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The study of the structure of the two-particle 5 matrix as a function of the angular momentum in potential 
theory is extended to spin-dependent interactions between two spin J particles, including the tensor force. 
The results reveal considerable similarity with the spin zero case, including the symmetry properties. The 
main differences are two branch points &tj=0 and7= — 1 and a pole a t / = —\. It is shown that judicious 
combinations of 5-matrix elements contain none of these singularities, and, as a result, neither do the 
scattering amplitudes. Certain modifications of the canonical situation are found in the presence of spin-
orbit forces or other orbital angular momentum-dependent potentials. The factorization of the residue of 
the 5 matrix is also discussed. 

1. INTRODUCTION 

LATELY, it has become of great interest, both for 
theoretical and for practical phenomenological 

purposes, to consider the partial-wave scattering ampli­
tude for two particles as an analytic function of the 
angular momentum.1 In the restricted context of non­
relativistic potential scattering, the resulting properties, 
the existence of Regge poles and their motion as 
functions of the energy, can be studied in great detail 
and statements about them can be proved.2,3 In the 
more general case of relativistic scattering, where the 
most important applications are found, proofs are much 
more difficult and one usually resorts to postulation by 
analogy from the low-energy case. This adds to the 
necessity of exploring the region accessible to proof 
quite thoroughly. 

The present paper stays entirely within the realm of 
nonrelativistic quantum mechanics with interparticle 
potentials. We are extending previous work, which has 
been confined to particles of spin zero, to the case of 
scattering of spin J particles.4 If both have spin §, 
then it is the presence of the tensor force that adds 
new complications by giving rise to coupling between 
triplet l=jzkl states. These complications are investi­
gated and cleared up. 

* Supported in part by the National Science Foundation. 
1 T . Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960). 
2 R. G. Newton, J. Math. Phys. 3, 867 (1962). 
3 At the time of this writing we are aware of the following 

papers concerning Regge poles in the potential context: R. 
Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962); 
A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23, 
954 (1962); E. Predazzi and T. Regge, ibid. 24, 518 
(1962); A. Bottino and A. M. Longoni, ibid. 24, 353 
(1962); G. M. Prosperi, ibid. 24, 957 (1962); S. Mandelstam, 
Ann. Phys. (N. Y.) (to be published); H. Cheng, Phys. 
Rev. 127, 647 (1962); E. J. Squires, Nuovo Cimento (to be 
published); V. Singh, Phys. Rev. 127, 632 (1962); J. M. 
Charap and E. J. Squires, ibid. 127, 1387 (1962); A. Ahmadzadeh, 
P. G. Burke, and C. Tate (to be published); A. Martin (to 
be published); J. R. Taylor, Phys. Rev. 127, 2257 (1962); J. 
M. Cornwall and M. A. Ruderman, ibid. 128, 1474 (1962); H. 
Cheng and R. Nunez-Lagos, Nuovo Cimento 24, 177 (1962); A. 
O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962); 
P. E. Kaus and C. J. Pearson, Bull. Am. Phys. Soc. 7, 300 
(1962). 

4 The case in which only one of the two interacting particles 
has spin J, the other spin zero, has been considered by L. Favella 
and M. T. Reineri, Nuovo Cimento 23, 616 (1962). The multi­
channel spin zero problem is also discussed here. 

The most important of our new results can be 
summarized as follows5: The S matrix has, in its off-
diagonal elements, branch points at j=Q and j= — 1. 
The partial-wave amplitudes, however, contain com­
pensating radicals so that they are analytic there. In 
addition, the triplet-state S matrix has, in general, a 
pole at j= — \. We prove that, nevertheless, there exist 
specific simple linear combinations of ^-matrix elements 
called S in which this pole always cancels and that they 
are directly related to the helicity S matrices; moreover, 
the amplitudes are expressible in terms of these combi­
nations without the appearance of the pole. As a 
result, the partial-wave amplitudes are as well behaved 
in the complex j plane as they are in the spin zero case, 
and the Watson transformation can be performed 
under similar conditions on the potentials. In addition, 
these linear combinations of 5-matrix elements obey 
the same symmetry property with respect to j and 
— j — \ as does the spin zero »S matrix. 

In Sec. 2 we introduce the main tools of our analysis. 
Section 3 generalizes Regge's limitations on the differ­
ence between successive phase shifts to the sum of the 
eigenphase shifts. In Sec. 4 we generalize both the 
limitation on the number of "right-hand" trajectories, 
and the way they leave the real axis. Section 5 deals 
with the factorization of the residue of the 5 matrix, 
and Sec. 6 is concerned with the symmetry properties 
with respect to interchange of j and —j—1. We show 
that the transformed 5 matrix, S of (6.12), has the 
same symmetry found in the spin zero case. Section 7 
treats the point j=—\ in detail. At this point the 
triplet state S matrix has, in general, a pole. We prove 
here the absence of the pole in S. 

