

where x=xp—x„ is the relative coordinate of the proton 
and the neutron measured in units of the 7r-meson 
Compton wavelength fi/pc. irt and v% are the isotopic spin 
functions with n corresponding to ith particle in a 
proton state and j>» corresponding to the ith particle in a 
neutron state. x'(8) is the final-state spin wave function 
for the triplet (singlet) state. 

We adopt the pion theoretical deuteron wave func­
tion17 for the initial-state wave function. This wave 
function is very similar to that obtained by Gartenhaus18 

for his potential. Both give the observed values of 
deuteron parameters, binding energy, quadrupole mo­
ment, and effective range. Moreover, they are consistent 
with the deuteron photodisintegration results below 
100 MeV. The expression for the wave function is 

with 

**(*)= U(*)/*+ Sl2w(x)/x\ (3) 
(47r)1/2L ^8 J 

where S12 is the tensor operator, and u(x) and w{x) are 
normalized in the sense %f{[u(x)~^+[_w(x)'y}dx— 1. For 

17 J. Iwadare, S. Otsuki, R. Tamagaki, and W. Watari, Progr. 
Theoret. Phys. (Kyoto) 16, 455 (1956). 

" S. Gartenhaus, Phys. Rev. 100, 900 (1955); J. Gammel and 
R. Thaler, ibid. 107, 291 (1957). 
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simplicity in calculations, we use the following analytical 
form to approximate the pion theoretical wave function: 

u(x) = 1.039[exp (-0.328#)-exp(-1.972*)], (4) 

w0) = 0.111 exp(-0.4#)+0.656 exp(-l.Ox) 
-0.767 exp(-2.0x). (5) 

The wave functions (4) and (5) fit the pion theoretical 
or Gartenhaus wave functions in the outer region and 
reproduce the following deuteron parameters: 

<2=2.6Xl0-27cm2, 

J-state probability=0.07, 

That these approximate wave functions u(x) and w(x) 
start from the origin in a different manner than the 
theoretical deuteron wave function arises from the fact 
that effects of the hard core of the potential have been 
neglected in the initial-state wave function. The shape 
of the inner wave function18 is not very reliable, reflect­
ing the lack of our knowledge about the inner potential 
at the present time; fortunately, it does not affect the 
electric transition matrix elements significantly. The dis­
cussions about effects of the hard core is later resumed 
in Sec. IV. 

1. Electric Transitions 

The electric transitions, which lead to the main 
features of the angular distributions, have been con­
sidered in reference 11. Here we use the same inter­
action; then the matrix element of the electric transi­
tion15,19 from the deuteron ground state to the triplet 
final state (1) is 

El = \X% \ ds exp(-A-x)(e-x/2) 

Xexp(^K-x/2)^(x)Jx xy, (6) 

where K is the wave vector of the incident photon, e is 
the photon polarization vector, and k is the wave 
number of the outgoing particle, s is a parameter. If one 
simply puts 5=0 or, equivalently, takes the first term in 
a power series expansion of the interaction in Eq. (6), 
then one gets the usual expression e-x/2 for the electric 
dipole interaction. When the interaction term in Eq. (6) 
is expanded in terms of the angular momenta, then 
JO(SKX/2) gives the first term. The effect of the retarda­
tion with this form was examined by Nicholson and 
Brown.3 Here we calculate the complete matrix elements 
El without using any expansion for the retardation 
factors. 

2. Magnetic Transitions 

The spin-flip magnetic transitions have the next 
largest effect to the electric transitions. The magnetic 
triplet transitions give a very small cross section, but 
these transitions interfere with the electric transitions 
and are expected to push the angular distributions 
significantly forward despite little variation in the total 
cross sections. 

The transition matrix elements for the spin flip 
magnetic transition may be written 

M s = / X
8 — («i-<F2)-(ey2) 

\ \1M 

X / Jx[>pexp(iKrx)—/inexp(^K2-x)]^d(a;) x ' / J 

(7) 

while the magnetic triplet transition may be written 

Mt (<Ti+<r2)-(e'/2) -vfe 
X / dx|^,exp(iKi-x)+Mnexp(iK2-x)]^d*) x 'V 

(8) 

Here K ^ ^ - k , K2=(K/2)+k, e '= ( K X C ) / | K | , 
and tip, yn, are the magnetic moments of proton and 
neutron, respectively, expressed in nuclear magnetons. 
<y» is the spin operator associated with the zth nucleon. 

