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The Lindhard approximation to the frequency- and wave-number dependent dielectric constant, €(k,a>), 
provides a good description of many properties of the degenerate electron gas. However, it is known that 
the short-range behavior of the gas is not adequately represented by this function and it is necessary to 
include certain additional terms. DuBois incorporated some exchange terms into €(k,o>) and was able to 
obtain the correction to the plasmon excitation frequency. Though his final results are reasonable and have 
been corroborated using alternative approaches the "corrected" dielectric constant is found to violate certain 
a priori restrictions. In this paper a more accurate dielectric constant is derived. In order to obtain an ac
ceptable function which does not violate the sum rule and positive definiteness restrictions on the imaginary 
part it is necessary to account for three types of corrections. These corrections originate in (1) the effective 
screening of the long-range interaction between particles; (2) the shift in single-particle energies of electrons 
and holes; and (3) the tendency of particles and holes to form bound states when any repulsive interparticle 
interaction is present. With these corrections all spurious singularities in the dielectric constant disappear. 
Numerical calculations of e(k,a?) and of moments of the imaginary part of this function have been carried 
out for an intermediate electron density equal to the density of conduction electrons in aluminum. The 
resulting dielectric constant departs by as much as 50% from the Lindhard form for low frequencies, but 
has similar qualitative features. The moments can be used to determine the high-frequency behavior and 
other properties of the electron gas. 

I. INTRODUCTION 

THE dielectric formulation of the many-body 
problem has been found to be very useful in 

treating the degenerate electron gas and for studying 
properties of solids which depend strongly on electron-
electron interactions.1-4 The frequency- and wave-
number-dependent dielectric constant can be used to 
rigorously describe and relate many properties of the 
system. These properties include any that can be ex
pressed in terms of an expectation value of a two-body 
operator, or in terms of the rate of transitions out of the 
ground state induced by a one-body operator or ex
ternal field acting on the system.5 Thus, this approach 
has been applied in analyses of electron scattering by 
thin metal films2,M; and for studying the pair dis
tribution function and the ground-state energy of the 
degenerate electron gas, and the nature of the plasmon 
excitation mode. It has also been shown7,8 that the 
effective interaction between electrons, ions, or im
purities in the system can be expressed in terms of the 
dielectric constant. This function, in effect, transforms 
the elementary two-body Coulomb force into a non-
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local, time-dependent interaction which incorporates 
the complicated screening effects of the intervening 
electron gas. Experimental studies of many phenomena 
in solids have recently been refined to the point where 
it has become interesting and necessary for theory to 
incorporate the effects of these electron-electron 
interactions. 

However, the dielectric constants used in previous 
studies are not completely satisfactory and violate 
certain a priori restrictions. Using the dielectric con
stant first found by Lindhard,1 one can obtain a de
scription of screening effects and of the plasmon excita
tion mode which is very accurate for high electron 
densities and appears to be quite good even for metallic 
electron densities. However, it has been shown that 
short-range effects are badly represented; indeed for 
metallic densities the pair distribution function found 
with this approximation becomes negative for small 
separation between particles.4-9-10 DuBois11 calculated 
an improved dielectric constant valid to the next order 
in perturbation theory. While perturbation theory 
cannot be applied to calculations of most properties 
of the electron gas due to the long-range character of 
the Coulomb force, it had been suggested4'7-11 that it 
might be valid for determining the dielectric constant 
of the medium. DuBois' dielectric constant does tend 
to remove the difficulties with the pair distribution 
function to lower densities, but it is now found that 
another important condition is violated: The imaginary 

9 A. J. Glick and R. A. Ferrell, Ann. Phys. (N. Y.) 11, 359 
(1960). 
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correct (private communication). 
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(1959). 
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part of the new dielectric constant becomes negative 
for certain frequencies. 

In this paper, we calculate a more accurate dielectric 
constant which appears to be free of these difficulties. 
It is shown that it is not merely the long-range nature 
of the Coulomb force which causes trouble. For any 
repulsive interparticle interaction ordinary perturba
tion theory is inadequate for determining corrections 
to the dielectric constant valid for all frequencies and 
small wave numbers. In the present case the breakdown 
of perturbation theory is due to three different effects 
of interaction. These are (1) the long range of the 
Coulomb force; (2) small shifts in single-particle en
ergies and the Fermi surface; (3) the tendency of 
particles and holes to form a bound state when any 
repulsive interparticle interaction is present. As a 
result it is necessary to combine three groups of terms 
for calculating the dielectric constant. 

The method of calculation is the same as that dis
cussed in references 4 and 5. We use a diagrammatic 
many-body perturbation theory or equivalent Green's 
function formalism to find the linear response to a 
density fluctuation. The imaginary part of the dielectric 
constant is then given by the contributions of the 
reduced class of diagrams which comprise a "black 
bubble." We here consider the completely degenerate 
electron gas, and restrict ourselves to the long-wave
length (&—»0) limit where the difficulties with the 
perturbation treatment are most pronounced. 

In the next section we consider the corrections given 
by perturbation theory to Lindhard's dielectric con
stant1 and we obtain a function equivalent to that used 
by DuBois.11 However, the present derivation gives the 
imaginary part of the dielectric constant directly and 
the result evidently violates the a priori positive-
definiteness condition. 

In Sec. I l l an effective screened interaction is derived 
from a consideration of higher order processes. With 
this interaction the divergences associated with the 
long-range Coulomb force disappear but by itself this 
improvement does not provide a satisfactory dielectric 
constant. In Sec. IV the single-particle propagators are 
modified to incorporate self-energy effects. In this way 
we eliminate the familiar severe singularities in higher 

jrxjrjr 
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FIG. 1. Typical graphs which contribute to the imaginary part 
of the dielectric constant, (a) is the graph which reproduces 
Lindhard's approximation while (b), (c), and (d) represent the 
first-order corrections which were included by DuBois. 

order terms of the perturbation series which are due to 
small shifts in single-particle energies. In the present 
approximation this correction can be taken into account 
by introducing an effective mass into particle and hole 
energy differences. The effective mass is calculated and 
found to differ from the electron mass by less than 5% 
for any electron density. 