6 After this work was finished a preprint by J. M. Charap and 
E. J. Squires "On Complex Angular Momentum in Many-Channel 
Potential-Scattering Problems, I " came to our attention. There 
is considerable overlap between their work and ours, theirs 
treating also the multichannel case but being based on more 
restrictive assumptions on the potential. There are a number of 
problems which we treat and they do not. The problem arising 
from the point i = —J and its generalization to their more general 
angular momentum coupling is not treated correctly, as a com­
parison of the statements following their (3.26) with our Sec. 7 
will reveal. Note also that their definition (3.8) of N(Jts) contains 
a misprint. The factor 27+2*4-1 should be replaced by 2/-f-2*-f-l 
[E. J. Squires (private communication)]. 

1437 
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In Sec. 8 we relax our previous restriction to local 
potentials and add a spin-orbit term. Nothing essential 
is changed, except for possible changes in the shape of 
the pole trajectories and the asymptotic behavior of 
the amplitudes. The trajectories need no longer turn 
over to the left under conditions which formerly forced 
them to do so. We also briefly discuss other types of 
angular momentum dependent forces. In Sec. 9 we 
write down the scattering amplitudes explicitly. We 
show that all appearances of inconvenient radicals are 
spurious, that the amplitudes can be expressed most 
simply in terms of 8 without presence of poles, and 
that, therefore, the Watson transformation can be 
carried out as it could in the spin-zero case. 

2. GENERAL PROCEDURE 

We assume the most general local spherically sym­
metric potential between two spin-§ particles 

V(r) = Vc(r)+Va(r)ov*2+Vt(r)Sn, 

where S12 is the tensor operator 

i S * i 2 = 3 o " i • 110*2 • n — <r 1 • 0*2 

with n=r/r. Partial-wave analysis then leads to a set 
of ordinary radial Schrodinger equations for the singlet 
states and for the triplet states of parity (—)K These 
states can be treated just as the spin zero case; there 
is nothing new to be learned here. For the triplet states 
of parity (—)7+1 we have, however, a set of coupled 
radial Schrodinger equations with /=j=bl, which in 
matrix notation read6 

~iP'f+C(j)r~^+Vx^=k^. (2.1) 

The centrifugal term contains the diagonal matrix 

/ ( i—i) i 0 v 
C J \ 0 0-+D0-+2)/' 

and the potential matrix is, with V&= Vc+ Va 

1 

2 j + l 

X 
/(2j+l)Vd-2(j-l)Vt 6UU+VJ*V, 

\ (>U(J+mi2V, (2j+l)Vd-2(j+2) 7+2)7,/ 
(2.2) 

An irregular matrix solution f(j,k; r) is denned in 
the standard manner by the integral equation 

fU,k;r) = f0(j,k;r) 

dr'g(j,k;r,r')V^(r')f(j,k;r'), (2.3) 

where 

tHi-Pikr) 0 

0 -HM<*>(kr) 
XI " " A (2-4) 

r)/ 
and 

3 ) 
r,r,r')J' 

^_l( f t ; r / ) 0 

0 gi+i(k;r/))' (2.5) 

g,(k; r,r') = Jx(/r')I /2[A(*") Yx(kr)-7x(*r) Fx(ftr')], 

J\ and Fx being the Bessel functions of the first and 
second kind, respectively. The function / satisfies the 
boundary condition 

limeifcr/(7,*;r)==l. (2.6) 

The regular solution is difficult to define by a bound­
ary condition at r=0 because of the coupled angular 
momenta. We avail ourselves instead directly of the 
integral equation7-9 

<pU,k',r)=<poU,k;r) 

X jl+6[iC/ '+l)] 1 / 2 f drf r'-WtWp] 

+ fdrf{g{JMr/)V(Hrf)v{JMrf) 
J o 

-6CiO+l ) ] 1 V-Vo( i ,* ; r)Vt{r')P), (2.7) 

where10 

<(*<JMr)=<b*kryi*k-i[ ) (2.8) 
\ 0 J]+*(kr)J 

and 

c:> 
A Jost matrix function is defined by 

F(j,k)=r<p>-r^W{f,<p), (2.9) 
so that 

<p(j,k;r)=(2ik)-iUU,-k;r)F(j,k) 
-fU,k;r)F(j,-k)l, (2.10) 

and the unitary and symmetric S matrix is given by11 

6 We use units in which fi—lm— 1. 

7 See R. G. Newton, Phys. Rev. 100, 412 (195S). 
8 See R. G. Newton, J. Math. Phys. 1, 319 (1960). 
9 The purpose of the somewhat cumbersome "counter-term" is 

to eliminate an otherwise present divergence. Its presence is 
unnecessary if r~lVt is integrable at r—0. However, we want to 
include it in order not to have to make unphysically strong 
assumptions about the tensor force. 

