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The problem of a particle interacting with a potential of delta-function shape and having a tensor com
ponent is considered for box boundary conditions. The limits of small potential and large box dimensions 
are considered, especially in their effect on the mixing parameter. 

INTRODUCTION 

THE study of infinite nuclear matter has received a 
good deal of attention in the past few years for 

use both as a proving ground for methods of attack on 
problems involving the finite nucleus and as a means for 
testing some ideas about the nucleon-nucleon force.1 In 
order to connect the properties of this nuclear matter 
with the real world, one must necessarily extrapolate 
information obtained from real nuclei. Usually, the 
volume energy term in an empirical mass formula to
gether with the equilibrium density at the center of 
heavy nuclei (corrected for Coulomb effects) are taken 
to be the correct extrapolations. The goal of nuclear 
matter calculations, then, is to reproduce these numbers 
by some calculation scheme usually closely related to 
the Brueckner method. In order to define the calcula
tion, boundary conditions must be introduced. For the 
infinite system it is not at all clear what the appropriate 
boundary conditions should be. Indeed, the boundary 
conditions pertaining to free-particle scattering (out
going waves) are quite plausible. However, if infinite 
nuclear matter is considered to be a limit of finite nuclear 
matter, it is clear that the boundary conditions should 
be such that the wave function vanishes for large 
distances (say r>R) and then allow R to approach 
infinity. 

One method of insuring this is to require the wave 
function to vanish at some finite distance R and allow 
the boundary to become very large only after calcula
tions have been performed. This problem has been pre
viously considered,2 and various appropriate limits 
evaluated. The purpose of this paper is to gain an 
understanding of how these limits are approached. To 
do this, the simple case of a particle interacting with a 
delta-function potential in a spherical box is considered 
and particular attention is paid to the behavior of the 
mixing parameters, both as the potential is lessened and 
as the boundary is allowed to recede. 

STATEMENT OF THE PROBLEM 

Let us consider a particle of mass m interacting with 
a potential V(f) in a spherical box of radius R. The 

* This work was supported in part by the Atomic Energy 
Commission. 

1 See especially K. A. Brueckner and J. L. Gammel, Phys. Rev. 
109,1023 (1958) and K. A. Brueckner, in The Many-Body Problem, 
edited by C. DeWitt and P. Nozieres (John Wiley & Sons, Inc., 
New York, 1959), pp. 47-164. 

2 N. Fukuda and R. G. Newton, Phys. Rev. 103, 1558 (1956). 

boundary conditions then are 

(1) 

The potential chosen has a tensor component and 
parameters fixed so as to fit low-energy nucleon-nucleon 
data when e= 1. 

(2m/¥) V(f) = - e[C5 ( r - a)+T8 ( r - a)S 12], (2) 

e is a parameter which is allowed to vary in order to 
change the strength of the potential. S12 is the usual 
tensor operator. C, T, and a have previously been 
given by Bolsterli,3 and are C= —1.013725 F -1 , 
T= 1.197775 F-1, and a= 1.78865 F. The delta-function 
shape is chosen for simplicity in performing the calcu
lations. 

Writing, as is usual, 

¥(f) = [«(r)/f] Vi+[>( r ) / r ] 3#i (3) 

for the exact wave function and defining k2=2rnE/ti2, 
the Schrodinger equation becomes the two coupled 
equations 

d?u/dr2+k2u= - eZC8(r-a)u(r)+8m(r-a)w(r)l, 

(Pw/dr2+(k2-6/r2)w (4) 
= -e[(C-2T)d(r-a)w(r)+8m(r-a)u(r)^ 

where the notation 35i and ZD\ refers to the properly 
normalized coupled angular wave functions with the 
eigenvalues S= 1, / = 1, Z=0, 2, respectively. (Only the 
coupled 5 and D waves will be considered in this paper.) 