With the effective interaction and effective propaga
tors derived in Sees. I l l and IV incorporated into the 
correction terms to the dielectric constant, it still re
mains necessary to provide for the presence of a pole 
in the free-particle-hole propagator. Thus, in Sec. V an 
acceptable dielectric constant is obtained by carrying 
out a summation over a class of graphs containing re
peated particle-hole scatterings. This sum is over 
graphs which are the exchange counterparts of the 
familiar simple "bubble graphs." These calculations 
indicate that even for very small wave numbers where 
the "direct'' terms in perturbation theory would be 
thought to be very much larger than their individual 
exchange counterparts, the exchange terms are still 
sufficiently singular for certain frequencies that they 
must be combined over all orders to make valid im
provements in the calculation. The resulting dielectric 
constant is well behaved and provides reasonable cor
rections to results obtained with Lindhard's function. 
Section VI consists of a short summary. 

II. PERTURBATION THEORETIC CORRECTIONS 

In reference 4, it was shown that the imaginary part, 
€2, of the frequency- and wave-number-dependent di
electric constant, e(k,u>) can be expressed in terms of the 
real part of an integral over positive t which takes the 
form (ft equal to unity) 

v(k) f° 
«2(k,w) = Re / dt (eiut-e~iut) 

0 Jo 

X^olPk^OpkCO)!*^, (2.1) 

where v(k) is the Fourier transform of the interparticle 
interaction, 12 is the quantization volume, pk(0 is the 
Heisenberg density fluctuation operator: 

Pk=£ke*- r , 

and ^o and H are the many-particle interacting ground 
state and Hamiltonian of the system. The rules for 
drawing diagrams and finding their contributions to the 
matrix element in (2.1) were given in reference 4, but 
for convenience we include a momentum space form of 
the rules in Appendix A. The subscript B on the matrix 
element refers to the graphical description and restricts 
the contributions to terms coming from the "black 
bubble" graphs, i.e., those which cannot be divided into 
two unlinked parts by cutting a single interaction line. 
Typical contributing graphs are shown in Fig. 1. The 
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real part, eh of the dielectric constant can then be contributions to the matrix element: 
found from the Kramers-Kronig dispersion relation, 

I r°°« ' €2tfc,w') 
€ i ( k , u ) = l + - < P / do>'. (2. 

7T JQ (J)'2— CO2 

M.EJ 
2) 

1 /•« 

7T3^0 kifk2%/__c 

da)idoj2ida)f 

The contribution from Fig. 1 (a) gives Lindhard's1 di
electric constant €L(k,o>). As k approaches zero this M.E. lc+M.E. ld 

result reduces to 
2&o 

€2*(k,«)-* « u ( l - | « | ) , (2.3) 
k-+°aQk2 

47T3iO 1 

Xe- i w '^(ki-k2)5(k l jcoi)5(ki-k,aJi-^) 

XS(k2,o>2)5(k2- k, a^-coO, (2.5a) 

1 r00 

= 2 / dooxda)^' e-io,tv(ki— k: :) 

(2.4) 

where u=o)/(kva) with z»o denoting the Fermi velocity, 

??(#) = 1, for #>0 
= 0, for #<0, 

and a0=l/(we2). 
The first-order corrections to (2.3) come from the given by Eq. (Al). After substitution into (2.1), the 

graphs shown in Figs. 1 (b), (c), and (d). Applying the integrations over t and o> are easily performed as 
rules of Appendix A and integrating out the variables indicated in Appendix B and the first-order corrections 
restricted by the 5 functions, we find the following to e2 become 

X5(ki,o;1)5(k1 ,co1)5(k2 ,o)2) 

X [ 5 ( k i - k , c o 1 - c o , ) + 5 ( k 1 + k , o n + o / ) ] . (2.5b) 

The integrations over the o)t- can be carried out using 
the simple structure of the particle propagators 5(kt-,cot) 

4ir»(k) 
€2i&= 23 i7ki>'»7ki-k<'»?k2>C5(oj—£ki+^ki-k) — 5 ( w + £ k i — £ k i - k ) 3 

Q2 ki,k2 

f z i ( k i - k 2 - k ) r 7 k 2 + k < w(ki— k2)t?k2-k< 
(2.6a) 

l £k 2 +k- - -Ek 2 ~-^k i+£k i -k £ k 2 — £ k 2 - k — £ k i + - E k i - k ' 
27rz;(k) 

€2
lc+e2

ld= Z V k i ^ - k ^ k ^ f t ^ ^ (2.6b) 
0 2 ki.ki 

where (P denotes principal part in the integration over Substituting into (2.2) we obtain 
the pole in the denominator of (2.6a) and the rjk> and 
?7k< are defined in Appendix A; note that Eq. (2.6b) 
contains a derivative of the 6 function with respect to 
o). For the electron gas the interparticle interaction 

I f / 1 1 \ ll-f* 
Aei= ( 6*H ) In 

T T W ^ I V l + « 1-uJ \l+u 

takes the form 
v(k) = 4we2/k2. (2.7) + 12 — (2.9) 

The sums over ki and k2 can be replaced by integrals 
which are easily evaluated in the limit *-» 0 for which which corresponds to the correction to the polarization 
the regions of integration collapse into very thin caps propagator found by DuBois13 from graphs analogous 
on the Fermi sphere.12 

Combining Eqs. (2.6), the correction to €2 can be 
written in the form 

Ae2= \\6u+ 1 ( 1 - |« | ) 
ira^kHL 1+u 1 - i d 

—[ln(—2-—)-A(l-\u\) 
u L \ 1 — \u\/ J +- (2.8) 

to Figs. 1(b), (c), and (d). 
As shown in reference 9, it is also of interest to know 

the u moments of the differential oscillator strength 
dfk/du, 

dfk/du=2ue2/('jrtip
2)1 (2.10) 

with 

ti2=o>p
2/(kv*)2=^n#/(mkW) = 4ko/(3waok2). (2.11) 

The zeroth moment is fixed by the well-known sum rule, 

Though this result is very singular, it is integrable. 

12 I n (2.6b) t h e »7k2-k> does n o t appear directly from application 
of the rules but the effect of cancellation between the first and 
second v(k)'s gives the same effect. 