10 I t is convenient for later purposes to have no Ir2 factor in 
front of the //+§. Since we are not primarily concerned with the 
behavior near £ = 0 this produces no difficulties. 

11 The phase factor is designed to assure that 5 is unitary and 
tends to unity as k —> =k oo, even for nonintegral values of j . 
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S(j,k) = e"WF(j,k)lF(j, -k)T*. (2.11) 

Here the superscript T denotes transpose. 
The series of successive approximations to / and cp 

converge under the usual conditions on V(j) and the 
proofs of the standard properties go through as usual, 
including that of the analyticity of <p as a function of 
j in the left half of the complex j plane. As shown in 
reference 2 that depends only on the number of finite 
derivatives of rV at r = 0 . Of course, <p has, in general, 
the usual simple poles at 7 = 0, — 1, — 2 • • • .12 A look at 
Vi]'\ however, seems to indicate trouble at j=— §. 
Since a simple pole in the potential is iterated infinitely 
many times, it looks as though there will be an essential 
singularity in / and <p at j= — §. That this is spurious 
is shown by diagonalizing Vu) with the matrix 

/ i+i 1 / 2 

\ j1' 

7*1/2 

1*1/2 

so that 

and 

3 

r* -0+i)1 / 2 

ur^Uj/Qj+i), 

Vd+2Vt 0 

0 Vd 

<t>U>k;r) = Us<p(j,k\r), 

KJ,k;r) = UJ(j,k;r), 

we get from (2.3) and (2.7) 

fO',*;r)=foC/,*;0 

(2.12) 

/Vd-\-2Vt U \ 
UjVMUrl=W=[ V (2.13) 

\ 0 Vd-WtJ 
Writing 

4>U>k;r) = UMj,k',r), 
(2.14) 

The presence of the tensor force introduces additional 
singularities in the S matrix. Both the original form 
(2.2) of F ( ? ) and the "diagonalized" form of the 
integral equations (2.15) and (2.16) (the latter in G) 
contain the factor [ i ( i + l ) ] 1 / 2 . As a result both / and 
<p, and hence F and 5, acquire a branch line running 
from j= — l to j = 0. In the region — 1 < J < 0 the 
potential matrix F ( y ) is not Hermitian and as a result 
S(j,k) is not unitary in that region, even for real k.lz 

Because only the off-diagonal elements of Vu) contain 
the factor [ j ( i + l ) 3 1 / 2 , and since the diagonal elements 
of S must be even functions of those off-diagonal 
elements of V{i), only the off-diagonal elements of the 
S matrix contain the branch line. The diagonal S-
matrix elements are, in general, regular at j = 0 and 
j= — l (if the potentials are sufficiently well behaved). 

3. THE PHASE-SHIFT DERIVATIVE 

Differentiating the Schrodinger equation (2.1) with 
respect to j yields with the standard Wronskian 
technique 

rdv'
T d<pT Y 

L di dj J 

- / dr'G(j,k;r/)W(r')\(j,k;r'), (2.15) 

4>(j,k;r) = 4><i{j,k;r) 

X j l+6UU+i)Jn f dr'r'-Wt(r')p\ 

+ [ dr' {G(j,k;r/)W(r')<t>(j,k;r') 
J o 

- 6 [ i ( i + 1 ) ] 1 ' V-Vo UM V, {r')P}. (2.16) 

Now it is easily shown by means of the Bessel function 
recurrence relations that the (2j+1) in the denominator 
of G, coming from Uf1, cancels out and G has no 
singularity at j=— f. As a result f(j,k,r) and <j>(j,k7r) 
contain no singularity there either. Consequently, 

F(j\k)=pi/rij7ry- \>TUrliTrl<t> 

= ( f V - f r 0 ) / ( 2 i + l ) (2.17) 

has, in general, a simple pole at j = — J. We shall return to 
the detailed consideration of the point j= — | in Sec. 7. 

