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dependence of the cross sections. However, an order-of-
magnitude comparison is made here to check the con
sistency of the carbon data of this experiment with that 
of other experiments. Table III gives a comparison to 
some of the previous data. The units of the cross section 
are /xb/sr-MeV per equivalent quantum. 

The linear dependence of the cross sections on ZN/A 
as seen in Fig. 6 is in agreement with other experi-
ments.6'8,9 

Future experiments should look carefully into the 
effect, if any, of alpha-particle substructures in the 
nucleus on the angular distribution of photoprotons. 
Furthermore, as Cence and Moyer have suggested, 
future experiments should either be done with photon-

1. INTRODUCTION 

A STRONG-COUPLING treatment of hyperon-
pion interactions, with emphasis on bound states 

or resonances, was carried through, with some limita
tions, in an earlier paper under the same title.1 

Additional results on the same topic are reported here. 
The interaction Hamiltonian to be studied is 

ffi=g(AV£+22VA) • VVav+gWXrfE) • V*Fav. (1) 

In I, the corresponding scalar interaction (<r-V—»1) 
was treated for an arbitrary ratio (a = g'/g) of the two 
independent coupling constants. The more interesting, 
but more difficult, pseudoscalar interaction (1) was 
explored only for the special case g'=0 (I, Appendix), 
while the results are well known for g'=dzg by virtue 
of doublet (or global) symmetry. Generalizations of 
these special results are our concern here. 

For reference, previous findings have been summar
ized in Table I. Excitation energies, in arbitrary units, 
are listed in the third and fourth columns for the two 
special cases. While these energy differences become 
continuous functions of the coupling constants g, g', 

* This work was supported by the United States Atomic Energy 
Commission. 

1 G. Wentzel, Phys. Rev. 125, 771 (1962), to be quoted as I. 

beam monochromators, or with photon-difference tech
niques. Either of these techniques would permit a 
reasonable separation of the effect of scattering in the 
parent nucleus from other effects. 
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the quantum numbers assigned to the various states, 
as listed in the second column, are adiabatic invariants 
(although not obvious, this turns out to be true even 
for I). Hence, these quantum numbers retain their 
significance if the coupling strengths are scaled down to 
more realistic values (intermediate coupling). This 
provides a kind of information which is not so easily 
accessible to the more popular methods of analysis,2 

concerned primarily with the S matrix. Instead, we 
study the Schrodinger equation of the problem; we 
can explicitly construct the eigenfunctions of "station
ary" states and by inspection determine their quantum 
numbers. For instance, if the state "Fo*" is called a d 
state, this has the precise meaning that its eigen-
functions are linear combinations (corresponding to 
J—f) of the five spherical harmonics 1—2 (see I, p. 776).3 

The physical 2 appears as a py2 state. Of course, all 
states have the same parity. 

2 D. Amati, A. Stanghellini, and B. Vitale, Nuovo Cimento 13, 
1143 (1959); Phys. Rev. Letters 5, 524 (1960); M. Nauenberg, 
ibid. 2, 351 (1959); J. Franklin, R. C. King, and S. F. Tuan, 
Phys. Rev. 124, 1995 (1961); T. L. Trueman, ibid. 127, 2240 
(1962). 

3 Note, however, that these are the (one-component) eigen-
functions of the transformed Hamiltonian U^HU. 
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Earlier work on hyperon isobars (resonances) based on a static strong-coupling approximation is con
tinued. New results are derived, in particular for values near ± 1 and near 0 of the ratio of the two coupling 
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eigenfunctions of the bound-pion Hamiltonian. For instance a resonance with 1 = 2 and isospin 0 is predicted 
if the direct S S T coupling is very weak or absent. 
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We now proceed to examine the problem more 
generally than was done in I (Sec. 5 and Appendix). 

