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Heretofore, the hypervirial theorems recently introduced by Hirschfelder have only been applied to 
bound-state systems. In this paper it is shown that, with certain modifications, these theorems can also 
be applied to free systems, and, in particular, to scattering problems. The new form of the general hyper
virial theorem is derived, and the theory is illustrated with the problem of a particle scattered by a 
central field. The ordinary virial theorem is deduced, together with other results of physical interest. Both 
classical and quantum-mechanical formalisms are considered, and in some cases the semiclassical approxi
mation links corresponding results. 

I. INTRODUCTION 

A WHOLE family of relations, called hypervirial 
theorems, which are useful both in classical and 

in quantum mechanics have recently been introduced 
by Hirschfelder.1 The usual virial theorem is a member 
of this family. Some applications of these relations to 
bound-state systems in quantum mechanics have 
already been discussed.2-4 However, as yet there has 
been no mention of the relevance of the hypervirial 
theorems to free systems, or, in particular, to scattering 
problems. It is the object of this paper to show that, 
with certain modifications, these theorems can indeed 
be applied to free systems. 

First, we derive in a general manner the new form of 
the hypervirial theorem which is appropriate to a free 
system. Then the theory is illustrated by taking as an 
example the simple scattering problem of a particle 
under the influence of a central field. We show how the 
ordinary virial theorem can be deduced, together with 
other results of physical interest. Both classical and 
quantum-mechanical formalisms are considered, and 
the parallelism between them is emphasized. In some 
cases the semiclassical scattering approximation forms 
a bridge between corresponding results. Our techniques 
can be extended to more complicated scattering 
problems. 

II. CLASSICAL HYPERVIRIAL RELATIONS 

In classical mechanics, let w be any function of the 
generalized coordinates and momenta of a free system 
whose Hamiltonian is H. Then, in terms of the Poisson 
bracket (Hyw) of H and w, we have the classical 
equation of motion: 

dw/dt= (H,w). (1) 

•This work was carried out at the University of Wisconsin 
Theoretical Chemistry Institute under Grant NsG-275-62(4180) 
with the National Aeronautics and Space Administration. 
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Integrating Eq. (1) with respect to time from *=0 to 
t= T along a dynamical trajectory, it follows that 

-
Jo 

w(T)-w(0)= / (H,w)dt (2) 

Here w(t) denotes the value of w for the trajectory at 
any time /, and we suppose that w(0) is not infinite. 

There are now two cases to be considered. Firstly, we 
assume that w(T) remains finite as T tends to infinity. 
In this case the hypervirial relation for the free system is 

w(<x>)-w(0)= (H,w)dt. -f 
Jo 

(3) 

This is different from the hypervirial relation for a 
bound system, which is1 

0=\imT-1\w(T)-w(0)~]==\imT-1f (H, 
J 0 

tw)dL (4) 

Equation (4) is actually the time average of Eq. (1). 
For bound states the time average of dw/dt must be 
zero, and meaningful results can be obtained by 
equating the right-hand side of (4) to zero. For free 
states, however, this time-averaging process does not 
yield any useful information. We, therefore, take (3) 
rather than (4) as the hypervirial relation generated 
by w. 

Secondly, w(T) might become infinite as T does. In 
this case, Eq. (2) must be rearranged by adding 
equivalent terms to each side of the equation so that 
each side is finite in the limit as T tends to infinity. The 
hypervirial relation for the free system is then obtained 
by taking this limit. This rearrangement of Eq. (2) is 
equivalent to a new choice of w; with this choice the 
limiting form of (2) will be like Eq. (3). 