where 

c'U)= 
dC(j) /2j-l 0 

\ 0 2 7 + 3 / dj \ 0 2 i + 3 / 

Integration from 0 to » gives by (2.10) for real k 

l̂ [ 
rdFHj,k) dF*U, -k) ',*)] ——F(j, -k) F(j 

dj dj 

= kj drr-*<pTC(j)<P- (3.1) 
Jo 

We multiply by FT(j,k)~1 on the left and by F(j, -k)~l 

on the right, then take the trace. The result is 

hi-\ndetF(j,k)tFU,-k)-]-i 

= k drr*tTZFTU,k)JrWC'(j)<t£FU, - * ) ] -

where the symmetry of S has been used and the fact 
that 

d d 
— lndetF=trF-1—F. 
dj dj 

Now for real k and real j>\ the right-hand side is 
positive. Hence if we write A(j,k) for the sum of the 
eigenphase shifts 

A(i,*) = - £ i l n d e t S 0 \ * ) , 
12 The pole at j = 0 comes from /== — !. 13 Since VU) remains symmetric, S does too. 
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we obtain by (2.11) 

and therefore 
dA/dj<T, 

A ( i + 1 , £ ) - A 0 » < 7 r . 

This is the generalization of Regge's formula for spin 01. 
I t must be remembered, though, that it holds, in 
general, only for j>\. For j=0 the physical 5 matrix 
has, of course, only one element, that for 1=1. There 
does not appear to be any restriction on the difference 
between that phase shift and the sum of the j=l 
eigenphase shifts. 

4. THE NUMBER OF TRAJECTORIES AND THEIR 
BEHAVIOR NEAR £ = 0 

In order to generalize the bound on the number of 
zero trajectories in the right half plane to the present 
case, we first replace VU) by a negative definite po­
tential matrix ~ e 0 ( 3 ) whose eigenvalves are nowhere 
bigger than those of the matrix VU). In other words, 

V^=UfWUf\ (4.1) 
where 

and 

•w 
/Wi 0 \ 

\ 0 W 2 / 

*Wl==-.Vd-2Vt if 7 „ + 2 7 , < 0 , 
= 0 otherwise, 

V?2=-Vd+4:Vt if 7 d - 4 7 , < 0 , 
= 0 otherwise. 

Then we look for the number of E=0 bound states 
introduced when — VU) is replaced by — aVi3) and a 
increases from 0 to 1. That leads directly to the general­
ized Bargmann formula14 

n& f drrVn^(r)/(2j-l) 
Jo 

+ [drrVnu)(r)/(2j+3), (4.2) 
• / . 

which can be used, of course, only for j>\. The j = J 
case can be treated as in reference 2. The result is 

ni,2$l+l[ drrV22
ai2)(r) 

Jo 

f drf dr' r r ' W 1 / 2 K 0 W 1 / 2 ) ( r ' ) ln(r/f' 
Jo Jo 

f 
Jo 

-, (4.3) 

drr1)n<1/2)(r) 

where 

eUii(1/2) = i(3Wi+cW2) J
 e022

(1/2) = i(cWi+3cW2). 

14 V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 (1952); 
J. Schwinger, ibid. 47, 122 (1961). 

In order to get down to j= — §, it would be necessary 
to take the l=j—l part to /==—§. No simple way of 
doing that is known as yet. At j = 0 the equations 
uncouple and only the l=j+l part has physical 
significance. Therefore there is a simple Bargmann 
inequality for the number of physical bound states 
with i = 0 , but not for the number of S-matrix poles.15 

We now wish to generalize the previous results2,16 

concerning the way in which trajectories leave the real 
axis at E=0. The starting point is the motion of a 
zero jo of detF along the real j axis for negative energy. 
Straightforward generalization of the Wronskian con­
dition preceding (4.3) of the reference 2 yields for 
negative energies 

djo 

d& 
= l/(r-{2j° 1 ° )\ (4.4) 

/ \ \ 0 2 / 0 + 3 / / 

which can be used only for jo>i> Otherwise the zero 
entails no normalizable state. 

Now d e t F = 0 implies the existence of a nonzero, 
^-dependent vector a such that Fa=0. The physical 
significance of the components of a is that they deter­
mine the "mixture parameter" in the bound or shadow 
state. If one of the components of a is zero, it is a pure 
l=j—l or 1=j+1 state. If that happens at E = 0 then 
the previous results are immediately applicable. On 
the other hand, if we take the more general case in 
which at £ = 0 neither component of a vanishes, so 
that the "bound state" is a mixture of l=j—l and 
Z = y + 1 , then the energy derivatives of the real and 
imaginary parts of jo are dominated by the l=j—l 
term. As a consequence we get as in reference 2 for 
io>ias£~>0+ 

d Ira jo 

dE 
= 0(E"-*), (4.5) 

dRej0/dE=O(l) for jQ>h 
= 0 ( l o g | £ | ) for jo=f , 
= 0(E*-») for j0<h (4.6) 

and hence for the angle y of the trajectory with the 
real j axis 

cotY = O(£*->"0)=oo for j 0 > f , 

= 0 ( l o g | E | H * > for j0=h 

= 0(1) for j0<l (4.7) 