2. EIGENVALUES OF Hx 

As was explained in I, the first task is the diagonali-
zation of H\ which is an 8X8 matrix (8 being the 
number of bare baryon states A, Si, E2, S3, with 2 spin 
orientations each), involving the 9 pion field variables 
q%P (=constXd\f/p/dXi projected into the baryon source 
function). With the notation 

Q^lLinqip, or Q=L»<^q*-> (2) 

the pertinent linear equations for the spinor amplitudes 
Xo, X are 

XX0=Q-X, 

X X = Q X 0 - M * Q X X , 

(a=g'/i)- From (3), we have deduced the secular 
equation 

X* - X2 (1 +ai)Q2 - X (3 +a2)2aA 
+ * 2 [ 2 i ; p , 7 V - « 2 2 ) 2 ] = 0, (4) 

where 
r p f f = E i ^ t v , < 2 2 = L P ^ P P , (5) 

A=det\qip\. (6) 

Each root of Eq. (4) counts twice (spin degeneracy). 
Writing out the roots as algebraic functions of the 
three field parameters Q2, J2 Tp<r

2, and A, leads to 
expressions much too complicated to be of any use in 
solving the ensuing wave-mechanical problem. We, 
therefore, resort to expansions near | a | = l (Sec. 3) 
and neara = 0 (Sec. 4). 

3. NEAR DOUBLET SYMMETRY 

For a = ± l , the solution is well known from the 
corresponding pion-nucleon problem,4 and we try to 
follow essentially the same procedure here, for |a | 
near unity. 

Define a real orthogonal matrix 5,p, depending on 
three Euler angles 6, <j>, \f/, which rotates the #* into the 

* A. Houriet, Helv. Phys. Acta 18, 473 (1945) [Eqs. (2.37)-
(2.52)]. See also G. Wentzel, ibid. 16, 551 (1943): W. Pauli and 
S. M. Dancoff, Phys. Rev. 62, 85 (1942). 

W E N T Z E L 

i *J ip& iv — *p<rj jLrf p *̂  ip^3P — *ij* \ ' / 

In addition, introduce a symmetric tensor in charge-
space, £p(f, and substitute for qip 

where R is a constant to be chosen later. The Ansatz 
(8) expresses the 9 variables qip in terms of 9 new ones, 
viz., 0, <£, ^, £n, £ 12=^21, • • •• Note that for £pff=0 the 
three isovectors q* would rotate like a rigid orthogonal 
cross. The variables £p<r allow for deformations of this 
cross, but these (as we know already for |a | =1) will 
amount to small oscillations only. 

We express the coefficients of Eq. (4) as functions 
of the new variables and find the following simple 
results. 

Q>=3r2+rf, A=i*-%Rr?+-..? ( 9 ) 

2 £ P , T V - (ff)*= - 3 r * + 6 * Y + • • •, (10) 
where 

' = * + * E P U , (11) 

I ? 2 = E P ^ P . 2 - K E P U 2 (£0). (12) 

Terms of third and fourth orders in the £p<r have been 
omitted in (9) and (10). 

For a = —1, the roots of Eq. (4) are those known 
from the pion-nucleon problem: 

X0=-3r, Xi^Xa^X^+r . 

(For a= + l, replace R by —R.) If the coupling is 
very strong, R will be very "large" (proportional to 
the coupling constant g), and only the lowest eigen
value of Hi is relevant, corresponding to X0=—3r, 
if JR>0 . 

Next consider 
a = - l - B , | 8 | « 1 . (13) 

Then, expanding X0 (i.e., the smallest root of Eq. 4) in 
powers of 5, up to 52, we find 

X0= - 3 r ( 1 - J5+&5M- A W ? 2 + • • 0. (14) 

We can now write down the total Hamiltonian, or 
rather that part of it which involves the bound-field 
variables g»p and their canonical conjugates pt> As 
in I, we do this only for the simpler case of low cutoff 
momentum, again emphasizing that the more general 
procedure is well known. The free-field Hamiltonian 
then contains the "kinetic energy" term (as for U, 
see below) 

T=WT*U, To-iZippipS (IS) 

and the "potential energy" 

^o=|M2Eip^P2=iM2e2, (16) 

which combines with the interaction Hi=y\0 (7=large 
positive constant — g) to give the "total potential 
energy" 

TABLE I. Energy levels as derived in reference 1. x' coordinate system, as written out in (I, 25): 
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F=Ve 2 +7X 0 . (17) 

With (9) and (14), this is seen to be a "potential valley," 
with minimum at T?=0 and r=r0: 

f o = M - 2 7 ( l - ^ + ^ 5 2 + - . . ) . (18) 

It is then convenient to choose the constant R in (8) 
equal to this r0> so that, according to (11), the equilib
rium position of S P £PP is zero, and ??=0 implies that 
the whole tensor £p(r vanishes [see (12)]. Then V, 
Eq. (17), may be rewritten as 