/ duu€2=TUp2/2. 
Jo 

(2.12) 

13 D. F. DuBois, Ann. Phys. (N. Y.) 7, 174 (1959), Ap
pendix A. 
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(2.13) 

(2.14) 

(2.15) 

Since Lindhard's function (2.3) already exhausts this 
sum rule, the contribution of corrections to e2 to the 
zeroth moment should vanish. This condition is, indeed, 
satisfied by (2.8). Calculating the correction to the 
higher moments, one easily finds 

2 r00 

A(# n )= / unuAe2du, 
TUP

2JQ 

A(u2)=-l/5irk0vQ7 

A(w4)=— 4/357r&o0o, 

which can be compared with the small-fe result of 
reference 9, 

<«%>o=3/5, (2.16) 

<««>*-o=3/7. (2.17) 

Using (2.14) we can substitute into Eq. (20) of refer
ence 9 to obtain the "exchange correction" to the 
plasmon frequency. The result is in agreement with 
that found by DuBois11 and others, giving to order k2 

o>k/o>p^ 1 + ( 9 x ) W 4 0 ) (k2/h2) (1 - l/Swhao). (2.18) 
Similarly one can use Eq. (25) of reference 9 to find 
the plasmon oscillator strength which becomes, to 
order kA, 

277T2&0W k4 

dFk=1 
700 &o4 

11 7 

X 
67r&o#o 12w2kQ2ao2. 

(2.19) 

(a) 

T 
(b) 

FIG. 2. Imaginary part of the dielectric constant in units of 
2ko/(aok2) as given by first-order perturbation theory and plotted 
as a function of u for an electron density equal to the density of 
conduction electrons in aluminum. Note that this function violates 
the a priori positive-definiteness condition for w « l and also has 
a S-iunction peak with infinite coefficient at u=l. The broken 
line shows e% in the zero-order (Lindhard) approximation. Both 
forms of €2 vanish for u> 1. 

FIG. 3. (a) First-order irreducible graphs which contribute to 
the dielectric constant when an effectively screened interaction is 
used. The chains represent the approximate interaction which is 
found from an integral equation represented schematically in (b). 

These corrections to the plasmon frequency and 
strength are small for high densities and are even 
reasonable for metallic densities. For a density equal to 
the density of conduction electrons in aluminum one 
has l/(7r&o#o)~0.34. 

Note, however, that A*2 is highly singular, and in the 
region of u= 1 this function becomes much larger than 
the zero-order term given by (2.3). Thus, for small k 
and u near unity it appears that perturbation theory 
fails. Indeed, as shown in Fig. 2, the imaginary part 
of the dielectric constant is driven negative in this 
approximation in violation of an a priori restriction. A 
negative value of 62 for positive frequencies implies 
that the system generates rather than absorbs energy 
on excitation from the ground state. Such a result in
dicates either that we have incorrectly chosen the 
ground state and there actually are other states of lower 
energy, or that perturbation theory has broken down 
and gives meaningless results in this frequency range. 
Since the Coulomb interaction between particles is re
pulsive, it is unlikely that there exist states of lower 
energy than the normal ground state. Hence, we are 
concerned in the remainder of this paper with the 
derivation of a more accurate correction to €2, which 
seems to be in better accord with the a priori criteria 
at our disposal. 

III. THE EFFECTIVE INTERACTION 

A frequent cause of the failure of perturbation 
theory, when applied to the electron gas, is the long-
range nature of the Coulomb force. However, for the 
determination of e2 it is shown in this section that 
perturbation theory is unsuccessful even with a screened 
interaction between particles. We first investigate how 
certain higher order processes introduce an effectively 
screened interaction and then we reconsider the graphs 
of the previous section as modified by the effective 
interaction for calculating a screened A€2. 

Hubbard7 has shown how the perturbation series 
which we have been using can be formally rearranged 
in terms of the effective interaction. One then restricts 
attention to a class of irreducible graphs (to avoid 
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counting contributions more than once), and the 
effective interaction is determined as a sum over all 
possible graph parts which begin and end with a simple 
interaction line, but have no other external lines. I t 
has been shown7*11 that the only modification in the 
rules of Appendix A in this treatment is that in rule 1 
the interaction z>(k,-) is replaced by 

V(ki^i) = v(ki)/e(ki^i)y (3.1) 

where e(k4-,co;) is the exact dielectric constant of the 
system except that its imaginary part has opposite 

For our purpose a sufficiently accurate effective inter
action can be found from the integral equation repre
sented by Fig. 3(b). I ts solution is well known and can 
be written in the form (3.1) with i(k*,coi) given by 
Linhard's1 function iL(k;,w;). But we need not retain 
the full and complicated dependence of iL(k»,co*) on k t 

and co*. In the limit of small k, both ki and k2 are re
stricted to thin caps on the Fermi sphere and, hence, 
are associated with energies close to the Fermi en
ergy EQ. Since only the energy differences E^—Ek2, 
Eky-*—.Ek2~k enter (3.4), we make little error if we 
replace £L(kt-,a>») by the static dielectric constant 
£L(ki,0). The ki which enter (3.5) all lie in the interval 
0<&;<2&o. Since €L(k»,0) is real and monotonically 
decreasing, and behaves as 

i L ( f c ,0 ) - l + 3 c V / £ ; V (3.6) 

sign for negative cot-, i.e., 

i ( M = i ( k , - « ) , (3.2) 
whereas 

6(k,«) = € ( k , - « ) * (3.3) 

The first-order irreducible graphs which contribute 
to €2 are shown in Fig. 3(a). Since the effective inter
action is not instantaneous these graphs represent 
more time orderings than do Figs. 1(b), (c), and (d). 
However, the additional contributions are characterized 
by terms of the form 

for small &,-, and as 

~ £L(2&o,0) = l + 3 c o p
2 / 2 W (3.7) 

J for &i=2&0; it should be a good approximation to use 

\ vfa)/*Hh**i)~to*/(kf+2aki?), (3.8) 
where 

2a=3a)p
2/(^o^o)2=4/(7r^0ao). (3.9) 