The solution of these equations is most easily effected 
by means of the Green's function technique; the proper 
Green's functions being 

G1 (r<<,r>) = kr^j 1 (kr<) 
Xtnl{kr>)-jl{kr>)nl{kR)/jl{kR)-]. (5) 

The (unnormalized) solutions are then given by 

u(r)= — €[CG0(r,a)w(a)+8*rGo(r,a)ze»(a)], 

w(r)=-elS^TG2(ria)u(a)+(C-2T)G2(ria)w(a)2^ 
(6) 

Thus, the eigenvalue condition becomes the condition 
that these two equations are consistent at r—a. This 
requires 

l\+eCG,{a,a)J\+e(C~2T)G2(a,a)~] 
-Se2T2Go(aia)G2(aJa) = Oi (7) 

}M. Bolsterli, Phys. Rev. 114, 1605 (1959). 
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FIG. 1. The wave number ^ ^ ( F - 1 ) corresponding to the lowest 
few eigenvalues of the potential of Eq. (2) as a function of the 
parameter e. The radius of the box is 5 F. 

which will, henceforth, be called the eigenvalue equation 
since it determines the value of k. Once k has been de
termined from (7) it may be used in (6) to determine the 
wave function with arbitrary normalization. 

In order to gain an understanding of the problem and 
to develop a terminology, let us consider the solutions 
of (7). Those solutions are shown in Fig. 1, where k is 
plotted as a function of e for a boundary at R=S F. I t 
is seen that, except for the lowest eigenvalue, the eigen
values are grouped into pairs. For e not equal to zero, 
these levels have wave functions which are some mixture 
of the angular S and D functions. (Of course, this is also 
true in the more familiar case of scattering with no 
boundary, and is a direct consequence of the presence of 
the tensor operator in the potential.) If e is allowed to 
approach zero, each of these levels continuously ap
proaches a level whose wave function contains only one 
value of the orbital angular momentum. The eigenvalue 
at €=0 is called the "unperturbed" value and will be 
designated by k^*®, the superscript indicating to which 
value of angular momentum the level corresponds. For 
e^O, the eigenvalue which becomes kns(kiP) as e—> 0 is 
called ka(k^) and its wave function the a— ((3—) wave. 
The solutions for e=0 are easily obtained and are called 
the unperturbed solutions. kos'D are given by 

io(*oflU) = 0> 

j2(koDR) = Q. 
(8) 

The unperturbed level can be used to completely 
specify a certain perturbed level in the presence of an 
interaction. 

If the size of the box is allowed to increase, two things 
happen to the unperturbed levels: Each of the levels 
drops in energy and the density of the levels increases 
(the level spacing decreases). This is easily seen for 5 
waves by considering Eq. (8). One then has 

and 
kon

s = nw/R, 

kon+lS—k0n
S=ir/R, 

(9) 

where the subscript n has been added to designate the 
wth S level. A very similar thing happens for the D 
waves; we merely replace nw by the zeros of J2(x), an-
Of more interest is how the D levels approach the S 
levels for large R. If one considers a given pair of levels 
(say the nth D level and n + l t h S level), the spacing 
between them decreases as \/R in the same way as 
indicated by (9), 

kon^is-konD=L(n+l)7r~anyR= const/R. (10) 

On the other hand, one is generally more interested in a 
level near a fixed value of k (rather than a particular 
level as was considered above). In order to be precise, 
one must fix a value of kos and then select a sequence of 
i£'s such that there is always an S level at kos. One can 
then show4 

hs-kQ
D—±3/hDR\ (11) 

R—*» 

and the levels approach one another as 1/R2. The fact 

FIG. 2. The ratio 
of the mixing pa
rameter for the box 
to that for free scat
tering as a function 
of the parameter e. 
Several values of 
the box radius are 
shown. Only a waves 
are given as the 
curves for 0 waves 
are nearly identical. 

4 This can be understood when one notes that for a fixed R 

kon+lS-k0n» >3/kQ
DR*. 

n~*co 

Thus, the expression in (11) is valid when R is large enough so that 
a sufficient number of levels have been brought below k0

s so that 
the above approximation is valid. 
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will be considered and their behavior studied as func
tions of R and €. 