III. QUANTUM-MECHANICAL HYPERVIRIAL 
RELATIONS 

In quantum mechanics, let W be any function of the 
generalized coordinates and the quantum-mechanical 
momentum operators of a system whose quantum-
mechanical Hamiltonian is H. Then if the system is in 
a bound state represented by \p, the hypervirial theorem 

1391 



1392 P . D . R O B I N S O N A N D J . O. H I R S C H F E L D E R 

generated by W is1 and so from (10) and (11) we have 

/ • 
4>*[H,W}f>dT=0. (5) 

Here [H>W~] is the commutator of the operators H and 
W; it corresponds to — ih times the classical Poisson 
bracket (H,w). The volume integration in (5) is taken 
throughout the region r to which the system is confined, 
which could be the whole of space. This integration is a 
kind of space averaging, and it corresponds to the 
classical time averaging in Eq. (4). As an extension of 
(5), it is easy to show that if \f/\ and \p2 are any two 
degenerate wave functions with the same energy, then 

/ • 
^i[£r,w3Mr=o. (6) 

If the system is not in a bound state, then the wave 
functions are not quadratically integrable, and relations 
(5) and (6) are not, in general, satisfied. To see how 
they must be modified, we first consider the identity 

f (H-EWiWfdr** f IPIW(H-E)^T. (7) 

\pi and \f/2 are now degenerate continuum wave functions 
with energy Ey and the integration is taken through a 
finite region n whose boundary is a closed surface Si. 
Subtracting the equal terms in Ey (7) gives 

J T\ J Tl 
(8) 

Let us suppose that the system is the simple one of a 
single particle of mass m moving under a potential V; 
then, in atomic units, 

H=~(2w)-1V2+F. (9) 

Assuming that W\J/2 is a well-behaved function so that 
Green's theorem can be applied through the region n , 
it follows that 

J Tl 

= f $lV2{W$2)dT 
J r\ 

+ f {(Wh) g r a d ^ - f i grad(W^2)} • dS. (10) 
J s,. 

It is clear that 

(V^I)W^T= / fiViWtddr, (11) 

L (HrPdW^idr 

= f ffliW^dT 
J Tl 

- (2m)-' f {(Wf2) g r a d ^ - ^ g rad(^ 2 )} • dS. (12) 
J Si 

Using the identity (8), this can be rearranged to give 

J Tl 

= (2»)-* f {(BV-0 grad^x-^i g rad (^ 2 )} • dS. 
J Si 

(13) 

We now let the surface Si recede to infinity. If W is 
such that the surface integral over Si remains finite, 
then the limiting form of (13) is the hypervirial relation 
for a free system which corresponds to (6) for a bound 
system. If we set \pi=\p* and ^ 2 =^ , we get the relation 
corresponding to (5). This is 

lim / y*[H,W}pdT 
Si-*oo I 

J Tl 

= (2m)~l lim [ {(W#) gradt^*-^* grad(WV)} • dS. 
J Si 

(14) 

The proof of (5) and (6) for a single particle in a 
bound state is actually implicit in the relations (13) 
and (14). As Si recedes to infinity, then provided W is 
sufficiently well behaved, bound-state wave functions 
tend to zero sufficiently fast to ensure the vanishing of 
the surface integrals. It should be noted that (13) and 
(14) can readily be generalized if the system consists 
not of one but of n particles, with masses miy i = l , 2, 
• • •, n. The Hamiltonian is then 

H=-Zi(2mi)-
1V*+V, (15) 

and wr^grad in (13) and (14) is replaced by 
Z i t f ^g rad , . 

Sometimes it is necessary to modify the choice of W 
so that the integrals in (13) and (14) do remain finite in 
the limit. This is analogous to an adjustment of the 
classical w. In addition, it can be convenient to consider 
the commutator [#—E, W] rather than [HyW~] in 
Eqs. (13) and (14). The results with this commutator 
may be different if W is a function of E. They arise 
naturally if the E is retained in Eq. (7); no changes are 
necessary on the right-hand sides of (13) and (14). 
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IV. THE CLASSICAL SCATTERING OF A PARTICLE BY 
A CENTRAL FIELD 