Thus, the graphical analysis leads us back to an ap-
' proximate Yukawa-type screened interaction.14 The 

evaluation of (3.5) now proceeds as for (2.6) with the 
T result 

14 A more accurate analysis shows that the potential actually 
falls off more slowly over large distances than the Yukawa force 
and behaves as cos (2k<f)/t*. See T. Langer and S. Vosko, Phys. 
Chem. Solids, 12, 196 (1960). 

r [ e 0 - ( k i - k 2 ; Ekl-Ek2)-V^(k1-k2; c o ' + £ k l _ k - £ k 2 ) ] , 
co'+^ki-k—jEki a/+£k2-k—E*2—ia 

containing a difference between VJs or "U+'s, where 1)_(k,co) and •U+fow) are those parts of 1)(k,a>) which are 
analytic in the lower and upper half of the complex a> plane, respectively.4 Note also that the « ' dependence is 
such that the terms tend to cancel when the denominators are small. We, therefore, neglect these additional con
tributions compared to those which contain terms of the form 

1 1 
: - [ T ) _ ( k 1 - k 2 ; £ k 1 - c o , - £ k 2 - k ) + e U + ( k i - k 2 ; c o , + E k 1 - k - £ k 2 ) ] . 

co'+Eki-k—^ki+^a G/+£k2-k—E*2+ia 

In this latter case the denominators enhance the contributions for a/ such that the bracketed expression can be 
approximately taken as 

[ eU_(k1-k2 ; £ k l - £ k 2 ) + e O + ( k 1 - k 2 ; E k l - £ k 2 ) ] = e U ( k i - k 2 ; Ekl-E*J. (3.4) 

Replacing the effective interaction by its value where the coefficient peaks, we obtain an expression for the screened 
Ae2 which is very similar to (2.6), 

4m>(k) 
Ae2

s= £ i7ki>'7ki-k<<»7k2>C5(a)—£ki+^ki-k) —5(w+£ki--£ki-k)] 
O2 ki.kj 

{ ^ ( k i — k 2 ; jEki-k—-Sk2)»?k2+k< ^ ( k i — k 2 ; E^—-Ek2)*?k2-k< l 
(P__ 

i£k2-fk~--£k2 — jEki+-Eki-k J5k2 — £k 2 -k — -Eki+-£ki-k > 

2m>(k) 
H S ^ki>??ki--k<*?k2<p/(w-- •Ek1+-Ek1-k)+8 ,(tt+Eki"~ ^ k i - k ) l 

O2 ki.ki 
X [ e O ( k i - k 2 ; E k 1 - £ k 2 ) - e U ( k 1 - k 2 - k ; £ k l - k - £ k 2 - k ) ] . (3.5) 
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Ae2
s = -

irao2k2 

r 2u2 

In 
L[_a2+2a{\-u2)Ji2 

(1-u) (l+u+a){a+ta2+2a(l-u2)Jl2}+a(l~u2)\ 

(1+u) (l-u+a){a+la2+2a(l-u2)Jf2}+a(l-u2)\ 

/2-\-a\ "] f /2-\-a\ 
-2ua\J ^J+4^(l-w) + ["(l+a)ln(r -\-2 \(l-u)\. (3.10) 

Figure 4 contains a plot of this expression using a = f 
which is appropriate for an intermediate electron density 
corresponding to the density of conduction electrons 
in aluminum. Note that A€2

S diverges only loga
rithmically near w = l and the d function has a finite 
argument. However, A€2S is still not an acceptable 
correction to the dielectric constant in the region of 
w = l . I t is not merely the long-range nature of the 
Coulomb force which causes perturbation theory to 
break down, and it is necessary to look at additional 
high-order processes which might cause difficulty. 

In the remainder of this paper we consider graphs 
for which the same arguments, which led to the effective 
Yukawa interaction (3.8), seem justified, and thus we 
continue to use this effective instantaneous force 
throughout. In this approximation the electron gas 
can be viewed as a gas of particles which interact via 
the elementary two-particle Yukawa force (3.8). Then 
A€2S given by (3.10) is the first-order perturbation cor
rection to €2 for small k, which is completely analogous 
to (2.8) for a gas with unscreened Coulomb interactions. 

For comparison with the unscreened case we give the 
moments of u calculated with Ae25. The correction to 
the zeroth moment again vanishes exactly in accord 
with the sum rule. The correction to the second moment 
analogous to (2.16) is 

FIG. 4. The screened correction Ae2s to the imaginary part of 
Lindhard's dielectric constant in units of l/(ira0

2kz) plotted as a 
function of u for an electron density equal to the density of con
duction electrons in aluminum. This function, which was calcu
lated from the graphs of Fig. 3, is not as singular as the unscreened 
correction shown by the dashed line, but still violates the positive-
definiteness requirement for w« 1. 

A 5 (w 2 )=- ( l /S i rAof lo) 

X { l - 2 a + ( a / 2 ) ( l + 2 a ) l n [ ( 2 + a ) / a ] } , (3.11) 

which approaches the unscreened result for small a. 

IV. THE EFFECTIVE MASS 

Having found an effective interaction between par
ticles we now investigate the effect of using improved 
single-particle propagators. Note that Figs. 1(c) and 
(d) are essentially the same as Fig. 1(a), except that 
in each of these graphs one of the particle propagators 
contains a self-energy correction. Since the 5 function 
which appears at u=l in A 2̂ arises from (2.6b), the 
contributions of these graphs, one might suspect that 
higher-order self-energy corrections could individually 
also give large or singular contributions and hence 
should be considered. 

jr x 
x~—y x — y (a) (b) 

\ 

(c) 

FIG. 5. (a) Zero-order and (b) first-order irreducible skeleton 
graphs which contribute to the dielectric constant when the 
effective interaction and effective single-particle propagators are 
used. The single-particle propagator is taken as the solution of an 
integral equation represented in (c) and the effective interaction 
can be approximated by an instantaneous force for small k as 
indicated in Sec. III. 