F = ~ | M V O 2 + | M 2 ( 1 - A 5 2 ) L P , U 

+ * V $ 2 ( L P U 2 + - - - - (19) 

Next, the "kinetic energy" T0y Eq. (15), has to be 
expressed in terms of second derivatives with respect 
to the new variables 0, <£>, ty, £p<r. This calculation is 
precisely the same as in the pion-nucleon problem, and 
we merely quote the result. In the "low cutoff" version, 
one finds 

TQ= (2r0
2)-1P2~i L P 32/^PP2-i Z P < . d2/d^ (20) 

where the isovector P denotes the angular momentum 
of the "spherical top" 0, <t>, $ [see I, Eqs. (31), (32)]. 
The rotational term, ^ P 2 , is the one of major interest, 
whereas the vibrational energy (remaining terms in 
To, plus V) may be replaced by its zero-point value. 
(This is so because the vibrational excitation energies, 
of order /*, are "large" compared with the rotational 
energies of order ro~2/^f2. In the "high cutoff" version, 
the £p(y variables become intimately coupled with the 
"free" meson field.) Note that, so far, the quantity 8 
which measures the deviation from doublet symmetry 
[see (13)] affects the result in a very minor way 
[mainly through (18)]. 

However, one crucial step is still to be carried out, 
namely the unitary transformation of To, indicated in 
Eq. (15), by the same matrix U which diagonalizes Hi. 
Since only the lowest eigenvalue of Hh viz., 7X0, is 
under consideration, only one column of the matrix U 
is needed, namely, the one given by the normalized 
eigenvector Xo, X of Eqs. (3) with X=X0. More 
precisely, there are two such columns due to spin 
degeneracy. For Xo, we use the solution (14), neglecting 
$VAo2 as <K82. As solution of Eq. (3), in corresponding 
approximation, we find 

X p= (X0/3r) E , (rApXo, ( P = 1,2,3). (21) 

Here, Xo will be interpreted as a constant spinor, for 
"spin up or down" [constX^a, in the language of I, 
Appendix I ] , because allowing Xo to depend on 0, </>, \{/, 
would give the "A state" redundant degrees of freedom. 
(In other words, we exclude "symmetry-breaking 
solutions," as has been tacitly done in earlier work.) 
The normalization condition is 

X O + X 0 + E P Xp
tXp=[l+3(Xo/3f)2]X0tX0= 1. (22) 

Using the isovector commutation rules 

D P P A P ] = 0 , [P i ,5 i 2 ]=-[P2,5 l i ] = ^ 3 , • 

one obtains easily 

WF*U= P2+ ^ [ P 2 , ^ ] (23) 
= P 2 +K(-E t > (7A p P p +f) , 

where 
K=4(X0/3r)2[l+3(X0/3r)2]-1. (24) 

Now it is well known4 that the quantities 

li=-T,PSi(iPP, (i= 1,2,3) (25) 

are the angular momentum components (referring to 
fixed space coordinates xt) of the "bound pion field." 
So, finally, we have for the rotational energy5 

TTOt= (2ro2)"1{Ei h'+KLZi *&+!]} , (26) 

with eigenvalues 

r r o t = (2ro2)-1{^a+l)+«D -0"+l)-^( '+l)+f]}, (27) 

0*=/±|) . Since P2=S*^t2> the isotopic spin i equals 
the orbital angular momentum quantum number /. The 
charge wt- runs from — / to +/ , and m>j (independently) 
from —j to +j. 

The value of K, (24), may be written as an expansion 
in 5, using (14), 

K = 1 - J 8 - A * + - - - . (28) 

In the case of doublet symmetry, 5=0, K~ 1, we have, 
as expected, TTOt= (2ro2)~1j(j+l)+const, each j level 
(hi,'") being degenerate ( i=/=7±§). A small 8 
removes the degeneracy: 

r r o t ( / = i + | ) - r r o t ( / = i - i ) 

= (2r0
2)-1(l-^)(2i+l). (29) 

If this splitting is to account for the 2-A mass difference, 
one would have to assume K < 1 , 5>0, i.e., \g'\ < | g | . 
The F2*-Fi* mass difference (j = f) should then be 
twice the 2-A mass difference ( i = | ) , which is not 
incompatible with present information. However, with 
|5|<$Cl, these splittings would be small compared with 
the Fi*-A mass difference, and this is not really so 
(\f>/f>\ would have to be chosen much smaller than 1). 
Note also that there is no F0* in this level scheme. 