We consider the motion of a particle which approaches 
some origin 0 from infinity, and is under the sole 
influence of a field centered at 0 (see Fig. 1). We denote 
the various properties of the particle and its trajectory 
as follows: m=the mass, k=ihe linear momentum at 
infinity, 6=the impact parameter, r=the distance 
from 0, ro=the distance of closest approach to 0, 
V(r) = the potential energy, p=mf= the radial mo
mentum, 0=the decreasing angle between the radius 
vector and the original direction of the trajectory, 
X = the scattering angle (that between the original and 
terminal directions). The time /=0 is taken when r=ro 
and £=0 ; thus the motion extends from t= — oo to 
/= + oo. The angular momentum of the particle about 
0 is constant, and so 

~Wf2tf=6A. (16) 

The classical Hamiltonian H of the particle is given by 

H= (2m)~l(p2+b2k2/r2)+V(r)) (17) 

and, because the energy of the particle is conserved, 
we have 

H = k2/2m= const. (18) 

It is convenient to know the asymptotic behavior of r 
when t is large. From (17) and (18) we see that, for 

p = mr = k(l-2mV/k2-b2/r2y2. (19) 

We make the assumption that, as r tends to infinity, 

V(r)^r~a, where a > l . (20) 

It follows from (19) that, when t and r are large, p^k 
and 

r^s-\-ki/m. (21) 

The quantity s in (21) appears as a constant of inte
gration; it is an important property of the trajectory 
which is useful in kinetic theory. With a Coulomb 
potential F=X/V, (21) is replaced by 

r+ (m\/k2) Inr^s+kt/m. (22) 

A. The Virial Theorem 

For bound trajectories, the ordinary virial theorem 
is generated by w=rp; however, for a scattering process, 
rp becomes infinite as t does. To obtain the appropriate 
form of the virial theorem here, we choose 

w = r(p-k). (23) 

Using (17), (19), and (23), we have 

dH dw OH dw 

dp dr dr dp 

k / dV\ 
= -(k-p)-[2V+r—). (24) 

m \ dr / 

\ W A 
o 

FIG. 1. Classical trajectory. 

Equation (2) now gives 

[ r ( * - * ) l = £ 2 r / w - J r 1 

- / " [2V+r—)dL (25) 
J M ^ dr J 

From (19) and (20), we can see that r{p—k) tends to 
zero as T tends to infinity. Thus, proceeding to the limit 
in (25), and making use of (21), we get for the virial 
theorem: 

r f dV\ 
/ l2V+r—\dt=-ks. (26) 

This result (26) has been obtained by Demkov,5 who 
takes as his starting point a modified form of Hamilton's 
principle. It can also be verified directly from Eq. (19), 
without reference to a virial, but it is not an obvious 
result to derive ab initio. The result does not hold for a 
Coulomb potential; it is evident from (22) that the 
right-hand side of Eq. (25) would then become infinite 
in the limit. 

B. Hypervirial Relations 

Various hypervirial relations are generated by 
taking, for example, 

w=f(r)p, (27) 

where /(r) is such that w —» 0 as t —» oo. It can be 
shown that 

(H,w)= (k2/ni)l(\--b2/r2)dj/dr+Wf/r*~] 
- (2Vdf/dr+fdV/dr). (28) 

Here w is zero both when J=0 and when /= oo ; thus 
from (3) the hypervirial relations are given by equating 
to zero the integral from t=0 to t= oo of expression (28). 

The choice f(r) = r~l leads to 

0 = - ( - ) / r~2dt+ I +2r~2V-r-l—)dL (29) 
\m/Jo Jo \tnr* dr I 

6 Y. N. Demkov, Doklady Akad. Nauk S.S.S.R. 138, 86 (1961) 
[translation: Soviet Phys.—Doklady 6, 393 (1961)]. 



1394 P . D . R O B I N S O N A N D J . O. H I R S C H F E L D E R 

From Eq. (16) and Fig. 1 we see that 

/ r-2dt==_(\ ^ = = ( 7 r _ x ) _ . (30) 
Jo \bkJJt~o 2bk 

Combining (29) and (30), we obtain a new expression 
for the scattering angle x? viz., 

- ( ? ) / ; ( aww dv\ 
+2r~2V-r~1—)dt. (31) 

, mr4, dr / 

The more usual expression for x, 

2mV r00 / 2mV b2\112 

(32) 

[which follows directly from (19) and (30)], can be 
recovered from (31) with the help of an integration 
by parts. 

