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The asymptotic distribution of poles of the nonrelativistic S matrix for potential scattering in the complex 
angular momentum plane is investigated, and so is the nature of the pole trajectories near E = 0. As a con
sequence of the behavior of the distant poles and of their residues the S matrix is shown to be representable 
in the form of an infinite (Weierstrass-Hadamard) product as well as in the form of a (Mittag-Leffler) series 
of partial fractions. 

1. INTRODUCTION 

THE analytic continuation of the scattering matrix 
into the complex angular momentum plane has 

lately been explored by a large number of authors.1^6 

Its usefulness for several different purposes has been 
well established. The present paper adds to the dis
cussion by a detailed investigation of the behavior of 
the Regge poles in the left-hand half of the angular 
momentum plane for nonrelativistic potential scattering 
of spin-zero particles, and by subsequent representations 
of the S matrix in terms of its poles. 

Before proceeding, we briefly summarize the essential 
facts concerning Regge poles for potential scattering 
and their trajectories as they are known at present. 

If the potential is such that there is a pole of the S 
matrix in the region Rel> — J (an attractive potential 
always leads at least to one such pole3,4), then it must 
remain on the real axis so long as £ < 0 . For E>0 it 
must leave the real axis and turn into the upper half 
of the complex plane. If it leaves at l<0 it turns 
backwards3; if at 0 < / < | , it leaves forward at a finite 
angle; if at />^, forward at zero angle, osculating the 
axis more and more closely the larger the I value at 
which it leaves.3,6 A trajectory can never cross or touch 
the real axis when E>0. If the potential can be ana
lytically continued into the complex r plane up to the 
imaginary axis, and if it obeys a certain bound there, the 
trajectory must turn back to the left eventually and 
either cross the axis Re/= — f or else approach it 
asymptotically.1,7 If the potential has no such analytic 
continuation, the trajectory need not turn back. In the 
case of the square well it is known not to do so.8 The 
number of trajectories that enter the upper right-hand 
quadrant of the X=H-§ plane at E = 0 and A>0 is 
always finite.3 

If r times the potential has a certain number of finite 
derivatives at r=0, then the S matrix can be ana-
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lytically continued to Re/<—J, the distance depending 
linearly on the number of finite derivatives of rV.z Let 
us assume for simplicity that all the derivatives of rV 
are finite at r= 0. Then S is a meromorphic function of 
I in the whole complex / plane.3-9,10 In the region 
Re/<— \ there are infinitely many poles for each fixed 
energy, with no finite accumulation point. When £ < 0 
the poles there need not necessarily lie on the real axis; 
if they do not, however, they must occur in complex 
conjugate pairs.3 When E>0 the poles there are gen
erally not on the real axis, but they need not lie in the 
upper half-plane. It follows from the symmetry rela
tions (2.7) that they can cross the real axis at negative 
integral or half-integral I values, but only there. In the 
case of a simple Yukawa potential, trajectories are 
known from numerical computation to cross at such 
points.11 As the energy tends to +00 or — 00 each 
trajectory must either lead to infinity or else it must 
terminate at a negative integral value of Z.3,9 Depending 
on the number of derivatives of rV which vanish at 
r=0, some of the negative integers are ruled out as 
possible trajectory terminals.3 For example, if the 
potential is constant for O^r^ro, as in the case of a 
square well, no trajectories can end in the finite I plane; 
they must all terminate at infinity.3,8 

We are going to prove a number of new results con
cerning the Regge poles near and to the left of I— — \, 
After setting up the preliminaries in Sec. 2, we discuss 
in Sec. 3 the question whether for negative energies the 
poles must lie on the real axis. In Sec. 4 the behavior of 
the Jost function for large complex \l\ is investigated 
and from this we determine the asymptotic distribu
tion of Regge poles under various assumptions on the 
potential. Section 5 deals with the distribution of the 
poles near zero energy and as a function of the potential 
strength. There are generally infinitely many trajec
tories that arrive at /= — \ when E = 0.lla Section 6 
exploits our results on the asymptotic pole distribution 
to write the 5 matrix as an infinite product. In Sec. 7 
the asymptotic behavior of the residues is examined 

9 S. Mandelstam (to be published). 
10 H. Cheng, Phys. Rev. 127, 647 (1962); E. J. Squires, Nuovo 

Cimento 25, 242 (1962). 
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E —> 0 is given by the present authors in the forthcoming publica
tion "Threshold Motion of Regge Poles," Indiana University 
preprint. 
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and S is written as a series of partial fractions. There 
an Appendix concerned with the branch point at k=0. 

Both the product and the partial fraction repre
sentation of the S matrix may be useful in approximate 
evaluations of the scattering amplitude by means of the 
Watson transform and in carrying out (if possible) the 
Mandelstam9 program of pushing the imaginary axis 
integral further to the left. About these applications 
we have noting to say at present. 

2. PRELIMINARIES 

We are using the same notation as in reference 3. At 
this point we shall merely list those functions denned 
and discussed there which are relevant for our present 
purpose. 