One remarkable fact is the rapid convergence of the 
8 expansion. We have intentionally written the Eqs. 
(21)-(27) in an unexpanded form, because they are 
accurate as long as the expectation value of T72, Eq. (12), 
remains much smaller than r0

2, and judging from (18), 
(19) (where 82 appears with rather small numerical 
factors, in the vibrational terms), and (20), this 
condition is still satisfied for |5| ^ | , and perhaps even 
for \8\ approaching 1. In this case, also, the root Xo of 
Eq. (4) remains well separated from the three other 

6 In the case of high cutoff, the factor (2r0
2)~1 is replaced by 

3ra/g2, where a=source radius. See reference 4. 
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roots.6 In short, we see no indication why the isobar 
formula (27) should become invalid as long as \8\ < 1 , 
with the sole exception of the case 5 « 1 , or | g ' | « | g | , 
which is discussed in Sec. 4. 

The situation described here is surprisingly different 
from the scalar coupling case studied in I. There, we 
had to deal with two potential valleys which coincide 
for | gr | = | g | , and a resonance-like coupling between 
the two kinds of states caused a radical change of the 
level scheme within a narrow a interval (^g~4). We 
anticipated then a similar "resonance" to occur in the 
pseudoscalar coupling case, but this conjecture was 
obviously wrong: There is only one potential valley 
(though 6-dimensional), and there is no critical value 
of \b\ (<Cl) where a qualitative change of the spectrum 
could take place. The origin of the difference is, of 
course, the (^-dependence of the isovector Q (2). 

4. CASE |<7' |«kl 

At first sight, the question seems to arise whether 
the g' interaction in (1) is still "strong" or "weak." In 
the first case, one would solve Eq. (4) for |a|<3Cl: 

\Q=-\Q\+3aQ-*A+- (30) 

construct the corresponding eigenvector X, use it to 
compute WT0U, and so on. Terms ~ a 2 give the first 
energy correction. We have convinced ourselves, how
ever, that, as long as \g\ is "large," the a2 correction is 
practically the same as that calculated by taking the 
gf term in Hi straightway as a weak perturbation. For 
the sake of simplicity, we adopt here this second 
approach. 

As to the unperturbed problem (g' = 0, while g is 
large) we can then refer to the Appendix in I, and we 
shall use the same notations as there. [ In particular, r 
will be defined by (I, 45) (viz., r 2 = l ^ p g;P

2); this is 
different from the r as used in Sec. 3.] The unperturbed 
U matrix which diagonalizes the g term in Hh is given 
by (I, 48), and it must be used also to transform the 
perturbation term (^/gf=cig), with the result 

H' = 3yar~2A. (31) 

[Note that this is equal to the term ^ a in 7X0, 
Eq. (30).] 

The determinant A [see (6)] is invariant under 
rotations in ordinary, spin, and charge space. Hence, 
the mixing of the unperturbed eigenfunctions (I, 
Table I) caused by Hf is subject to the selection rules 

5/=8j=di=0. (32) 

Furthermore, dL is odd, because Hr is odd under 
reflection, g*p—> — <?iP. The leading energy correction, 

~ a ' 1 S
E , „ / r ; . . , „ \(L',l,j,i\H'\L,l,m> 
E"(L,l,j,i) = Y.L . (33) 

C [ Z ( L + 7 ) - £ ' ( £ ' + 7 ) ] 

For the denominator, see Eq. (I, 57). The factor 

6 From (4) and (10), it follows, for a V O and 772«r0
2, that 

Xo Xi X2 Xt < 0 ; no root can cross the zero line. 

C [ = (2/-2)-1] is "small," viz., ~£~ 2 . This fact restricts 
the validity of the perturbation theory very drastically, 
because \E"\<C requires 

l«l = l«7«l<(W> (34) 
where d is a constant length (viz., the source radius in the 
"high cutoff" version) such that | d/g | « 1 is the "strong-
coupling condition" for the unperturbed system. 