If we choose f(r) = r~n in (27), then the hypervirial 
relation which follows from (3) gives a reduction 
formula for the integral In= fu**^ r~ndt. This is, for 

b*(n+l)In+z 

= nlr^i- •mk~ 2nr~n~W-r~n—\dt. (33) 

Equation (33) is also true for a Coulomb potential, when 
it would lead to a recurrence relation connecting 
In+h ^n+2, and In+Z> 

V. THE QUANTUM-MECHANICAL SCATTERING OF A 
PARTICLE BY A CENTRAL FIELD 

We use the notation of the previous section, and 
work in atomic units with fi=l. The wave equation is 

V2f+(k2-2tnV)f=0, (34) 

for which is required a solution with asymptotic form6 

^ exp^k-rj+r-1 exp(ikr)F(d) (35) 

for large r. Here k is the linear momentum vector of 
the particle before it is affected by the potential F(r), 
and r is the position vector of the particle. If ^i(ki,0i) 
and fafafa) are two solutions of (34) representing 
particles with the same energy E=k2/2m, but with 
different initial directions, then according to the 
discussion in Sec. I l l the general hypervirial relation is 
the limiting form of 

= {2m)-l\l(W$2) g rad^ 1 -^ 1 grad(^ 2 ) ] -dS. (36) 

6 See, for example, N. F. Mott and H. S. W. Massey, The Theory 
of Atomic Collisions (Oxford University Press, Oxford, 1949), 2nd 
ed. 

H is now the quantum-mechanical Hamiltonian, given 
in (9). 

It is frequently convenient to decompose a solution yp 
of (34) into partial waves <j>n (r) by the substitution 

^=Zn=o°° AnPn(cos6)r-*<l>n(r). (37) 

Here <t>n(r) is the (real) solution of the equation6 

d24>n/dr2+ \_k2-2mV-n (n+ l ) / r 2>»=0, (38) 

which is zero at the origin and has the asymptotic form 

<t>n(r)^k~l sin(kr—%nw+rin) (39) 

for large r. The coefficients in the expansion (37) are 
given by the formula 

An=(2n+l)inexp(ir1n). (40) 

In order that the phases t]n should be finite, it is neces
sary to make the assumption (20) about V(r). Equation 
(38) is a one-dimensional Schrodinger-type equation 
for a wave function 0n, with the effective Hamiltonian 

HQ = - (2m)~1d2/dr2+ V (r)+n (»+ l)/2wr2. (41) 

It is easy to show, using integration by parts, that the 
hypervirial theorem for the partial wave <$>n is 

/ A Ho , w\ndr 

Jr=o L 2m J 

r (fyn d f 

L dr dr J^o 
A. The Virial Theorem 

Corresponding to the classical w of (23), the quantum-
mechanical virial theorem is generated by 

W=r • grad - kd/dk=rd/dr- kd/dk. (43) 

With this choice for W, it follows that 

£H~k2/2my Wlf=-[m-1(y2+k2)+rdV/dr~}p 
= -(2V+rdV/dr)f, (44) 

and 

lEo~k2/2m, W2<t>n=-{m-1(d2/dr2+k2) 

+rd/drlV+n(n+l)/2mr22}<t>n 
= -(2V+rdV/dr)<l>n. (45) 

Using (35), we can also show that, for large r: 

dypi d 

dr dr 

= lik(l-cosei)r~1-r-22 
d 

XexppMl+cosflx)]—[*F(02)]+O(r-*). (46) 
dk 

Here /3>2 provided that we again make the assumption 

file:///bkJJt~o
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(20). From (37), (38), and (39) this assumption implies 
that the correction to \f/ in (35) is 0(r~P), where 0 > 2 , 
and this latter property is needed in deriving (46). 