A generalized Jost function which approaches unity 
as k —̂  oo is f (X,&) which has the integral representation 

f(X,ft)=l-f(»/2ft)1 / 2«w x +*^ 

x [ drrWV(r)Mkr)f(\k\r). (2.1) 
Jo 

Here X = / + | , k is the wave number, so that E=k2 in 
units where fi—2m= 1; / is the irregular solution of the 
Schrodinger equation whose zero-order version is 

/0(X,ft; f ) = (iwkry^Fh^(kr)e-^^+^; (2.2) 

J\ and H\m are the Bessel function and the Hankel 
function of the second kind, respectively, / i s the unique 
solution of the integral equation 

/ ( M ; r ) = /0(X,*;r) 

- f dr'gx(k-,r,r')V(r,)f(\,k-,r'), (2.3) 

where 

«x(A;r/) = iir(»T')1/*CA(Af)7x(*r') 
- J x ( £ / ) F x ( £ r ) ] 

= iir(fr')1 '*[/x(ftf)/_x(*r') 
- J x O ' ) / - x O ) ] / s i n i r A . (2.4) 

In general, f has simple poles at the negative half-integral 
values of X. I t is, therefore, useful to introduce 

f.(M)sf(x,ft)/r(H-\), (2.5) 

which, if all the derivatives of rV exist at r = 0 , is an 
entire function of X for fixed k. The S matrix is given 
by 

S(X,*) = f(A,*)/f(X, - * ) = f.(X,*)/f.(X, -k). (2.6) 

The Regge poles are therefore the zeros of f(X, —k). 
For £ > O w e choose k>0 and thus are looking for the 
zeros of f(X,&) with k<0; for E<0 the k on the 
"physical sheet" is that for which l m £ > 0 , and hence 
the poles of S there are the zeros of f(X,&) with lm&<0. 

f (X,&) satisfies the symmetry relation 

e^f(X, -k)\(~\yk)-e~^K\k)\(-\ -k) 

= 2isimrX. (2.7) 

I t is understood that both here and in (2.6) 

f (X,-*) = f(X,ft<r-). 

3. THE POLES FOR E<0 

I t was mentioned in reference 3 that for £ < 0 a zero 
of f in the region ReX<0 need not lie on the real axis 
(as it must when ReX>0) but that if it does not, there 
must be two zeros at complex conjugate points. This 
possibility was there dismissed as unlikely to be realized 
because a zero on the real axis would then have to 
"split in two" in order to get off. Meanwhile numerical 
computations by Barut and Calogero8 for the square 
well potential, have shown that complex Regge poles 
do indeed occur for Re /< — \ (although the authors 
appear to be unaware of that fact). Figure 2 of reference 
8 shows clearly that for a repulsive square well, poles 
of S at E = 0 (and hence zeros of f), as functions of the 
potential strength, move toward one another in pairs 
and, after coincidence, disappear from the real axis. 
The only possible interpretation of this result is that 
for greater potential strength the poles are to be found 
in the complex plane. Their disappearance in pairs 
makes it possible for them to go into complex plane in 
conjugate pairs. 

The E = 0 zeros of f for the square-well potential are 
determined by8 

j,+ilR(-vyi*-]=o. 

The question therefore is simply if the Bessel function 
has any zeros when its argument is purely imaginary 
and its order complex, i.e., ImX^O. We have not been 
able to find a general proof that such zeros exist, but 
it should be a relatively simple matter to answer the 
question numerically. Figure 2 of reference 8 does seem 
to give a definitely affirmative answer.12 

If such nonreal negative energy Regge poles can 
occur for the square well potential, then there is, of 
course, no reason to suppose that they cannot occur in 
other, more realistic cases.12a 

4. THE BEHAVIOR OF f(X,k) AS |3t|—>oo 

In order to find the asymptotic form of f(\,k; r) as 
|X| —> GO we use the integral equation (2.3) for / and 
the asymptotic form of the Green's function (2.4). For 
fixed r and r' we have for |X| —> oo 

£x(*; r / ) ~ (rr ' ) 1«(2X)- 1 |> / ' ' ' ) x- (r ' / r)*]. (4.1) 
12 It happens that the same equation arises in the context of an 

exponential potential, except that the order of the Bessel function 
there is proportional to k; see Eq. (10.6) of R. G. Newton, J. 
Math. Phys. 1, 319 (1960). The existence of £ = 0 zeroes of the 
Jost function for the square well off the real I axis is therefore 
equivalent to the existence of / = 0 zeros for the exponential 
potential off the positive imaginary k axis. 

12a I t is shown in reference 11a that they occur in general. 



S M A T R I X I N T E R M S O F I T S A N G U L A R M O M E N T U M P O L E S 1447 

Consequently, for rr>r and ReX>0 

insertion of which in the integral equation for / yields 

/ ( M ; r ) ~ / o ( M ; r ) 

+ (2A)-1 f drf rWr^V(r')f(\,k;r'). 

rx/(M;0^*(M;r) 
Setting 

we get 

h(\,k; r) ^h0(\,k; r) 

+r1'2(2X)~1 f drr r'UW(r')h(\k; rf). 

