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Thus, we arrive at the equation 

(2»+ l ) / —dr=k~\\ir ). (59) 
JQ r2 \ dnJ 

In the semiclassical approximation, the techniques 
described in (A) above may be used to show that (59) 
becomes the more familiar result6 

\x = dt]n/dn. (60) 

If some restriction is placed on n, the relation (58) 
may well imply the convergence of certain integrals at 
the origin, and so widen the field of choice for W. For 
example, with W=r~ld/dr, we have 

= [ - k2r~2+ In (n+ l)r~4~ r*d/dr+ 2mr~2 V 
- mr-ldV/dr]nrl<t>n- (61) 

I. INTRODUCTION 

AS Epstein and Hirschfelder have shown,1 if an 
approximate bound-state wave function \f/t admits 

a variation hpt such that 

tyt = ieWfh (1) 

where W is a Hermitian operator, then the correspond
ing variation 3Et in the energy Et of the state is given by 

G M ^ E , = fafc, {H-Et}+t)+ (*„ {H-Et)fyt) 

This result follows immediately from the Hermitian 

* This research was supported at Lincoln, Nebraska by a grant 
from the National Science Foundation, and at Madison, 
Wisconsin, under Grant NsG-275-62(4180) with the National 
Aeronautics and Space Administration. 

t Present address: Mathematical Institute, Oxford, England. 
1 S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 123, 1495 

(1961). 

Assuming that n>l (i.e., ruling out the s wave <£o), 
there is no contribution to the right-hand side of (42). 
Integrating the d<t>n/dr term by parts, we obtain from 
(42) and (61) 

r <t>n r <t>n
2 

-k2nrl / —dr+ {2n2+2n-%)nrl / —dr 
Jo r2 A r4 

r00 / dV\ 
+ 1 <t>n

2l2r~2V-r-1—W=0. (62) 

The relation (58) ensures the convergence of the 
integrals, provided that n>l. Equation (62) is the 
quantum-mechanical analog of (29), and becomes 
identical with it in the semiclassical approximation 
when n is large. Equations (59) and (62) can be com
bined to give an alternative expression for dr]n/dn. 

property of W. Thus, if \{/t is selected to satisfy the 
hypervirial theorem for a bound state 

(*tZH,Wl+t) = 0} (3) 

then, as far as variations of the form (1) are concerned, 
\f/t is automatically optimized to give the best energy Et. 

In this paper we show that an analogous situation 
exists for approximate wave functions in scattering 
theory, provided that the form of the hypervirial 
theorem is employed which is appropriate to a free 
system. We find that if Kohn's variational principle2 

for phase shifts is used to optimize a partial wave, then 
this partial wave satisfies a hypervirial theorem. For 
total wave functions, a form of Kohn's principle for 
scattering amplitudes again leads to such a theorem. 
Thus hypervirial theorems may be helpful in selecting 
approximate wave functions in scattering theory, as 
they are with bound-state systems. 

2 W. Kohn, Phys. Rev. 74,1763 (1948). 
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The modifications to the hypervirial relations which here the surface integral extends over the surface 
are necessary for free systems were discussed in the enclosing the volume r, which in the limit includes the 
preceding paper,3 but we briefly recapitulate here; the whole of space. 
bracket notation is retained for generality and concise
ness. For an exact bound-state wave function \p, the n. HYPERVIRIAL THEOREMS FOR APPROXIMATE 
hypervirial theorem PARTIAL WAVES 

(\l/ VH WW) = 0 (4) ^ e e x a c t Partial wave <£(r) is frequently defined as 
the solution of the equation 

is a consequence of the Hermitian property of H. i.e., 
Hoct> = E<l> (where E=k*/2tn), (13) 

with the boundary conditions 
and of Schrodinger's equation. With continuum wave 
functions, however, the quantity <£(0) = 0, (14) 

2^tt,HW+)-m,W+) (6) a n d
 x 

<t>{r)^k l sm(kr—%mr+r)) for large r. (15) 
is not, in general, zero because \p does not now tend to 
zero at large distances. 2 is a surface integral, or, for a Without loss of generality, we absorb the factor COST? 

one-dimensional system, merely the difference of into <£ and take instead of (15): 
end-point values. Meaningful hypervirial relations arise ^>(r)~^~1 sin(kr-%mr)+\ cos(kr-%nw)} (16) 
when 2 is finite, or possibly even when it is zero because 
of the nature of W. When 2 is not zero, we say that H where 
is "nominally Hermitian." We have \=k"1 taxiri. (17) 
($,lH,Wlfi)=ty,HWf)-($,WH$) Suppose now an approximate trial partial wave <f>t(r) 

^H+iHif/yWip)— (\l/,WH\f/), (7) satisfies the boundary conditions 

and because Hif/=E$ the last two terms in (7) cancel <^(0) = 0, (18) 
each other to give the more general form of the hyper- and 
virial theorem: . . I N , / , 

U FN WUA = Y (K\ <l>M^k sm(kr-\n<w)+\t cos(kr-^nw) 
WU/*,WJW *• W for larger. (19) 

With degenerate wave functions fr and fc, we should T h e n K o h n , s v a r i a t i o n a l p r i n c i p l e2 s t a t e s t h a t t h e 

have, in obvious notation: optimum <f>t is determined by 

(*i,[ff,WTlM=2;12. (9) 