1 6I t hasbeen remarked both in Sees. 3 and 4 that at y = 0 the 
S matrix is diagonal and only one of the two terms, that for 
/ = / + l , has physical significance. This is a special example of 
Gell-Mann's discussion of "sense" and "nonsense" terms [M. 
Gell-Mann (to be published)]. For y = 0 the functions detF(j,k) 
factors, F being diagonal. If a zero of detF passes through j=0 
it must then be a zero of either the "sense" or the "nonsense" 
factor. If it is a zero of the / = — 1 factor then it does not correspond 
to a physical bound state. We then have a Regge trajectory that 
leaves the real axis at y > 0 and yet it is not connected with a 
bound state. 

16 Barut and Zwanziger, reference 3. 
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Moreover, the trajectory leaves the real axis in the 
forward direction if it leaves at jo>l, and in the 
backward direction if at jo<l. 

I t must be recognized, though, that the significance 
of the foregoing statements depends on the value of 
the mixture parameter. They are true if the "bound 
state" at £ = 0 contains any admixture at all of l— j — 1. 
If that admixture is small the trajectory will follow a 
general shape appropriate to l—j+1 and only at very 
small energies will it revert to its proper l=j—l 
behavior. 

5. FACTORIZATION OF THE RESIDUE 

The possibility of "factorizing" the residue of the S 
matrix17 at a Regge pole is an expression of the fact 
that, although in general each element of S has the 
pole, there is (except in the case of accidental degener­
acy) only one vector (or more exactly, one ray) which 
when multiplied by S, has a pole. That implies that 
the residue R is a singular matrix whose null space18 is 
one dimensional, and since it is symmetric it must be 
writable as 

Rij(k) = ai(k)aj(k), 

so that Rb = 0 for all the n— 1 linearly independent 
vectors b (if we are dealing with an nXn S matrix) 
orthogonal to a. In the present case, of course, n—2. 

In order to see the relation to the zero of detF(X, — k), 
we realize that detF(X0, — &o) = 0 implies that the null 
space of the matrix F(\Q, — k0) is at least one dimen­
sional. We assume it is exactly that ; otherwise we 
would call it accidentally degenerate and since n=2 
that would imply F(Xo, — £o) = 0. The range18 of 
F(Xo, —ko) is therefore one dimensional (i.e., n— 1 
dimensional) and that range must be equal to the null 
space of the residue of jjF(X0, — &)]""1 at (XQ,&O). In 
other words, the vector a(k0) is orthogonal to the range 
of F(X0, - * o ) . 

Another connection comes from the symmetry of S 
which implies that a spans the range of R. But the 
range of the residue of [F(X, — k)2~l must equal the 
null space of -F(Xo, —ko), and hence by (2.11) 

accF(\oyko)Cj 
if 

^(Xo, - *o )c = 0. 

6. SYMMETRY PROPERTIES 

The transformation Uj of (2.12) applied to (2.1) 
yields the equation 

-f"+D(j)rS'+Wt=khp, (6.1) 

17 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); J. M. 
Charap and E. J. Squires, Phys. Rev. 127, 1387 (1962). 

18 The null space of a matrix M is the space of all vectors a 
which it annihilates: Ma=0. The range of M is the space onto 
which M maps; i.e., the space of all vectors b that can be written 
b=*Mc. 

which is satisfied by <j>(j,k\r) as well as \(j,k,r). Here 

/ X 2 - | - 2 ( X 2 - | ) 1 ' 2 \ 

D(j)=uicu)ur1={ ), 
\ -2 (X^- i )W2 \*+(7 /4 ) / 

with X = y + J . Thus the transformed equation is again 
a function only of X2, just as in the spin 0 case. The 
function 

f(\,k; r)= UrfUt; r)Ufl = ft/ ,*; f)Uf1 (6.2) 

satisfies (6.1) and the boundary condition 

\imeikrf(\,k;r) = l. (6.3) 
r—*x> 

Hence it is a function only of X2. 
Similarly we introduce 

^\Mr)^UM3Mf)Url^UMr)Ur1' (6.4) 

In order to obtain the analog of the symmetry relation 
obeyed by F in the spin zero case we calculate the 
Wronskian of <p(\,k;r) and <p(— X, k;r) by means of 
the integral equation (2.16): 

H T > ( M ; r ) , £ ( - X , £ ; r ) ] = - s i n 7 r X . (6.5) 