In the magnetic dipole transition, the photon momen­
tum is not involved in the interaction term (i.e., K = 0 ) . 
Therefore, the interaction term in Eq. (7) reduces to 
the magnetic spin-flip interaction \{v\—Q>i)- (t*p— t*n). 
In the same way, Eq. (8) reduces to the interaction 
iCtfi+^'Cvp+Vn) which gives rise to the magnetic 
transition to the triplet final state in the dipole case. 

For the magnetic transition due to the convection 
current, the transition matrix element may be written 

Mc= -ixK—r f sdsf 
\ \2McJo J 

exp (—ik • x)[xX p] • e' 

19 R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing 
Company, Reading, Massachusetts, 1953), p. 238. 

X exp (WK • x/2)^d (x)dx x' >, (9) 

where p is the momentum conjugate to x. 

HI RESULTS 

The calculations of the previous section were per­
formed at seven angles for each of the photon energies 
162, 411, 510, 715, and 833 MeV, in the lab system. In 
the following, we look at the differential cross sections, 
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X' 

X' 

k\/3 
(11) 

the total cross sections, the multipole effects, and the 
interference effects between the electric and the mag­
netic transitions to the triplet final states. 

1. Electric Transition 

The differential cross section for the electric transition 
is calculated to be 

da(E\)/dn=B(k)k2{16(Y'2+Y2 sin20)+ (12X"2+11F 
+3Z2+28X'F'+4X"Z+10FZ) sin20 
+[32X' 2 +4X(Z+7F-2X")] sin40 
+ 4 ( X ' F ' - X " F + 3 X 2

 sin
40) sin20}, (10) 

where B{k)^^{e2/fic)(McK/fi)hrl{fi/^c)\ and the tran­
sition amplitudes are 

X=f ds(^j(i)I(FdX 

' = f ds (—W-* cos0)(f)/(FJ), 

r =-/XS© [ / c w ) + / < M ) i 

F'= - f ds (—\isK-k cosd)(—\l(Pd)+I(Fd)l, 

HATf-'4] 
and the overlap integrals are 

/ (Fd) = / j z (Kx)w (x)x2dx, 

I(Pd)= j1(Kx)w(x)x2dxJ 

I(Ps) = ji(Kx)u(x)x2dx. 

Here K2— (%SK—&COS0)2+(& sin0)2, and ji(Kx) and 
jz{Kx) are the first- and third-order spherical Bessel 
functions.20 

The results of the numerical calculation of Eq. (10) 
are shown in Fig. 1. Obviously, the forward asymmetry 
of the peak is due to the integration over the parameter 
s. The lower limit of the integration s — Q gives, as we can 

(12) 

30° 60° 90° 120° 150° 

(C.MJ 

FIG. 1. Differential cross sections a (El) for the total electric 
transition. The number on each curve indicates the energy (MeV) 
of the incident photon (lab system). The dashed curve gives the 
dipole approximation (£1). 

easily see from Eq. (6), the electric dipole transition. 
The overlap integrals I(Fd), I(Pd), and I(Ps) in 
Eq. (12) then reduce to the dipole transition amplitudes 
corresponding to the transitions from the deuteron s or 
d states to final P or F states.21 The quantities ao, bo, 
which specify the angular distribution 

ao+&osin20, 

and the total cross section GT—4TT (#o+t&o) for the dipole 
approximation are tabulated in Table I. 

TABLE I. The angular distribution parameters ao, h in /ub/sr, and 
the total cross section or for the electric dipole approximation. 

E (MeV) 

162 
411 
510 
715 
833 

ao 

1.173 
0.408 
0.306 
0.203 
0.142 

h 
1.344 
0.275 
0.197 
0.127 
0.089 

<TT (jjb) 

26.0 
7.45 
5.50 
3.60 
2.66 

20 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, New York, 1949), p. 77. J. M. Blatt and V. Weisskopf, 
Theoretical Nuclear Physics (John Wiley & Sons, Inc., New York, 
1952). 