I t is well known15 that self-energy corrections can 
be taken into account by replacing the single-particle 
propagators S(kt-,o>t) by effective propagators S(kt,cot). 
This procedure is equivalent to another rearrangement 
of the perturbation series after which only a reduced 
class of skeleton graphs, without any self-energy parts, 
are considered, and the new propagators are determined 
by the sum over all possible graph parts which begin 
with an incoming particle line 5(kt-,cot), end with an 
outgoing particle line S(k;,cot), and have no other ex
ternal lines. Alternatively, S(kt-,ct>t) can be found from 
an integral equation 

S(k1-,«0 = 5 (k i , « i )+5(k f , « i )S(k i , «0S(M.- ) , (4.1) 
16 A. Klein and R. Prange, Phys. Rev. 112, 994 (1958). 
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in terms of the "mass" operator or irreducible self-
energy operator S(kt-,wt). As noted by Klein16*17 S(k,-,cot-) 
can be expressed in a form which is similar to 5(k»,w»). 
Then the rules of Appendix A remain valid except that 
in rule 2 one must replace S(k»,wt) by 

S(ki,«t-) = 
*ijk<> 

m—Eki—i^(kiyo)i)+ia 

^?k<< 

o)i—Eki—i% (k»,«t) — io. 
(4.2) 

We take as the effective propagator the solution of 
the integral equation represented in Fig. 5(c), which 

contains the first approximation to the mass operator 
in terms of the effective interaction: 

1 r°° 
2(kt,a>i) = L / do>j 

2wiQ k/ J^ 

XS(kjya>j)V(k<- ky, «<-«,-). (4.3) 

We further approximate V(ki,u)i) by V(ki)~v(ki)/ 
eL(ki,o)i) as given by (3.8), resulting in a 2(kt-,o>») which 
is purely imaginary and independent of w». The first 
two skeleton graphs which arise are shown in Figs. 5 (a) 
and 5 (b). Applying the new form of the rules and carry
ing out the integrations over frequency, we obtain their 
contributions in the form 

4a? (k) 
€2' 

5 6 — . £ ^k!>??ki_k<??k2>[5(w—£ki*+-Eki-k*) —8(«+jE k l*—-Eki-k*)] 
ft2 klfk2 

/ ^ ( k i - k 2 - k ) i 7 k H - k < T)(ki-ka) i?k,-k< 
x (P-

^£k2+k* — £k2* •— iEki*+£ki -k* -Ek2* — £k 2 -k* — -Eki*+-Eki r.) 

(4.4a) 

(4.4b) 

where 
£k*=A»/(2f»)+ffl(k), (4.5) 

and the redundant frequency dependence of 2 (k,w) has 
been suppressed. Except for the appearance of Ek*'s in 
place of jBk's these terms are identical to expressions we 
have previously encountered. The first gave rise to 
Lindhard's €2L(k,o;), and (4.4b) resembles (2.6a). The 
term (2.6b) has no counterpart in the present scheme 
since its contribution has been absorbed into (4.4a). 

Note that only energy differences of the form 
22k!*—-Eki-k* enter into Eqs. (4.4), and in each case ki 
(also k2) is restricted to values outside the Fermi sea 
and ki—k to values within the sea. As a result, in the 
small-k limit ki takes on values within a very thin 
cap on the Fermi sea. The relevant energy differences 
are easily evaluated for this case. Introducing an effective 
mass tn* and explicitly evaluating z[2(ki)—2(ki—k)], 
we find to first order in k 

E**-Ekl-**=kvk/m*, (4.6) 
where 

l/w*=(l/i»){l-(l/2T*oflo) 
X[2- ( l+a) ln (2+a) /a ]> , (4.7) 

or, using (3.9), 

w*/w= { 1 - (a/4)[2- (1+a) ln(2+a)/a]}-1. (4.8) 

m*/m is plotted in Fig. 6 as a function of a. For these 

16 A. Klein, in Lectures on the Many Body Problem, Naples, 
1960, edited by E. R. Caianiello (Academic Press Inc., New York, 
to be published). 

17 Note that the present definitions of S(k,«) and 2(k,co) are 
consistent with references 4, 5, and 7, but differ by a factor of i 
from those used in references 15 and 16. 

graphs the effective mass is equal to the electron mass 
for a = 0 and for very large a, while for intermediate 
coupling it is smaller, but never departs from m by 
more than 5%. 

The Lindhard self-energy corrected €2 now becomes 
[compare (2.3)] 

e2
5a= (2h/a*&){m,*/m)u,t)(\- |« ' | ) , (4.9) 

where 

v! = u (m*/tn) — tn*a)/ (kko). (4.10) 

However, this function by itself no longer satisfies the 
sum rule (2.12), but must be augmented by €256, 

1.00 

</> 0 .95 

< 

o.so 

2.0 4.0 

FIG. 6. The ratio of the effective mass to the electron mass as a 
function of the dimensionless screening constant a. The effective 
mass is smaller than tn, but doesn't depart from it by more than 
5%. For « = 0 and very large a the effective mass equals the elec
tron mass. The numerical calculations of the dielectric constant 
reported later in this paper are for a — f. In this region the dif
ference between m and tn* is most pronounced. 
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irao2k2\ ml I \ a / 

w'2 / ( l - « 0 ( l ™ w / + a ) { a + [ « 2 + 2 a ( l - w / 2 ) ] 1 / 2 } + a ( l - ^ 2 ) \ 1 
+ In ) . (4.11) 

[ a 2 + 2 a ( l - ^ 2 ) ] 1 / 2 \ ( l + « , ) ( l + ^ + « ) { « + [ « 2 + 2 a ( l " - ^ 2 ) ] 1 / 2 } + a ( l - w / 2 ) / J 

Combining (4.9) and (4.11) and using (3.9) we find the imaginary part of the self-energy corrected dielectric 
constant 62SE: 

6 2 S E = _ t \ ( 1 - \ u > \ ) u > l + - ( — ) In 
aokAm/ I 2\m/L \ a J 

uf / ( l - « ' ) ( l - w , + a ) { Q : + [ a 2 + 2 a ( l - w , 2 ) ] 1 / 2 } + a ( l - w , 2 ) \ l l 
+ i n ) I (4J2) 

[ a 2 + 2 a ( l - ^ ' 2 ) ] 1 / 2 \ ( l + » ' ) (l+u'+a){a+Za2+2a(l-uf2)JI2}+a(l-u'2)J JS 

e2
SE is plotted in Fig. 7 with a = f. Note, in comparison 

with Figs. 2 and 4, that the 8 function at u= 1 no longer 
appears, but that the largest contributing frequency 
has been shifted from u=l to u^l.05. This shift re
flects a small change in the single-particle energy of 
particles near the Fermi surface due to interaction 
between the electrons. The singularities which arise in 
the pure perturbative approach, with Figs. 1(c) and 
(d) contributing 6-function peaks to e2 and higher order 
terms giving rise to derivatives of 6 functions, provide 
a rather violent indication that these energy shifts 
occur, but their accurate treatment can only be ac
complished by means of a formal mass renormalization 
as carried out above. 