The function <p is expressible in terms of / as 

£(X,£; r ) = (2^)"1[/(X, -k',r)F(\,k) 

-f(\,k;r)F(\-kn (6.6) 
where 

Ffok^vfUMUr1- (6-7) 
Insertion in (6.5), together with the evenness of / as a 
function of X gives 

FT(\,k)F(-\, -k)-FT(\ -k)F(-\k) 

= —2ik sinw\. (6.8) 

In order to eliminate the poles from F we may then 
define 

%Qi,k) = P(\,k)\/TQ+\), (6.9) 
and get 

5r(M)5(-x, -£)-gr(x, -*)S(-x, *) 
= (ik/ir)\2 sin27rX. (6.10) 

Since 

s(j,k)=e»^uj-
i$(Kk)Z$(\,-k)Tiuj 

= e»(>+»Ur1F(\k)tF(\, -k)2-'Ui, (6.11) 

this means that the function which satisfies a simple 
symmetry relation is 

S(\,k) = UjS(j,k)Ur\ (6.12) 

rather than S itself. >S too is symmetric and unitary.19 

19 Explicit calculation of S in terms of S, as in (9.3), shows 
that 8 has the same branch point properties as S. The diagonal 
elements are free from branch points at j—Q and j — — 1, but 
the off-diagonal elements contain the factor \_j(j-\-\)]1/2. 
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The symmetry relation is 

<r*'xS(M)-c i rX iS(-X,*) 
= - (£A)X2 sin27rX[g(-X, -k)$T(Xy -k)2~l 

= -2k siinrXC^(~X, - ^ ) F r ( X , - * ) ] " 1 . (6.13) 

The discussion given in reference 2 concerning the 
symmetries of 5-matrix poles for positive and negative 
integral or half-integral j values applies again. I t will 
be clear in Sec. 9 that Uj is connected to the transfor­
mation to helicity states. 

7. THE POINT 7 = - 1 / 2 

We now want to determine the nature of the point 
j ~ — \ in the S matrix. The fact that F has a pole 
there independently of k no longer allows us, as it does 
in the spin zero case, to conclude that there is no pole 
in 5.5 We first determine whether F~l has a pole at 

J 2-

Let us examine the nature of the pole of F(X,k) 
— W(f, <p) at X = 0. The pole of <p comes from the right-
hand U f~l in ^o 

iPo(X,k;r)^(2wr)^k^l\(kr)-Ux(kr)l 

+iJ7(*r)X-M(X)], 
(7.1) 

/ 1 (4X 2 - l ) 1 / 2 \ 
^(X) = ( j -

\ (4\2-l)l/2 - 1 / 

The residue at X=0 is proportional to the singular 
matrix 

AUD-A-Q _ ; ) . 0.2, 

Consequently the residue of <p at X = 0 is a left matrix 
multiple of A, and so is that of F 

F(\k) = R(k)\-1+--'J (7.3) 
where 

R(k) = M(k)A, (7.4) 

and it can be assumed without loss of generality that 
M(k) is not singular. 

Consider now the determinant of F. Since R is 
singular, de tF has at most a simple pole at X = 0. We 
may expand it in a convergent power series in the 
"potential strength" and find that to first order there 
is no pole, but the constant term at X = 0 is in general 
different from zero. This is, of course, the same result 
as in the absence of the tensor force. Although we 
cannot, at this point rule out a pole of detF at X = 0, 
the constant term at X = 0 can vanish at most for 
specific values of k, not identically in k. Higher orders 
in V cannot alter this state of affairs. I t follows that 
F~~l has at most a simple pole at X = 0 (except possibly 
for specific values of k), i.e., that (XF)"1 has at most a 
double pole there. 

The next observation to make is that the residue 

R(k) annihilates the constant vector 

-0 
Furthermore, a look at <p0 shows that not only does 
(X^o) at X=0 annihilate a, but so does its X derivative 

d 
lim —(X<po)a=0. 
x~*° ax 

The same therefore holds for XF. From this and the 
fact that (XF)""1 has at most a double pole at X = 0, we 
conclude by the theorem of Appendix C of reference 7 
that (XF)-1 has exactly a double pole there, i.e., that 
F~l has a simple pole there 

F-l(X,k) = R'(k)X-1+-- (7.5) 

(except for isolated values of k). 
An immediate consequence of the fact that both F 

and F~l have simple poles at X = 0 is that detF cannot 
have a pole there.20 

We now want to see if S has a pole at X = 0. Direct 
computation of (detFJ.S, which can be expanded in a 
convergent power series in the "potential strength," 
shows that to first order S in general does have a pole 
there. 