The inequality (34) suggests that (d/g)* is a critical 
value of | a | above which the level spectrum changes 
rapidly into that studied in Sec. 3. In I, we did not 
foresee that this critical | a | value might be so small, 
but this conjecture is supported by the general 
argument presented at the end of Sec. 3. I t should be 
noted that the wavefunctions in the two regimes are 
quite different. Whereas in Sec. 3 [see Eq. (8)] the 
three vectors q» form a rigid (or rather, elastic) orthogo
nal cross, here ( a«0 ) their relative orientations are 
free to vary, with r2=J^i q%* constrained to the potential 
valley (sphere in the 9-dimensional qip space). The 
transition, resembling certain oscillation-rotation transi
tions in molecular physics, is a complicated problem, 
and we have found no way to deal with it.7 

Returning to Eq. (33), we shall survey the lowest 
states in a qualitative fashion. As to the unperturbed 
eigenfunctions, examples (L=0,1,2) are listed in (1,51), 
and they are catalogued in I, Table I , according to their 
transformation character under rotations in ordinary 
and charge space. To calculate the corresponding 
matrix elements of W (31), the following formula was 
used. If qn (n—\---N) are Cartesian coordinates in 
iV-dimensional space (here iV=9), and r2=J^nqn

2, then 
the 

angular average of Un(qn/r)2mn 

T(N/2) 
IL 

r (»»+*) 

i W 2 + E n O ~" r(i) 
[#»„= integers ^ 0; T(K+1)=KT (K)]J 

(35) 

The ground state, called A, with Z,=0, 1=0, j=%, 
i = 0 , and eigenfunction F0=f(r) [we always omit the 
irrelevant spinor factors], mixes only with the corre
sponding state L'=3 whose eigenf unction is 

Fd=c3f(r)r~zA. 

The normalization constant is determined by Eq. (35) 
with m1=m2=m^=ly all other w n = 0 , viz., cz 

= (9X11 X13/6)1/2. The same angular average occurs in 
the matrix element (Fz | H

! \ F0). The resulting (negative) 
energy shift is termed — e: 

£"(0,0,i,0) = - 6 , (36) 

and e serves as a unit in the following discussion. 
The first two excited states, 2 and Fi*, with Z,= l, 

Z = i = l , i = | and f, respectively, and with eigen
functions 

7 It is even quite uncertain whether I remains a good quantum 
number in the transition region. However, the one-to-one cor
respondence of the / values on either side is fairly obvious. 
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Fi=cxf{r)r~lqipj Ci=3, 

each mix with 2 states, U = 2 and 4 : 

F2=c2f(r)r~2Aip, c 2 = ( 9 X H / 2 ) 1 ^ 

F 4 = c4 / ( r)[>-%pA- (l/13)r-2A i p] , 

C 4 - ( 1 1 X 1 5 ) 1 / 2 ( 3 9 / 1 0 ) , 

(AiP = dA/dqip). The level shifts L = l , due to the two 
admixtures, are found to be — (9/13) c and — (25/39) e, 
respectively; they add up to 

£ " ( 1 , 1 , 7 , 1 ) = - (4/3)6, (37) 

both for j — \ and j = f. Since these two levels are 
equally depressed, and more strongly so than the 
ground state, the relative spacing 

£ ( F i * ) - E ( 2 » 

£ ( 2 ) - £ ( A ) 
-=i(i+AH---) 

increases (though not strongly) with increasing a2. 
Of the next set of states, L = 2 , we consider in detail 

only the two lowest ones. First, l = i=2, J = f . As a 
typical eigenfunction we choose 

F22 = c22f{r)r-2{qipqja+qiaqjp), c22 = (9X11/2)1 '2, 

with iy£ j , PT^G. This mixes with V — 3 and Lf = 5 states: 

/732 = cwf(r)r-* (qipAj(r+Aipqj„+ qiaAjp+ Ai<Tqjp), 
^32=(9X11X13/12)1/2, 

F,2 = Ch2{c2^F22r^A-{\/lS)cZ2~'FZ2}, 

CM= (9XHX13Xl7/69) 1 / 2 (15/2) . 

The resulting shifts are - ( l l /10)e and - (759/1785)€, 
adding up to 

E"(2,2J,2) = - (363/238)e. (38) 

This downward shift is even larger than that of the 
L=l levels, (37). 