Let us take the surface S in (36) to be a sphere with 
center 0 and radius R. The only contribution to the 
surface integral which does not vanish in the limit as R 
tends to infinity is, from (46), 

employed,8 it can be shown that 

$n=k-ii2F-msiJiT+ f F^drX 

2w(2m)~1 / ( l -cos0i)—[*F(02)] 
Jdi-o dk 

Xexp[ikR(l+cosdi)2Rik sinM0i. 

Integrating by parts, (47) yields 

(-)\ -(l-cas$1)—tkF(02)'] 
\ ml L dk 

(47) 

XexppfcR(l+cos0i)] +0(B~1) 

/2ir\ d 

= - ( - ) -
\ m/ dk 

[_kF(ir-~y)3+0(R-1)J (48) 

where y is the angle between the directions of ki and k2. 
Thus from (36), (44), and (48) the virial theorem for 
complete wave functions is 

H dV\ /2w\ d 
2V+r— W T = (— )—LkF(7r-y)J (49) 

dr I \ ml dk 

For the partial wave 0„, the right-hand side of (42) 
becomes, using (39) and (43), precisely — (2m)-1drjn/dk. 
Hence from (42) and (45) the virial theorem for # n is 

r / dV\ drin 

I 0n( 2V+r— )<l>ndr= (2m)-1-
dr) dk 

(50) 

I t is possible to check the consistency of the results 
(49) and (50) in the case when ^ ! = ^ 2 = ^ with the help 
of the expansion (37) and formula (40). 

Demkov7 has derived the virial theorems (49) and 
(50) starting with Hulthen's variational principle, but 
our methods seem more straightforward and better 
illustrate the parallelism between the classical and 
quantum-mechanical formalisms. 

As Demkov5 points out, the correspondence between 
(50) and the classical result (26) may be demonstrated 
with the help of the semiclassical scattering approxi
mation.6 We define 

F(r) = F - 2 w F - (n+±)2/r2, (51) 

and assume that F(r) has just one simple zero at r=ro. 
This corresponds to the classical case, where F1/2 is 
replaced by mr and («+§) is replaced by bk [see Eq. 
(19)]. According to the WKB approximation which is 

r>r0', 

<j>n=ik-ll2\F\~llAexJ- f \F\1,2dr\ r<r0. 

(52) 

From the form of (52) when r is large, it follows that 
the phase is 

i?n=lH-4«i r - fc 'o+ f (FW-k)dr, (53) 
J TO 

which yields 

drjn 

dk 

7 Y. N. Demkov, Doklady Akad. Nauk (S.S.S.R.) 89, 249 
(1953). 

••-rQ+f (kF-W-
J ro 

•l)dr. (54) 

The semiclassical approximation is only valid for large 
phases; thus in an integral over r it is reasonable to 
replace the rapidly oscillating 0 n by its root-mean-square 
value when r>r0y and the exponentially decreasing <j>n 

by zero when r<r0. When this is done, (50) becomes 

(2ft)-
r f dV\ d^n 

-i / F-ml 2V+r— )dr= (2m)-1—. 
J r=r0 \ dr / dk 

(55) 

Finally, if F112 is replaced by the classical mr, then 
using (21) Eq. (54) gives 

drjn/dk= —s, (56) 

and (55) becomes identical with the classical virial 
theorem (26). 

B. Hypervirial Relations 

I t is not as easy as it seems at first sight to extract 
useful results for quantum-mechanical scattering from 
the formal hypervirial theorems (36) and (42). The 
problem is to select a W for which the integrals con
verge, and which gives a finite or zero expression on the 
right-hand side of (42). Powers of (rd/dr—kd/dr) for 
W give results which, though interesting, can be 
derived from (49) or (50). The choice re~ard/dr leads to 
a relation which follows from the Laplace transform 
of Eq. (38). 