SOLUTION AND RESULTS 

Making use of Eqs. (5) and (7) the solution (6) can 
be written in the form (using a new normalization) 

Ua(r) -ru N jo(k<XR) ,i x =jo{kar) _m(kar) 

FIG. 3. The quantity {fa-ka)R/$a as a function of R for e= 1. The 
0-wave curve is not given as it is quite similar. 

that these levels are nondegenerate (even though very a n d 
close together) enables one to use ordinary perturbation 
theory type expressions. That is, the unperturbed wave 
functions cannot be combinations of S and D waves but 
must be either pure S or pure D waves. 

The specific problem treated here can now be de
fined: The characteristics of a given level (kos=27r/5 
= 1.256637 F"1) are investigated for values of R. In 

n0(k
aR) 

=r]R
a\ j2(k

ar) n2(k
ar) 

r L n2(k
aR) 

up(r) 
(12) 

'-flR[ 

r 

up(r) 

1 Mk*r) ^Jhikfir) 
n0(k'R) 

Mk'R) 

r n.2{¥R) 

particular, the reaction matrix and mixing parameter where rjR
a and rjR^ are the mixing parameters given by 

VR = 

r]Rp 

8hTk«a2Zjo(kaa) - (j0(k°R)/n0(k
aR) )m{kaa)~]j2(k

aa)n2 (kaR)/j2 (kaR) 

\ + e{C-2T)G2{a,a) 

8 * e r W [ i 2 ( £ % ) - ( ^ 

l+eCGoM 

(13) 

If one solves the same problem but with scattering-
type boundary conditions (instead of the box), the 
eigenwaves would be as given in (12) except one must 
replace 

*«•* by k0, 
ji(ka^R)/ni(ka'PR) by tan5«^, (14) 
r)R *,& b y 7} a,fi 

where rja'P and 5a,/3 are the usual eigenstate mixing 
parameter and phase shift. 

Fukuda and Newton2 have shown that as R—* oo 

k«>e->kQ; i i (*^i?)/»i(*«^U)-*taii«^; 
and VR' 

«,/3. „<*./? 

so that Eq. (14) then shows that the eigenwave scatter
ing solution is the appropriate approximation to the 
solution of a particle in a box of large radius, and that 
thus for infinite nuclear matter one should use the 
eigenwave function. 

This brings up a more subtle point, however. The 
unperturbed solution from which a given perturbed 
solution has evolved while an interaction is turned on is 
important for the application of the separation method 
in the nuclear matter problem.5 For this consideration, 
it is quite important whether the problem is solved for 

5 B. L. Scott and S. A. Moszkowski, Ann. Phys. (N. Y.) 14, 107 
(1961); S. A. Moszkowski, and B. L. Scott, ibid. 11, 65 (1960). 

finite R first and then the limit R —» <*> taken or if one 
lets R —> oo and then solves the problem. In the former 
case the levels are all nondegenerate (except, of course, 
for the 27+1 fold mj degeneracy which is always 
present in a system which has no external interactions), 
and thus the unperturbed level can be only a pure S or 
D state but not a linear combination. 

In the latter case the unperturbed S and D states are 
degenerate so that any linear combination of the two is 
also degenerate. Indeed, one finds that in order to reach 
the eigenstate from these now degenerate levels as 
e -» 1, one must begin from a mixed state (e.g., the pure 
5 state will not pass to the eigenstate but to some other 
mixture). Putting it in another way, lim€-+o??a,/VO. 
These facts can be expressed by saying that the two 
limits e —> 0 and R —» oo do not commute. 

How the various limits are approached can be seen in 
Fig. 2, where TjRa/va is plotted as a function of e for 
various values of R. (T?/^/V is not given as it has 
properties quite similar to rjRa/va-) As observed above, 
except for small enough €, this ratio approaches 1 as R 
gets large in accord with the more generally proved 
theorem.2 These curves indicate that the correct unper
turbed wave functions are indeed the pure angular 
momentum eigenfunctions as were used in previous 
separation method calculations,5 if the box solutions are 
accepted as a reasonable extrapolation to nuclear matter. 
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In the theory of nuclear matter, the diagonal element 
of the reaction matrix gives the energy of interaction. 