Now we come to the interesting state L = l=2, i = 0, 
7 = f. For a = 0, this level is degenerate with the one 
just discussed, because i does not enter in the eigen
value formula (1,57). The mixing state functions FL0 

are obtained from the FL2 (i^j), essentially, by a 
contraction with respect to the charge index. Note that 
F3o=0, because J^pqipAjp=0 for i^j. As a consequence, 
the level shift is caused by the Lf = S admixture only, 
and it is correspondingly smaller: 

E"(2,2,y,0) = -(55/119)€. (39) 

Here, the distance from the ground state [see (36)] 
increases with a2, contrary to the lower lying levels. This 
agrees well with our findings in Sec. 3 for a 2 ^ l , where 
a low-lying state i = 2 (with 1=2, j = f) exists, but no 
corresponding i = 0 state. Quite obviously, as a2 in
creases through the transition region, the energies (38) 
and (39) must separate very rapidly. 

We add a few brief comments regarding the next 
higher levels [see Table I in I ] . The states L = 2 , j=%, 

are covered by Eqs. (38), (39), and the discussion above 
applies equally. Equation (39) may also be used for 
L = 2 , 1=0, i = 2, because the space and charge indices 
are interchangeable in the perturbation calculation. The 
states L=2, l=i=l are the first to mix with lower 
states, viz., Z / = l . The corresponding partial shift is 
+ (9/13)e, as follows by interchange of L and II. This 
tends to push these levels (j=J and f) up, as it should 
be since they have no counterparts for a 2 ~ l . The same 
remark applies to the level L = 3 , l=i=0, whose 
coupling with the ground state L' = 0 causes a partial 
shift upward (+e ) . 

Needless to say, the results of this section should be 
considered in context with Eqs. (27) or (29) of Sec. 3 
which describe the spectrum on the other side of the 
transition region and clearly suggest a qualitative 
interpolation between the two regimes. 

5. CONCLUDING REMARKS 

The main weakness of the strong-coupling method is 
that corrections for smaller (intermediate) coupling 
strengths are hard to evaluate. Such corrections would 
include the imaginary parts of the resonance energies, 
i.e., level widths and branching ratios of various decay 
modes. What the method can accomplish, however, is 
a systematic search, in the domain of its validity, for 
resonant states, and their classification by quantum 
numbers, including the orbital angular momentum /. 
This classification remains meaningful in the inter
mediate coupling range, at least for small and moderate 
I and i values. Larger values of I or i imply that there 
are more pions bound, and there may be as many as the 
rotational states inside the potential valley can accom
modate. All number of pions bound are treated on equal 
footing, and this is very crucial in dealing with the 
higher states (whereas a "one-meson approximation" 
would per se discriminate against such states). Lowering 
the coupling strength causes these higher levels to move 
upward comparatively faster. 

The merits of various g'/g ratios can hardly be objec
tively judged at this time. However, compared with the 
case of doublet symmetry, which can at best be an 
approximate symmetry only, the case g' = Q stands out 
by its simple appealing features. Several isobars with 
i = 0 (L=2,3 , - - - ) appear in the spectrum which one 
may attempt to relate to observed resonances. The 
objection might be made, arguing from a weak-coupling 
point of view, that g ' = 0 means absence of a direct 
Z) 22 A" coupling, and this would tend to suppress proc
esses like Y1~~^~P —* 5Z°+W> a s against ] £ " + # —> A+w, 
whereas observations8 seem to indicate a sizable branch
ing ratio ( ^ | at low velocities). I t is true that such a 
tendency shows up even in the strong-coupling theory, 
namely, if one calculates the hyperon-nucleon inter
action mediated by the pion field, the highest order 
terms are found to contain no matrix elements for 

8 R. R. Ross, Bull. Am. Phys. Soc. 3, 335 (1958). 
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transitions of the type "Er+p-^^+n if g' = 09; in 
other words, the first Born approximation gives zero 
cross-section for such processes. On the other hand, 
just because the interaction is not weak, the Born 
expansion does not converge rapidly, and the higher 
order terms may well be large enough to account for 
the observations, even without invoking other kinds of 

9 More precisely, this holds for all transitions which are first 
forbidden in the corresponding weak-coupling theory (e.g., 
elastic A-nucleon scattering). This similarity between strong-
coupling and weak-coupling matrix elements for baryon-baryon 
interactions is easily derived (as in the nucleon-nucleon case) by 

INTRODUCTION 

IT is of value to experimentally determine the cross 
sections for the various reactions involving hyperons 

and nucleons in that these data may provide some 
criteria for judging the validity of the various baryon-
nucleon symmetry schemes.1 Of the various hyperon-
nucleon reactions possible, A-proton elastic scattering 
is the most amenable to experimental investigation. 
Three measurements of the cross section for this process 
have been reported in the literature at this date. 
Crawford et al? have estimated a value of 40±20 mb 
based on 4 events. Recently, Alexander et al.z reported 
a value of 22.3db5.9 mb on the basis of 14 events, and 
Arbuzov et al.4 have estimated the cross section to be 
36d= 14 mb from a sample of 20 events. The results to 
be reported in this paper, based on 26 events, are seen 
to be in agreement with these earlier results. 