In order to compare the angular distributions in Fig. 1 
and those corresponding to the dipole approximation 
above, it is convenient to express the exact theoretical 
curves in Fig. 1 in the following approximate form: 

<r(El) = a+& sin20+c cos0+d sin20 cos0 
+e sin20 cos20, (13) 

where a, b, c, d, and e are constants adjusted to each 
curve. These angular distribution parameters are shown 
in Table II. We can see that the main parts of a and b 
are obtained from the dipole transition at lower energy 
(e.g., 162 MeV). And these quantities do decrease with 
energy—relatively, a increases and b decreases with 
increasing energy. The interference terms due to the 
higher multipoles are represented by the terms involving 

21 Exact correspondence between this limit and the exact phase-
space expression is shown in reference 11. 
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TABLE II . The angular distribution parameters in /ib/sr and 
the total cross sections due to all electric transitions. 

£ ( M e V 

162 
411 
510 
715 
833 

) a 

1.371 
0.614 
0.502 
0.382 
0.306 

b 

1.027 
0.007 

-0.053 
-0.095 
-0.109 

c 

0.632 
0.415 
0.362 
0.298 
0.251 

d 

1.100 
0.176 
0.093 
0.019 

-0.021 

e 

0.699 
0.179 
0.118 
0.056 
0.020 

<TT (jib) 

26.98 
8.06 
6.06 
4.10 
2.96 

c and d. Of course, the e term represents the effects of 
all multipoles higher than the quadrupole. From the 
modified expression Eq. (13) for the curves in Fig. 1, one 
can calculate the total cross sections easily to be of the 
form 

ffr = 4ar[a+ (2/3)b+ (2/15)*]. (14) 

The contributions of the e term to the total cross sections 
vary from 4.1 to 1.1% as the energy varies from 162 to 
833 MeV. On the other hand, the contributions for all 
multipoles (including their retardations) higher than 
the dipole can be understood from Tables I and I I ; in 
fact, they contribute only 3.8 to 10% of the total cross 
section in this energy range. Here there may seem to be 
some contradiction with the fact that, at 162 MeV the 
estimated value 4.1% of the contribution of the e term 
to the total cross section is larger than the value 3.8% 
of whole increment to the dipole approximation due to 
the retardation and the multipole effects. But it should 
be kept in mind, that these angular distribution param­
eters were used only for convenience in the calculation 
of the total cross sections and because they provided 
simple analytical expressions for the calculated differ­
ential cross sections. The apparent contradiction must 
come from the fact that the deformations of the angular 
distributions correspond to marked forward shifts—i.e., 

30° 60° 90° 120° 150° 

(C.M.) 

FIG. 2. Lower diagram: angular dependence of *&>($) according 
to Eq. (15); upper diagram: <r(El)-0^(0), that is Eq. (15) sub­
tracted from Eq. (10). Dashed lines correspond to the values of aQ 
for each energy. The number on each curve indicates the energy 
(MeV) of the incident photon. 

to large values of c, d, and e. Naturally, the parameters 
a, b, c, d, and e do not have an exact correspondence with 
multipole transitions in so far as we do not limit the 
order of multipoles. 

Let us now look back to Eq. (10) to see the behavior 
of the first term in curly brackets which reduces to Go, 
and also the other terms which reduce to bo, in the limit 
of the dipole approximation. Each transition amplitude 
depends upon K and K involves 6 in such a manner that 
the cross sections at forward angles have larger values 
than at backward angles. As a result, we can under­
stand the behavior of the term 

(jiao(d) = B(k)k2(Y,2+Y2 sin20)16 (15) 

in Fig. 2, and, in particular, its marked forward shift. It 
seems to be approximately expressed by ao and a cosine 
term. At lower energies, for example, at 162 MeV, the 
value of this term at 90 deg is close to a0 but it decreases 
with increasing energy. The angle corresponding to the 
value ao shifts forward in accordance with the relation 
SK=4k cos0 as the energy increases, as can be seen from 
Fig. 2. 