/7\\ 

u 

FIG. 7. Imaginary part of the dielectric constant calculated 
from the graphs of Fig. 5. Here €2SE(k,w) is plotted in units of 
2ko/(aok2) and as a function of u for an electron density equal to 
the density of conduction electrons in aluminum. There is no 
5-function peak in this approximation and the highest u for which 
e2 is not zero has been shifted from u=l to u^l.05. However, 
this approximation continues to exhibit the logarithmic singularity 
which causes a violation of the positive-definiteness requirement. 
The broken line shows the zero-order €2. 

Though €2SE provides an improved approximation to 
the imaginary part of the dielectric constant it still 
contains a logarithmic divergence which tends to drive 
it negative for u near its maximum value. Thus, a 
further refinement of the calculation is necessary to 
obtain a positive-definite €2. We proceed with this 
calculation in the next section after recording two 
moments of 62sE: 

<«P>k-oBB=l, (4.13) 

3/m\z( 2 m 

5 W * / I Tkoaotn* 

X ^(2a2+10a+9) lnf J . (4.14) 

Equation (4.13) is in agreement with the sum rule 
(2.12) and it holds independent of whether a is chosen 
to have the specific value (3.9) or is just retained as an 
arbitrary screening parameter. Using (3.9) and (4.8), 
the second moment reduces to the DuBois result (2.14) 
in the high-density limit (a —* 0) : 

<^>k->o S E ->f ( l - a /6 ) . (4.15) 

V. THE CORRECTION TO £2 

The contributions of Figs. 5 (a) and (b) to the matrix 
element needed for e2 can be expressed in the form 

X L [F(k1,k,o?0+(l/O)JP(k1,k,co0 

X E e O ( k i - k 2 ) F ( k 2 , k , o , 0 ] , (5.1) 
k2 

where F(ki,k,a>') is related to the propagator for a 
mass corrected, but otherwise free, particle and hole: 

i r00 

M . E . 5 = — / dec' e-™'* 



D I E L E C T R I C C O N S T A N T O F D E G E N E R A T E E L E C T R O N G A S 1407 

1 r«> 
= -— / dcoi S (k i—k, coi—w')S(ki,o>i) 

2wiJ -M 

. a • 

i?ki_k>*?ki< ^ k i - k < ^ k i > 

w'--£k l*+jE;k l_k*-fX cu ' -£ k l *+£ k l _- k *+* \ 

f?ki-k>?7ki< ^ki-k<^?ki> 

a/—k- ki/w*—iX «'— k- ki/tn*+i\ 
(5.2) 

For small k this propagator has a pole for u^kko/tn* 
which can be associated with the tendency of particles 
and holes to form bound states. I t is the presence of this 
pole which causes the second term on the right of Eq. 
(5.1) to become large, signaling the breakdown of per
turbation theory for ur~ 1. In order to properly account 
for the bound state it is necessary to use a better 
propagator which incorporates repeated particle-hole 
scatterings. Thus, we now include the set of graphs 
shown in Fig. 8. Applying the rules of Appendix A and 
using the effective interaction of Sec. I l l and the 
propagators of Sec. IV, we can express the contribution 
of these graphs in a form analogous to (5.1): 

M 

where 

G ( k i , V ) 

FIG. 8. Graphs which give rise to a positive-definite corrected 
€2. These graphs account for repeated scatterings of effective 
particles and holes via the effective-interparticle interaction. 

G(k1)k,w ') = F(k1,k,co')H(k1,k)W '). (5.6) 

Then #(ki ,k ,« ' ) satisfies 

H(k 1 ) k ,a , ' )= l+( l / f i ) Zk 2 V ( k x - k 0 

XF(k , > kX)H(k, ,k > w ' ) . (5.7) 

In the neighborhood of oi' = kko/m* one might expect 
that ^(kijkjw') dominates the behavior of G(ki,k,«') 
and Z7(ki,k,co') is essentially constant and can be taken 
out of the sum in (5.7). Thus, in this region, 

HfaM <* 1 + (l/0)H(ki,k>«') 

X.?:*'0(ki-k$F(kt,ktS). (5.8) 

This latter equation is readily solved and gives 

F(k1 ,k,w ' ) 
G(k i ,k , " ' )« — — ^—r--T-r—• (5-9) 

. E . s = - - ( d»'*-*•'« E G f r i . k y ) , (5.3) U '" l - ( l / f i ) E k 2 ' U ( k 1 - k 2 ) F ( k 2 , k ) a , ' ) 
TJ-X

 k l 

1 
= i?(k1 ,k,a, ')+-F(k1)k,a, ') £ «U(k1-k2)F(k2,k,a ) ') 

0 k2 

1 
+-F(k 1 ,k ,co ' ) £ 'U(k1-k2)F(k2 ,k ) W ' ) 

Q2 k2 

1 
XE*U(k 2 -k 3 )F (ka ,k , w ' )+ - i ? (k 1 , k , a . ' ) 

k3 o 3 

X E t 0(k 1 -k 2 )F(k 2 , k , w ' ) L *0(k 2 -k 3 ) 
k2 k3 

XF(k,,k,a>') E eU(k3-k4)F(k4 ,k,a>0+- • -. (5.4) 

G(ki,k,a/) is related to the propagator for an inter
acting particle and hole, and Eq. (5.4) is equivalent to 
the integral equation 

G(k1?k,a/) 
1 

= F (k 1 , k , co , )+ -F (k 1 ,M) 
0 

XE eO(ki-k2)G(k2 ,k,coO. (5.5) 
k2 

Removing a factor of F(khk,o)/) from G(ki,k,c/), we 
write 

Away from the singular region the perturbation series 
seems to be adequate to determine the corrected form 
of e2. We now show that in this case too Eq. (5.9) pro
vides an accurate solution for G(ki,k,co'). 