Since F(k)F(k)~l=l we must have by (7.3) and (7.5) 

R(k)R'(k) = 09 

and since A2==0 it follows from (7.4) that 

R'(k) = AM'(k). 

Consequently we also have 

R(k)R'(-k) = 0 

and therefore S(X,k) has at most a simple pole at A = 0. 

In order to examine the residue of S at X = 0 we look 
at the symmetry relation (6.13) near there. We get 

SR(k) = ^kRfT(k)R\-k) = ^kM,T(-k)A2M,(-k)-=0. 

This proves that 8(X,k), in contrast to the 5 matrix 
itself, has no pole at j=—%. I t is, therefore, of great 
importance that the scattering amplitudes can be 
expressed in terms of S without explicit introduction 
of a pole, as we have done in (9.2) and (9.4) below. 

8. THE SPIN-ORBIT FORCE 

Dropping our previous restriction to local potentials, 
we now want to include a spin-orbit coupling term in 
the potential 

VL8=l-SV0(r), 
20 That means that since a Regge trajectory is defined by a 

zero of dttF, X = 0 is not a possible trajectory end point, as it 
would be if detF had a pole there, following arguments given in 
reference 2. A remark made to the contrary, at the 1962 Midwest 
Theoretical Physics Conference, before we realized that detjp has 
no pole at X = 0, should therefore be withdrawn. 
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since such a force is clearly indicated in the low-energy 
nucleon-nucleon system. Vis manifests itself in the 
potential matrix (2.2) as an additional term 

/j-l 0 \ 
AF«>(r)= )Vo(r). 

\ 0 - . 7 - 2 / 
(8.1) 

After application of the transformation Uj of (2.12) 
which previously diagonalized the potential, W is now 
changed to 

w-*w+u,AVU)url 

t - l [iO'+i)]1/2\ 
= W+( W (8.2) 

V[i(i+i)]1/2 - 2 J 
which is a function only of X2 and contains no pole at 
j= — h- Hence the previous results apply again, except 
for one. 

There is a change owing to the fact that AF ( ? ) is a 
linear function of j . As \j\—*cc the potential there­
fore becomes effectively stronger and stronger. Since 
its growth is only linear, it is for large \j\ still small 
relative to the centrifugal term and hence the proof of 
Bottino, Longoni, and Regge,3 that S—> 1 as | j \ —> co 
along any ray toward the right still holds. However, 
Regge's proof that under certain specific conditions on 
the potential each pole trajectory must turn back to 
the left and either cross the line Rej=—% or else 
approach it asymptotically, now breaks down. I t 
cannot now be ruled out that a trajectory approaches 
an asymptote parallel to and to the right of the imagi­
nary j axis. Now, if for large energy all trajectories 
move to the left half of the complex j plane, then there 
exists an energy beyond which the scattering amplitude 
always asymptotically vanishes with increasing mo­
mentum transfer. The presence of a spin-orbit force 
may prevent that from happening. No matter how 
large the energy, the scattering amplitude may now 
always increase to infinity with increasing momentum 
transfer. 

I t is clear that what is happening in the presence of 
a spin-orbit force may happen to an even larger degree 
with other nonlocal potentials, such as L-L forces or 
higher powers of the angular momentum, which may 
be present even if the particles have spin zero. In fact, 
it is then in general impossible to perform the customary 
change of integration path in the Watson integral since 
the contributions from infinite \j\ need no longer 
vanish. Furthermore, even if that were possible in 
specific cases, pole trajectories could now move off to 
infinity toward the right. That would imply that the 
larger the energy the more strongly the scattering 
amplitude would increase with the momentum transfer. 

I t should be remarked though, that the foregoing 
conclusions for spin-orbit (and L-L, etc.) forces need 
not be true if the potential Vo in (8.1) is assumed to 
depend on j in such a way that AVU) remains bounded 

as | j | —» oo . There is at present practically no experi­
mental evidence which would decide that. Nor is it 
clear what the prediction of field theory would be. 
In any case, such possible effects should be kept in mind. 

9. THE WATSON TRANSFORMATION 

Writing down the various scattering amplitudes for 
spin-| particles on spin- | particles with the aim of 
applying the Watson transformation, we are faced 
with a number of problems. First, each spherical 
harmonic as well as each Clebsch-Gordan coefficient 
that appears contains various radicals such as j 1 / 2 , 
( j+ l ) 1 / 2 , 0'—l)1/2, etc.; second, as we have seen in 
Sec. 2, the off-diagonal elements of the triplet state S 
matrix contain the factor [_j (j+1)]1/2, but are otherwise 
regular, apart from the Regge poles; third, there is a 
pole in S at j — —\. As for the first and second points, 
explicit calculation shows that all the radicals cancel 
out, except for a factor of [ i ( i + l ) ] 1 / 2 multiplying the 
off-diagonal triplet state ^-matrix elements. There are 
therefore no branch points in the partial amplitudes.21 

The third point will be eliminated if we can write the 
amplitudes in terms of the elements of the matrix S 
of (6.12) without explicitly introducing a pole at 
j — __i That is, in fact, possible. Indeed, in so doing we 
actually acquire an additional factor of (2j-\-l) that 
makes the partial amplitude vanish at j=— \. More­
over, the use of S simplifies the expressions. 