We may say that the deviations from isotropy in 
Eq. (15) which vanish in the dipole approximation are 
due to the retardations associated with the electric 
dipole and electric quadrupole transitions, provided 
that we can neglect the effect of all multipoles higher 
than the electric quadrupole transition.22 Otherwise, we 
must be content to say that these deviations from isotropy 
are due to the higher multipoles and their retardations, at 
least in so far as the present analysis is concerned. We 
can not separate, in our treatment, the effects of the 
multipoles higher than the electric quadrupole; nor can 
we separate the retardation effects of multipoles other 
than the electric dipole and the electric quadrupole. 

The terms in Eq. (10) remaining after subtraction of 
the term (15) have the angular dependence shown in 
Fig. 2. The maximum value decreases and the angle of 
the maximum value gradually shifts with increasing 
energy. 

2. Magnetic Spin Transitions 

By estimating the order of the interactions (7) and 
(8), we can see that the magnetic transition ampli­
tudes are smaller than the electric ones by about 
(n/2M)(nP—ju„)—35% for the spin flip transition (7), 
and about (fi/2M)(nP+nn)^>6.6% for the spin triplet 
transition (8). The spin triplet transitions are probably 
small enough to be considered negligible; nevertheless, 
for our present purpose we wish to examine their be­
havior as a function of energy. The differential cross 
section is 

a(Ms) = B(k)k2(fx/2MY 
X[(FS+Z 8) 2+4X/ ' (ZS

/ /+Z 5+FS) 
+8(X/)2sin2(9+4Xs

2sin4(9] (16) 
22 This assumption was used in reference 11. 



P H O T O D I S I N T E G R A T I O N O F D E U T E R O N 1339 

for the spin flip transitions, and 

a (Mt) = B {k)P (M/2M)2{ (Y t+Z t f+ (2X/02 

+ l2Xt(Yt+Zt~2Xn+12(X/yq sin20 
+4Xt

2 sin40} (17) 

for the spin triplet transitions, where 

XS(t) — jJ>pXrIFnnX2, 

Ys(t)=fJ'pYi:¥finY2y 

X8(t)
f = dzjJLpXi(^K— k COS8)/k 

+ VnX*QK+kC0S$)/k, (18) 
and 

X^t/^flpX^K-k COS0)2/&2 

^fxnX2(iK+k cosd)2/k2. 

The upper sign is for the suffix s, the lower sign is for 
the suffix (t). The overlap integrals are given by 

f 3 / * Y 
Xi= — / j2(K&) w(x)xdx[ — , 

J <\/S \Ki/ 

*•=— I &o(KtX)+MK&)Jpv(x)dx, 
y/2 J 

Y 

and 

(19) 

li=l I JQ(K&)\ U(X) w(x) 
J L v s 

xdx, (i— 1, 2), 

where jo(Kix) and j2(Kix) are the zero-order and 
second-order spherical Bessel functions, respectively.20 

The transition amplitudes have been calculated sepa­
rately for the contributions due to proton spin and 
neutron spin. Their forms, reduced to the dipole ap­
proximation, are obtained as before and they agree with 
the results calculated in reference 6. The results of the 
numerical calculations of cr(Ms) show (see Fig. 3) that 
very little deviation from the dipole approximation oc­
curs. The angular dependence of the overlap integrals for 
i=2 in Eq. (19) is given by replacing 6 by ir—d in the 
integrals for i = 1, because Ki(0) = K2(ir—6). Each term 
in Eq. (18) is just a weighted sum of y.p and \xn for i= 1 
and 2, because the sign of the neutron magnetic moment 
is negative. Thus, the angular dependences of the 
integrals i=l and i=2 compensate each other and the 
terms in Eqs. (18) show mild angular variations which 
are nearly equal to those of the dipole approximation. 
The strong retardation effects are therefore, not seen in 
the angular distributions of the spin flip magnetic 
transition. 