When expanded, (5.9) reproduces the first two terms 
on the right-hand side of (5.4). By interchanging the 
dummy indices ki <-» k2 it can be seen that the third 
term on the right is also given correctly when summed 
over ki as in (5.3). Thus, the approximation only begins 
with the fourth term corresponding to the last bubble 
shown in Fig. 8 and should be very good for the whole 
range of frequency. In the particular case when the 
screening becomes very strong (cOM) so that *U(k) be
comes essentially a constant independent of k, then 
(5.9) becomes an exact solution for G(ki,k,o/). 

Utilizing the techniques of Appendix B to bypass the 
c/ and t integrations, we obtain 

2k0 /tn*' 
e 2 (k ,w)= I 

ira$' 
( rn*\ rl 

1 
X- , (5.10) 

x—uf—i\ 1+I(u',x) 

where X is an infinitesimal. The frequency dependence 
in (5.10) is represented by ur which was defined in 
(4.10), and the real and imaginary parts, I\ and J2 of 
I{uf,%) are given by 
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m*/m f / a 

I \2+J Z(uf-x)2+2a(l 

/ 2 =-

2wk0ao{ \2+aJ [ ( w , - x ) 2 + 2 a ( l - ^ / ) + « 2 ] 1 / 2 

/ ( l + O ( « ' r - x ) ( l - x ) + a ( 2 - x u ' ' - x ) + a 2 + ( l - x + a ) l ( u ' ' - x ) 2 + 2 a ( l - x u f ) + a 2 J t 2 \ } 

m*/m u 

2kodo 
- i | ( l - l « ' | > 

[(«'-z)2+2a(l-#<)+a2] 1/2 

(5.11a) 

(5.11b) 

Equation (5.10) has been numerically evaluated for an 
electron density equal to the density of conduction 
electrons in aluminum and the result is plotted in 
Fig. 9. Note that there is a sizable departure from the 
Lindhard €2L for this electron density, as might be 
expected, but the violent fluctuations characterizing 
the previous incomplete approximations have dis
appeared. €2 is positive definite and the values obtained 
for the moments are shown in the table where they are 
compared with the corresponding moments for different 
approximations. Note that the zeroth moment, which 
represents the sum rule (2.12), is satisfied to within 
2\% and provides an indication of the numerical ac
curacy of the dielectric constant we have obtained and 
of the other moments. 

The corresponding real part of the dielectric constant 
has been computed from the Kramers-Kronig relation, 
Eq. (2.2) and is plotted and compared with the Lind
hard ciL in Fig. 10. For small u the corrected dielectric 
constant departs appreciably from eiL. The zero-fre
quency value is fixed by the moment (u~~2): 

« i ( k , 0 ) - l = t f , V > , (5.12) 

and is thus shifted by 20%. For frequencies near kvo 
there is a rapid variation in €i, but it no longer becomes 
negative infinite. At higher frequencies the changes in 
the dielectric constant due to the correction are small 

FIG. 9. Imaginary part of the corrected dielectric constant 
calculated from the graphs of Fig. 8, and plotted in units of 
2ko/(aok2) as a function of u for an electron density equal to the 
density of conduction electrons in aluminum. For this electron 
density e2 departs appreciably from the Lindhard form shown by 
the broken lme, but is well behaved and no longer exhibits the 
violent fluctuations characterizing the previous incomplete 
approximations. 

but, nevertheless, can be important in certain cases, 
as for determining properties of the plasmon excitation 
mode. Since e% vanishes for high frequencies in this 
approximation, we can obtain the asymptotic behavior 
of ei in terms of the even moments of e%: 

«i(k,«) -> 1- •(u,*/u*) 

X{l+WW+(ui)/u*+- • } . (5.13) 

I t has been observed that a rather good empirical 
fit (within 5%) to the dielectric constant shown in 
Fig. 9 is given by 

€2
fi t= (2k0/k

2a0)^uf(l-uf2)1'2, 0<u'<l. (5.13) 

This function can be used for rough calculations of 
properties of the electron gas for an aluminum electron 
density, though the analytical behavior near « ' = 1 is 
probably not correctly represented by (5.13). The 
Kramers-Kronig relation gives for the corresponding 
real part 

6 i f i t = ( 2 V ^ o ) f ( i - ^ 2 ) , u'2<\ 
= (2ko/k*ao)§&-u'*+uf(uf*-iy*l u'2>\. 

(5.14) 

VI. SUMMARY 

We have derived the dielectric constant of the inter
acting degenerate electron gas moving in a uniform 
positive background of charge. In order to obtain an 
acceptable function which does not violate the sum 
rule and positive-defmiteness restrictions on the 
imaginary part it was necessary to include three types 
of corrections to previous calculations. These correc
tions (1) account for the effect of higher order processes 
which tend to screen the long-range elementary Cou
lomb interactions; (2) provide for the shift in single-
particle energies which manifests itself as a change in 
the effective mass of particles and holes; and (3) allow 
for the presence of a particle-hole bound state by treat
ing the repeated or "/-matrix'' scattering of particles 
and holes. 

Numerical calculations of the dielectric constant and 
moments of €2 were carried out for an intermediate 
electron density equivalent to the density of conduction 
electrons in aluminum. The resulting dielectric con
stant departs considerably from the Lindhard form for 
low frequencies, but has similar qualitative features. 
The moments can be used to determine the high-



D I E L E C T R I C C O N S T A N T O F D E G E N E R A T E E L E C T R O N G A S 1409 

frequency behavior and other properties of the electron 
gas. However, the small wave number limit was used 
to simplify the numerical calculations. The extension to 
finite wave numbers presents a substantial computa
tional problem, but would be necessary to find the 
effect of the corrections on properties such as the cor
relation energy and the pair-distribution function. A 
preliminary step in this direction is being carried out 
by Hubbard and Leigh18 who are calculating the wave-
number dependence of the static dielectric constant.18* 