AE=<*0 |Jl¥>/<*o|$o>. (15) 

This, of course, can also be shown by direct calculation 
in this case. As R—» <*> the energy shift, AE, can be 
related to the phase shift2 

(k2~h2)/k > - 2 5 / 1 2 , 
R-+co 

which can be written in the form 

(ko-ka>P)/5a>e >1. (16) 

The quantity (ko—ka)R/da is plotted in Fig. 3 as a 
function of R for e= 1. The behavior is similar for other 
values of e. 

INTRODUCTION 

ELEMENTARY particles can be viewed as excita
tions of a simple substrate. Heisenberg1 has sug

gested that the substrate is a nonlinear spinor field, and 
Nambu2 and the author3 have suggested in addition that 
it resembles the superconducting fluid described by 
Bardeen, Cooper, and Schriefler.4 The collective excita
tions of an interacting massless Dirac fluid (a quantized 
nonlinear massless Dirac field) can be classified under 
the assumption that the interaction conserves the 
number of quanta of each type in the fluid. The resulting 
spectrum of elementary excitations bears a strong 
resemblance to the spectrum of elementary particles. 

1B..-F. Diirr, W. Heisenberg, H. Mitter, S. Schlieder, and 
K. Yamazaki, Z. Naturforsch. 14a, 441 (1959). Earlier papers are 
referred to there. 

2 Y. Nambu, Phys. Rev. Letters 4, 380 (1960). See also Y. 
Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 124, 246 
(1961). 

3 J. C. Fisher, Bull. Am. Phys. Soc. 3, 68 (1958). 
4 J. Bardeen, L. N. Cooper, and J. R. Schriefler, Phys. Rev. 

106, 162 (1957). 

CONCLUSION AND SUMMARY 

Explicit results have been obtained for a particle 
interacting with a potential in a box. The mixing 
parameter was considered in the limits R —» <*> and 
€ - * 0 . I t was found that if e—>0 for R finite then 
rjRa'p—> 0. This is a direct result of the nondegeneracy 
of the levels in the presence of the box boundary con
dition. On the other hand, one finds that TJR01^-^ const 
if e —» 0 for R= oo (i.e., scattering boundary conditions). 
This results from the degeneracy of the 5 and D levels 
for an infinite region. Thus, it is important to keep in 
mind when performing calculations involving infinite 
systems precisely which limit is the correct extrapolation 
for the problem in hand. 

These calculations were carried out on the Minne
apolis-Honeywell 800 digital computer at the Computer 
Sciences Laboratory of the University of Southern 
California. 

MATHEMATICAL APPARATUS 

The particle representation of a quantized massless 
Dirac field leads to a description of the possible states 
of the field in terms of two types of two-component 
particles. Each particle state can be characterized by a 
quantum number t=dzl that denotes the type of 
particle, a quantum number s = ± l that denotes 
whether its spin is parallel or antiparallel to its momen
tum, and a quantum number q= (qx,qy,qz) that denotes 
its momentum. The operator that creates a particle in 
state (t,s,q) is c^(t,s,q), and its Hermitian adjoint is 
c(t,s,q). The operators anticommute according to the 
relationships 

[ V ( / , M ) , cKt\s\q')-]+=lc{t^q\ c (<'/,$')]+=<>, 

&t(M,g),c(/W)l-=««'«»'«fe-g/). 

The state with no particles is |0), and it satisfies the 
relationship 

c(t,s,q)\0)=0. 
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Elementary Particle Classification Based upon a Massless Dirac Field 
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Elementary particles are viewed as linearized excitations of a nonlinear massless Dirac field, whose ground 
state is assumed to contain a finite density of field quanta. Nucleons and antinucleons are viewed as single-
particle and single-hole excitations, and other elementary particles as space-symmetric correlations of 2, 
3, or 4 particles and holes. Hyperons are viewed as composite. The strangeness quantum number is idenitfied 
with half the excess of particles over holes in the excitation. The classification has room for 29 particles: 
the known elementary particles plus doubly charged K and n mesons and antiparticles, a strange charged 
spin 1 boson and antiparticle, and a boson quintet of strangeness and charge 0, ± 1 , ± 2 . 