In the preceding paper,3 particular cases of (8) and (9) (2w)-16Xf+5J <t>t(E-H0)<t>tdr=0. (20) 
were utilized which are relevant for the scattering of a 
particle of mass m by a central field. For the (real) We will prove that if the variation in <j>t is such that 
partial wave <j> corresponding to the effective 
Hamiltonian 8<t>t=ieW(j>h (21) 

HQ= - (2m)-1d2/dr2+V(r)+n(n+l)/2mr2
y (10) where W is a nominally Hermitian operator, then the 

relation (8) gives optimum trial function <j>t derived from Kohn's principle 

satisfies the hypervirial theorem 

4>tHQiWl<t>dr (*i,Cffo,Wr>#) = S«. (22) 

= ( 2 w ) - 1 [ ( ^ ) ^ / J f - 0 ( ^ f ) ( ^ ) ] ^ o
0 0 . (11) K o h n ' . s Principle for partial waves follows from the 

following equation, which holds for variations of <j>t 

Relation (9) yields, for any two degenerate total wave about the exact function <£: 
functions, 

£ 

f f I <t>t(E-Ho)4>tdr+(\t-\)/2m 
I *!*[ff, J T J M T = (2™)~l \ i Wfa gradfc* J o 

- ^*g rad (^ 2 )} -dS ; (12) 
/ 4>(E-Ho)<l>dr=0. (23) 

Jo 
3 P. D. Robinson and J. O. Hirschfelder, preceding paper Equation (23) is obtained by integrating by parts, and 

[Phys. Rev. 129, 1391 (1963)]. neglecting the second-order term in (<£<-<£). 
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From Eq. (20) it follows that 

(2m)-l8\t+ (d<t>t,{E-H0)<t>t)+ (*«,{E--ffo}«*«) = 0. (24) 

We also need the exact result 

(2m)-ld\t+ {HdtMd - (<t>t,HM>t) = 0 ; (25) 

this is established with the help of a partial integration 
similar to that required for (23), and depends on the 
boundary conditions (18) and (19). Expanding (24), 
and substituting from (21), we get 

(2mh)-lb\t-E(W(i>h<i>t)JrE(^hW4>t) 
+ (W<t>tiH^t)-(<t>t)H0Wcl>t) = 0. (26) 

Now, by hypothesis, W is a nominally Hermitian 
operator; thus the difference of (W<t>t,H&$>t) and 
(<t>t,WHtft>t) is, in general, a surface integral, which in 
this one-dimensional case reduces to a difference of 
end-point values. The boundary conditions (18) and 
(19) imposed upon <t>t} together with the fact that 
Htfj>t^E4t when r is large, imply that this same 
"surface" term is also given by the difference of 
(W(t>t,Ect>t) and faJVE&t). I t follows that 

= E(W4>tJ>t)-E(4>hW4>t). (27) 

Making use of (27), Eq. (26) becomes 

(2mie)-l8\t= (<^ , [# 0 ,^><) . (28) 

If we substitute for dcfrt from (21) into Eq. (25), we 
obtain also 

(2mie)~id\t= (4>tJB*W4>t)- (Hd>t,W4>t)=2tt. (29) 

Thus, from (28) and (29), the hypervirial theorem (22) 
is satisfied. 

We can trace the argument in reverse, and so the 
hypervirial theorem is really equivalent to Kohn's 
principle. The principle has been shown4 to be a 
minimum principle in many situations, and so hyper
virial theorems may serve as helpful criteria in selecting 
approximate partial waves to give accurate phase shifts. 
I t should be noted, however, that the boundary condi
tions (18) and (19) imply a restriction on 8<f>t and, hence, 
on W. In particular, a simple scale transformation is 
not allowed. 

4 L. Rosenberg and L. Spruch, Phys. Rev. 125, 1407 (1962), and 
references given therein. 

IU. HYPERVIRIAL THEOREMS FOR APPROXIMATE 
TOTAL WAVE FUNCTIONS 

The ideas of Sec. II can readily be extended to include 
approximate total wave functions. The exact wave 
function yfcj representing a particle with incident 
momentum ky is the solution of 

H*= [ - (2w)-1V8+ r ( r ) > = £ * , (30) 

which is finite at the origin and has the asymptotic 
form 

^y~exp(iky r)+F(6j)r~1 exp(ikr) for large r (31) 

Here |ky| =k, 6j is the angle between ky and r, and 
F(0j) is the scattering amplitude upon which scattering 
cross sections directly depend. Let \f/u and yp^t be two 
approximate wave functions, which satisfy the correct 
boundary conditions but have approximate scattering 
amplitudes Ft(0i) and Ft(62). An appropriate form of 
Kohn's variational principle is now2 

(2T/m)8Ft(y)+8 / ^ U * ( £ - # ) ^ T = 0 , (32) 

where y is the angle between kx and k2. This gives, in 
bracket notation, 

(2T/m)dFt(y)+ (N,U,{E-H)4,it) 

We also have the result, which follows from Green's 
theorem, that 

(27r/m)5Ft(y)+(Hfu,W*t)- (^ i« ,H^) = 0. (34) 

Now if we assume that 

tyit=ieWfJh i = l , 2 , (35) 

then using the technique of Sec. II it is easy to show 
that Eqs. (33) and (34) become, respectively, 

(2w/mie)8Ft(y)= (^uLH.W^t), (36) 
and 

(2ic/tnie)8Ft(y) 

= tyu^+u)-(Hfu,Wf2t)=2u.u. (37) 

Thus, from (36) and (37), we see that the hypervirial 
theorem 

ttulH,W2+2t) = 2u.2t (38) 

is satisfied, and is again equivalent to the appropriate 
form of Kohn's variational principle. 