There is some question of the validity of applying 
the present approximations to metallic electron densities 
since they are based on a partially summed perturbation 
series and there is no guarantee that neglected higher 
order terms are not significant. However, the fact that 
even the Lindhard approximation provides such a 
qualitatively and often quantitatively accurate de
scription of many properties of real metals would in
dicate that any correction terms should be well behaved 
and that they should not alter the general structure of 
the dielectric constant appreciably. The present cor
rected form indeed satisfies this criterion and appears 
to lead to results in better accord with the experimental 
information available. Recently, Baym and KadanofI19 

have emphasized the importance of preserving certain 
conservation laws in the approximations used for many-
body calculations. The present calculation is essentially 
in accord with their criteria and contains the same type 
of terms as contribute to their two-particle correlation 
function when calculated in what they call the general
ized random-phase approximation. However, for the 
electron gas it appears necessary to include, in addition, 
a screening of the long-range Coulomb interaction be
tween particles in order to obtain well-behaved results. 
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FIG. 10. Real part of the dielectric constant minus 1 in units of 
2kQ/(iraok2) as found from the corrected €2 of Fig. 9 by means of 
the Kramer-Kronig dispersion relation. For u greater than one 
this function is very similar to the Lindhard approximation which 
is shown by the broken line. 

APPENDIX A 

This Appendix contains rules for finding the con
tributions of individual graphs to the matrix element of 
Eq. (2.1). The graphs are drawn as in references 4 and 
5, but it is now more convenient to label the directed 
particle lines and the dashed interaction lines by the 
momentum kt and frequency wi they carry. Choose an 
arbitrary direction for the flow of momentum and 
energy along the interaction lines, and label the pk 
lines by k and «' such that the lower p line is directed 
into its vertex and the upper p line out of its vertex. 
The labeling should be such as to conserve momentum 
and frequency at each vertex. Then the contribution of 
the graph is given by: 

(1) a factor v(ki)/(27riQ) for an interaction line 
marked (k;,co»); 

(2) a factor 

for a directed line marked (kt-,w4), where 

rjki<=l for |k,-| <h 

= 0 otherwise, 
*?ki> = l for |k t-|>40 

= 0 otherwise, 

and Ek.=ki2/2m; 

(3) a factor exp(—iw't/2)/2ir for each p line; 
(4) summation over all k< but not k, and integration 

of all o)i and a/ over the interval (—<*>, °°); 
(5) multiplication by a factor (— 2)1, where / is the 

number of closed particle loops. The 2 accounts com
pletely for the two spin states of the electrons, and no 
other sum over spins should be carried out. 

The contribution to the matrix element obtained by 
application of the above rules contains integrals over 
frequencies co* and «', and sums over momenta kt. An 
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additional integration over / is required to find the cor
responding contribution to e2. These integrals are not 
all well denned and it is advisable to use the following 
prescribed order of integration to obtain the correct 
result: Integrate, respectively, over the w», t, «', and 
finally sum over the k t. In many cases the integrals 
over t and co' can be obviated, as shown in Appendix B. 
After all of the frequency integrations have been per
formed the small quantities X in the particle propagators 
can be set equal to zero. 

APPENDIX B 

In this Appendix we note how the integrations over 
t and a/ in the calculation of e2 can often be carried out 
very simply. Neglecting the k dependence and after 
carrying out the a>; integrations one obtains an expres
sion of the form 

/ .CO - C O 

J(a>) = Re(i) / it (e^-e-™1) / dJ e ^ ' t f V j X ) . (Bl) 
JO J-00 

Since F(o)f,\) is the result of integrations over products 
of S(ki,o)i) as given by (Al) it can be broken up by 
means of partial fractions into two parts, 

F(co,,X) = F+(co /+iX)+F_(co /-iX), 

where F+(<a'+i\) has denominators containing co' and 
the positive infinitesimal X's in the combination co'+iX 
and hence is analytic in the upper half of the complex co' 
plane and JFL (to'—iX) is analytic to the lower half of 
the co' plane, and each part vanishes for large co' at 
least as fast as | co'1_1. For all the corrections considered 
in this paper each individual graph or pair of graphs 
(for the self-energy terms) has the property that 
F(a>',\) is even in co'. In this case, and if F ± (a /±iX) 
contains no multiple poles, the result of the integrations 
in (Bl) takes a particularly simple form. Integrating 
over / and then co' we obtain 

/ ( « ) = - 2 T Im[/^(co-HX)-F_(co-*X)]. (B2) 

Since only the imaginary part of the bracket is needed 
we can use the identities 

TABLE I. Moments of €2. Several moments (un) calculated in 
the small-wave-number limit and for a = 2/3 are compared in the 
Lindhard, DuBois, and present approximations. 

n 

-2 
- 1 

0 
1 
2 
3 
4 

Lindhard 

3.00 
1.50 
1.00 
0.750 
0.600 
0.500 
0.429 

DuBois 

4.00 
1.59 
1.00 
0.693 
0.533 
0.443 
0.391 

Present 

3.57 
1.60 
0.976 
0.689 
0.529 
0.428 
0.359 

Im[-~F_( W - iX)]=Im[F_(co- iX)*]=Im[F_(co+iX)] , 

so that 

I(co) = -2TT Im[F+(co+iX)+F_(cu+iX)], (B3) 

i.e., the effect of the t and c/ integrals is to change the 
sign of i\ throughout F_ and multiply by 2T. 

If F(w,\) contains multiple poles as for the self-
energy graphs Figs. 1(c) and (d) it is not possible to 
use the above simple scheme. However, after inte
grating over t, the o)f integration can still be unambigu
ously carried out by breaking F(co',X) into F±(a)'zLi\) 
and expressing each part as a multiple derivative of a 
product of simple poles. As an example, consider the 
following integration: 

r00 1 1 1 
R e / da' 

J^ co'-co-iX (w'-Ai+iX)"* 1 (co'-ArHX)"1*1 

dn dm r™ 1 1 1 
= R e / da' 

d&f dA2
m J-oo o)f—o)—i\ co'—Ax+iX o)f—A2+i\ 

dn dm r 1 l - i 
= Re 2iri 

dAin dA2
m L co- Ar-WX' co- A2+iXr J 

r 6w(co-A2) 5n(a>-Ai)l 
= 2TT (P(-l)™ ( P ( - l ) w , 

L (co-Ai)n (w-A 2 ) m J 

where 
dm(o)- A 2 ) = (dm/do)m)5(co-A2). 