One apparently new result is generated from (42) by 
the simple choice W=d/dn. We have 

[£To-k2/2m, d/dn~] = - (2n+ l)/2mr2, (57) 

and, using (39), the contribution to the right-hand side 
of (42) at r= <x> is (dr)n/dn—%ir)/2mk. At r = 0 , there is 
no contribution if we assume that V does not have a 
singularity worse than r - ' , where9 / < 2 , for then it 
follows that 

<£n~ft~Vn+1 for small r. (58) 
8 R. E. Langer, Phys. Rev. 51, 669, 1937. 
9 Even if / = 2, there is still no contribution at r = 0 for a repulsive 

field. 
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Thus, we arrive at the equation 

(2»+ l ) / —dr=k~\\ir ). (59) 
JQ r2 \ dnJ 

In the semiclassical approximation, the techniques 
described in (A) above may be used to show that (59) 
becomes the more familiar result6 

\x = dt]n/dn. (60) 

If some restriction is placed on n, the relation (58) 
may well imply the convergence of certain integrals at 
the origin, and so widen the field of choice for W. For 
example, with W=r~ld/dr, we have 

= [ - k2r~2+ In (n+ l)r~4~ r*d/dr+ 2mr~2 V 
- mr-ldV/dr]nrl<t>n- (61) 

I. INTRODUCTION 

AS Epstein and Hirschfelder have shown,1 if an 
approximate bound-state wave function \f/t admits 

a variation hpt such that 

tyt = ieWfh (1) 

where W is a Hermitian operator, then the correspond
ing variation 3Et in the energy Et of the state is given by 

G M ^ E , = fafc, {H-Et}+t)+ (*„ {H-Et)fyt) 

This result follows immediately from the Hermitian 

* This research was supported at Lincoln, Nebraska by a grant 
from the National Science Foundation, and at Madison, 
Wisconsin, under Grant NsG-275-62(4180) with the National 
Aeronautics and Space Administration. 

t Present address: Mathematical Institute, Oxford, England. 
1 S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 123, 1495 

(1961). 

Assuming that n>l (i.e., ruling out the s wave <£o), 
there is no contribution to the right-hand side of (42). 
Integrating the d<t>n/dr term by parts, we obtain from 
(42) and (61) 

r <t>n r <t>n
2 

-k2nrl / —dr+ {2n2+2n-%)nrl / —dr 
Jo r2 A r4 

r00 / dV\ 
+ 1 <t>n

2l2r~2V-r-1—W=0. (62) 

The relation (58) ensures the convergence of the 
integrals, provided that n>l. Equation (62) is the 
quantum-mechanical analog of (29), and becomes 
identical with it in the semiclassical approximation 
when n is large. Equations (59) and (62) can be com
bined to give an alternative expression for dr]n/dn. 

property of W. Thus, if \{/t is selected to satisfy the 
hypervirial theorem for a bound state 

(*tZH,Wl+t) = 0} (3) 

then, as far as variations of the form (1) are concerned, 
\f/t is automatically optimized to give the best energy Et. 

In this paper we show that an analogous situation 
exists for approximate wave functions in scattering 
theory, provided that the form of the hypervirial 
theorem is employed which is appropriate to a free 
system. We find that if Kohn's variational principle2 

for phase shifts is used to optimize a partial wave, then 
this partial wave satisfies a hypervirial theorem. For 
total wave functions, a form of Kohn's principle for 
scattering amplitudes again leads to such a theorem. 
Thus hypervirial theorems may be helpful in selecting 
approximate wave functions in scattering theory, as 
they are with bound-state systems. 

2 W. Kohn, Phys. Rev. 74,1763 (1948). 
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The form of hypervirial theorem which is appropriate in scattering theory is discussed in general terms. 
It is shown that variational wave functions which are optimized in accordance with Kohn's variational 
principle do satisfy hypervirial theorems. Thus such theorems may be useful in selecting approximate wave 
functions to give accurate phase shifts or scattering amplitudes. The situation is analogous to that of energy-
optimized wave functions for bound-state systems. 