On the other hand, the magnetic spin triplet transi­
tions (see Fig. 3) show marked forward angular distri­
butions. As we discussed before, X8, Fs, and Z8 do not 
show strong variation with angles. But in the case of 
Xt, Yh and Zh the signs are not the same at forward 

I50w (QUO 

(a) 

3 h 

•o 

S 
b 

[— 

1 (E|,Mc 

Ey • 715 MEV(LAB) 

* « E , « 7 0 O MEV(LAB) 

^ ^ s / I (MtT^V (El,M») 

L ^ ^ ^ ^ ^ ! ^ ^ 

P^S??^^gsj 
30w 60u 90° 120° 150° (QW 

(b) 

FIG. 3. Differential cross sections for the D(y,p)n reaction. The 
total electric transition cross section, the magnetic spin flip cross 
section, the magnetic triplet cross section, and the electric-
magnetic spin triplet interference term are added up successively 
to give the curves marked (El), (Ms), (Mt), and (El, Mt). Finally, 
the electric-magnetic convection current interference term is sub­
tracted to give the resultant curve labeled (El, Mc). The curve 
(£1) for the electric dipole approximation is given for the purpose 
of comparison. (A) and (B; correspond to energies 162 and 
715 MeV. 

and backward angles, and the values at 90 deg are close 
to the values for the dipole approximation. Therefore, 
the cross sections for the dipole approximation in this 
case must be close to the minimum value of the cross 
section. More specifically, the retardation effects come 
from consideration of the momentum transfer to the 
outgoing nucleons. As a result, the outgoing proton and 
neutron do not have the same momentum in the center-
of-mass system and behave differently with regard to 
the magnetic interactions. Thus, the retardation and 
multipole effects account, in general, for the major trend 
toward forward angular distributions, and one gets 
results close to the dipole approximation at 90 deg. 

The percentages of the total cross sections represented 
by the electric dipole transitions are 27 to 92% for the 
(TT(MS), 7 to 75% for the or(Mt). While the electric 
dipole cross sections decrease quickly with energy, the 
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cross sections of the spin magnetic transition do not 
change very much. 

3. Magnetic Convection Current Transitions 

In the matrix element for this transition, the factor 
(n/2Mc)(s/2)it comes from the factor [xXp]*e'/2Mc 
in Eq. (9); otherwise the calculations are the same as for 
the electric transitions. The only essential difference is 
the parameter integrals have s2ds instead of ds in Eq. 
(11) which makes the transition amplitudes smaller. We 
can expect from these considerations similar angular dis­
tributions to the angular distribution obtained for the 
electric transitions, but with much smaller absolute 
values. 

The differential cross sections for these transitions 
vanish in the limit of the dipole approximation. There 
may be a good deal of interest in the interference terms 
between the electric and the magnetic convection cur­
rent transitions. 

4. Interference Terms 

In the photodisintegration of the deuteron, the transi­
tions take place between the deuteron ground state and 
triplet final states of the neutron-proton system except 
for the spin flip transition. Although transitions other 
than the electric transitions are small in absolute value, 
nevertheless, the interference terms can contribute 
significantly. 

(A) Interference between Electric Transitions 
and Magnetic Convection Transitions 

This interference is calculated by substituting the 
terms X+Xe, Y+Yc, • • • for X, F, • • • Z in Eq. (10), 
where XC) Xc', • • •, Ze are the same kind of transition 
amplitudes as occurred in Eqs. (11), multiplied by the 
factor — (HK/2M) ; of course, the parameter integrals 
involve s2ds instead of ds. The differential cross section 

<r(0) = <r(El)+<r(El, MC)+CJ(MC) (20) 

is shown in Fig. 3. The third term o-(Mc) is negligibly 
small, and the interference term a (El, Mc) is negative so 
that it has the effect of decreasing the cross sections. 

(B) Interference between Electric and 
Magnetic Triplet Transitions 

The differential cross section for this interference 
term is written 

<r(El, Mt) = B(k)k2(fx/2M)4{-Slf2Y,X//+S1^YXt
f sin20 

+\yi(Yx/+rxt) 
-8l»(X,Xt"+X"X/)'] sin20 

+W{XXt
t+X,Xt) sin40}. (21) 

In the dipole approximation, this term reduces simply 
to the term 

Co cos0, 

and does not contribute to the total cross sections. The 
value of c0 is 0.28, 0.117, and 0.067 jub/sr at energies 
162, 510, and 833 MeV, respectively. There are many 
interference terms left between the electric and the 
magnetic triplet transitions with the same parity 
change. They contribute positively to the cross sections 
and make large forward angular distributions. There is 
very little change in the forward differential cross sec­
tions with energy in this energy region. These inter­
ference terms are shown in Fig. 3 at energies of 162 and 
715 MeV, respectively, along with the angular distribu­
tions for all transitions calculated so far. 