In order to exhibit these features explicitly we 
introduce the following functions of 6: 

*j(cose)=P/(cosO)/JU+l), 

Tj (COS0) = Pj (COS0) — COS07T; (cOS0), 

ay(cos0) = [Py+i(cos<9) -P i_i(cos6>)]/(2j+1) 

dzPj(z\ (9.1) 

/3 y (cos^)^[ ( i+ l )P y _ 1 (cos^)+iP y + 1 (cos^) ] / (2 j+l ) 

/

COS0 

which are all analytic functions of j everywhere. 
(Zeros of the numerators cancel those of the denomi­
nators.) Now there are two kinds of center of mass 
scattering amplitudes that can be usefully written 
down. One is a set classified by the total spin of the two 
particles. The only case of interest here is that of the 
triplet state; the singlet is no different from the spin 
zero case. If we choose the z axis along the direction of 
the incident beam and write ©„',„ for the triplet 
scattering amplitude in which the initial and final z 

21 It was shown in reference 5 that this happens under more 
general conditions with angular momentum coupling. 
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components of the total spin are v and / , respectively, 
then we get22 

©o,o= ( 2 « ) - 1 £ ( 2 j + l ) ( r y + + cosePj-Ts+uoij), 
i 

0i. i= (4**)-1 Z (2 j+1) (Tj—fij- r y + _a y + TjPi), 
i 

e_i.0= (2mk)-le{* sine Z (2j+1) (r^+Py 

-ry+-Cosftry), (9.2) 

00,1= (2"*«)-V* sin^i ; (2i+l)[ry__i( j+l)ry 

— jPy+ _ COS07Ty+ T"y7Ty], 

e_ltl= - (4»)-v sin26>i;(2i+i)(ry__py 

and the remaining amplitudes are obtained by 

©(0,*O,'f„= (-) ' '-*0(0, -*>)-,',-,. 

We have used here the abbreviations 

l + r i + + sS + i + ^={i5y- i > y - i '+( i+1)5^1,^1 ' 
-2Ci(i+l)]1/25y_1, i+1^}/(2i+l)J 

i+r i ___^S- , -^{( i+ i )5 y _ 1 , i _ 1 ^+i^ + 1 , y + 1 ' 

+2[ i ( i+ l ) ] 1 / 2 5 i _ 1 , i + 1 0/(2 i+l ) , (9.3) 

= Ci(i+l)/(2i+l)]{^-i ,y-i ?-

i + r y = . ^ . / . 

The other set of amplitudes is classified according to 
22 These are obtained by explicit calculation from reference 8. 

The notation is the same as there. 

R. G. N E W T O N 

the spin directions of each of the two particles relative 
to their direction of motion (i.e., "helicity amplitudes"). 
Writing @iu1'M2'f/i1M2 f° r the amplitude for initial and 
final spin projections on the momenta /xi, /*2, m', 1*2, 
respectively, with M= + > ~ indicating forward or 
backward spin, we get23 

e + + , + t = 0 _ _ , _ _ = ( 4 ^ ) - i L ( 2 i + i ) ( r J + + + 5 , - i ) p y , 

e__._+=e+_>++=e++.-+=e+-.__=-e++.+-
= -e_+.__=-0_+,++=-e__1+_ 

e+_l+_=e_+._+ ' 
(9.4) 

= (4**)"1 Z (2j+1) (TV _+ Ti) (x,-+ ri), 
7 

0 + _,_ + =0_ + i + _ 

= (4**)-1 E (2 y+1) (r,_ _ - Tj) ( x , - T,-), 

0+ + ,__=0__,+ + 

= (4»)-X £ (2J+1) ( r i + + + 1 -5y)Py, 

where Sy stands for the singlet state ^-matrix element. 
Notice here that S together with Sj is essentially the 
helicity S matrix. 

The form of these amplitudes shows that there is no 
difficulty in applying the Watson transform. All argu­
ments that have been used in the spin zero case can be 
taken over directly. 

23 These are obtained by explicit calculation from M. Jacob 
and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 