PROCEDURE 
The 30-in. propane bubble chamber used in this 

experiment has been described in considerable detail 
elsewhere.5 The chamber was placed in a magnetic field 

* Work supported in part by the U. S. Atomic Energy Commis
sion and in part by the University of Wisconsin Research Com
mittee with funds provided by the Wisconsin Alumni Research 
Foundation. 

t Submitted in partial fulfillment of the requirements for the 
Ph.D. degree at the University of Wisconsin. Present address: 
Purdue University, Lafayette, Indiana. 

1 For example, see M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
This paper includes references to earlier work. 

2 F. S. Crawford, M. Cresti, M. L. Good, F. T. Solmitz, M. L. 
Stevenson, and H. K. Ticho, Phys. Rev. Letters 2, 174 (1959). 

3 G. Alexander, J. A. Anderson, F. S. Crawford, W. Laskar, and 
L. J. Lloyd, Phys. Rev. Letters 7, 348 (1961). 

4 B. A. Arbuzov, Ye. N. Kladnitskaya, V. N. Penev, and R. N. 
Faustov, Dubna Report D-820, 1962 Q. Exptl. Theoret. Phys. 
(to be published)]. 

6 W. M. Powell, W. B. Fowler, and L. O. Oswald, Rev. Sci. 
Instr. 29, 874 (1958). 

mediating processes, like those involving K mesons, or 
those due to a small gf term (Sec. 4).10 

considering the static self-energy of a pair of baryons kept at a 
given (not too small) distance. 

10 J. J. DeSwart and C. K. Iddings (to be published; I thank 
the authors for showing me their results and for valuable com
ments) have made a thorough numerical study of hyperon-nucleon 
interactions, based on a Schrodinger equation with pion-mediated 
potentials (including two-pion exchanges and repulsive cores), 
with the aim of finding out what values of the two coupling con
stants /AS (related to our g) and/22 (~our gf) give the best fit to 
all experimental data now available. They conclude that /22 — O 
is not ruled out, and even favored by some data, including those 
of reference 8. 

of 13 kG and exposed to the 1.15-BeV/c K~ meson 
beam6 at the Lawrence Radiation Laboratory Bevatron. 
A total of about 105 000 stereo-pairs of photographs 
were obtained during the run. Of these, 103 000 pairs 
were scanned for this experiment. 

Scanning Procedure and Data Analysis 

The scanning procedure followed in this experiment 
provided a means for the systematic detection of two 
types of kinematical configurations. Of primary interest 
were the elastic scattering configurations. These in
volved three vertices: the Kr beam interaction re
sponsible for the production of the A via K~+N—+ 
A+x; the A-proton elastic scattering vertex, and the 
A-decay reaction A —» p+w~. Also of interest were the 
two vertex configurations indicating K~ production of 
A followed by A decay without intervening interaction 
of the A prior to decay. There were too many examples 
of these latter configurations to make individual analy
sis of all of them feasible. Consequently, a count of 
them was kept and a smaller sample of them prepared 
for detailed analysis—a procedure yielding all of the 
information needed to provide the normalization for 
the cross-section calculation. 

Events located in the scan were measured on digitizing 
devices and analyzed using the Fog IV Data Reduction 
System.7 Included in the analysis were least-square 
fitting calculations in which the configurations were 
constrained to fit hypothetical event interpretations by 
requiring that the interactions conserve energy and 
momentum within the framework of the proposed 
interpretations. 

8 P. E. Eberhard, M. L. Good, and H. K. Ticho, Rev. Sci. 
Instr. 31, 1054 (1960). 

7 Howard S. White, University of California Radiation Labora
tory Report UCRL-9475 (unpublished). 
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The A-proton elastic scattering cross section has been measured to be 20±5 mb. This value represents 
an average over the momentum interval 150-1500 MeV/c. It is based on 26 events observed in a propane 
bubble chamber. The A hyperons were produced by the interactions of 1.15-BeV/c K~ mesons in the propane. 