The theoretical cross section o-(El) for the electric 
transition at 162 MeV is similar to that given by the 
experimental data but is smaller by about a factor J in 
absolute value. The isotropic term in the dipole ap­
proximation has the smallest value for this kind of 
calculation23; it is possible to make it larger by taking 
into account the final-state interactions.6 As the other 
transitions are successively taken into account, a trend 
toward good agreement with the experimental data is 
obtained at 162 MeV. But this trend in the angular 
distributions does not hold at higher energies. The 
theoretical peaks in the angular distributions shift to 
zero angle. Also, the total cross sections are as much as 
four times the experimental values. The excitation 
curves in Fig. 4 show the total cross sections for all 
transitions, as well as the cross sections for the electric 
transitions alone. 

IV. DISCUSSIONS OF THE RESULTS 

We now have the effects of the various transitions 
(neglecting the effects of the virtual meson exchange 
current). The energy dependence of the total cross 
sections, as can be seen from Fig. 4, gives values larger 
than the experimental values in the region of photon 
energy higher than 400 MeV. The comparison with 
experiment at these high energies is not very significant, 
however, and it is tempting to say that the cross 
sections can be accounted for by the electric transitions 
alone. However, the total magnetic contributions do 
appear to contribute as much as twice the electric ones 
on the basis of our calculations. Let us look at our 
approximations to see whether the magnetic transitions 
should really give big contributions of this order. 

Looking back to the radial integrals (12) and (19), we 
shall estimate the errors due to our choice of deuteron 
wave functions (4) and (5), namely, the effects of the 
disregard of the hard core24 (assuming a hard-core radius 
ro=0.2). The estimations of the errors in the dipole 
approximation for I(Fd), I(Pd)y and I(Ps) are 10~3, 

23 In a previous calculation (reference 11) the author obtained 
79 fjb at a photon energy of 80 MeV. This value is about 10% 
smaller than the theoretical value obtained when final-state inter­
action is taken into account. 

24 Calculations taking into account the hard core are being done 
and will be published later. 
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0.07, and 1.8% at the energy 162 MeV, and 0.15, 4.3, 
and 50% at the energy 833 MeV. The fact that the 
error in I(Ps) increases from 1.8% at 162 MeV up to 
50% at 833 MeV means that the integral for I(Ps) must 
be canceled in the region x>l, but is not changed in the 
region x< 1, and everywhere decreases to smaller values 
with higher energies. The contributions of I(Ps) to the 
cross section are fortunately very small (i.e., 0.67% of 
2.6% in this energy region). 

The contributions in the region x<\ to the radial 
integrals (12) are, as can easily be seen, smaller than for 
the magnetic transitions (19). For the radial integrals 
of the spin magnetic transition (19) especially, the 
transition amplitude from the deuteron s state to the 
final s state results in a very big contribution in the 
region x<l, because a major part of the final s-state 
wave function jo(kx) is concentrated within this region 
and the estimated error already amounts to 38% at 
162 MeV. This circumstance and the importance of the 
Z8(t) term in Eqs. (16) and (17) make the cross sections 
large. Moreover, the effect of the hard core on the final 
states makes the values of the overlap integrals quite 
small. For this reason, we are tempted to conclude that 
the large contribution of the magnetic transitions to the 
amount of the total cross sections depends, at least in 
part, upon the nature of our approximations, namely, 
the disregard of the effects of the hard core on the deu­
teron wave function and on the final-state wave 
function. 

In the present calculations, the final-state interactions 
are not considered at all, so that the polarization of the 
outgoing particles cannot be obtained. The effect of the 
higher electric multipole transitions and of their re­
tardations is to shift the angular distributions forward, 
but not to increase the total cross sections very much. 
The forward shifts of the angular distributions is 
emphasized by the interference terms between the 
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FIG. 4. Variation of the total cross section (solid line) and of 
the cross section for the electric transitions only (dashed line) with 
incident photon energy. 

electric and magnetic transitions. Hence, it may be 
noted that the polarizations—assuming they were to be 
calculated by means of this approximation—would 
appear very small for forward, but very large and with 
opposite sign for backward directions, consistent with 
the calculations of Rustgi et al.A 
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