Therefore, 

and 
h(\,km, r)~ho(\,k; r) 

/ ( M ; r ) ^ / o ( A , A ; r ) (4.2) 

as |X| —> oo with ReX>0. The same is easily seen to 
hold when ReX = 0, and since / is an even function of X, 
it holds in all directions. 

Now it should be noticed immediately that the 
foregoing argument is in no sense rigorous. The asymp
totic value of g is not approached uniformly in r and / . 
The larger r or r'9 the larger must | X | be for the esti
mate to hold.13 I t is, therefore, not clear precisely what 
the conditions on the potential are so that the result 
(4.2) holds. All we can say is that it will hold provided 
that the potential decreases sufficiently rapidly as 
r —> oo ,14 Uniform estimates on g appear to be hard to 
come by. 

We shall from now on take it for granted that V 
decreases sufficiently rapidly with increasing r that 
f(X,k;r) approaches fo(X,k;r), its "unperturbed" 
value. We then get from (2.1) as |X| —» oo in any 
direction 

f(M)~i- -***/" drrV(r)Hx<*>(kr)Mhr); 
Jo 

that is to say, f (X,&) approaches its first Born approxi
mation. Since we have already made use of such 
arguments anyway, we do not hesitate again to apply 
asymptotic formulas in order to evaluate f for large 
|X|. The fact that in some directions the first Born 
approximation to f tends to infinity should not be 
regarded as evidence that the argument breaks down 
because higher orders become important. If the 
potential vanishes identically beyond a certain distance 
then our argument will certainly be correct, even though 

13 For example, Jv(v) decreases very much less rapidly than 
Jv(x) for fixed x; whereas the latter goes like (ix)"/r(l + v), the 
former goes only as v~113; see G. N. Watson, Theory of Bessel 
Functions (Cambridge University Press, New York, 1958), p. 232. 

14 I t will be noticed that all we really need is the weaker state
ment that as | A | —> <*>, / approaches a constant multiple of / 0 or 
at worst approaches/o within a factor of the form |A|°'XI. So long 
as that is true, the statements below will hold. 

the first approximation tends to infinity. In many other, 
more realistic cases, it will no doubt also still hold, but 
it is not clear whether exponential decrease of V is 
sufficient to assure it.14 

Let us first assume that ReX —> + °° • Then 

#x<2)(x) = [e**Vx(*)-/- .x(*)]/ i sinxX 

/ - x ( * ) 
s{ s^i-

(i*)-
sin7rX r ( l — X) sinirX ir 

when X is not an integer; when X = », then 

( - ) " 5 7 x | 

-=-r(X)(i*)-N (4.3) 

1 dJx 

iir dX X=n 

( - ) w ^x | 

i-K dX 

(-)» a (**)> 

»-** w dX 

( - ) n r a (J#)x SHITTX 

m axr(i+x) X=— n 

iir LdX TX 
r(i-x) 

~(hoo)~nY{n). 

Hence the asymptotic form (4.3) holds for integers, too. 
Thus as ReX->+oo 

#x(2) (*) A (*) ~ (t A)r (x)/r (l+x)=i/*\ 
and so 

f ( X , £ ) ~ l + ( l / 2 X ) / drrV(r) I 
Jo 

(4.4) 

For ReX fixed and ImX= v —> ± °° we have 

\2irX\^2e^^(2\X\/ex)~^ I AM I 
and thus 

| # x
( 2 ) (*) | - (2/T)1^IX i - 1 'V*"(2 \X[/ex)<"«'»)B*\ 

I #x (2 ) (*) A(x) | - | TTX I ~M^'!-"> (21X | /ex) <*-" W>**. 

Consequently (4.4) holds also when ImX —» + oo, 
ReX = constant; but when y=ImX —>— oo while ReX 
is bounded, then14a 

f(X,fe) = 0(X-1e—). (4.5) 

Now we let ReX —> — oo. Then J\ dominates in H\{2) 

and we get15 

f (M)~i -4T dr r 7(r)[A(*f)]2(e iTX/sinirX). (4.6) 

14aFrom the relation f(A, -k) = f*(\*,k) for real k and (4.5) it 
follows that for fixed ReA and k>0, f (A, —k) blows up as v —-> + «> . 
Consequently, (4.4) for fixed ReA and v —> + oo has no bearing on 
the question of whether there can be far away Regge poles in the 
vertical direction. I t does not follow, moreover, that S —* 1 as 
y _ > - j - o o . 

15 The argument following (4.3) shows that this holds, in general, 
for the integers too. 
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Let us now assume that the potential is a superposition 
of Yukawa potentials: 

rV(r) r 
= 7 1 dfi a 

• / M O 

(M)<T 

Then the integral can be carried out and we get16 

f(X,fc)~l / rf/»crO*)Ox-|(H ), (4.7) 
2^sin7rXj^0 \ 2ft2/ 

Q being the Legendre function of the second kind. We 
may now insert the asymptotic value of Q as 
ReX —• — 00. The result is17 

1 yeiTX r00 / TT \ m 

f(X,*)~l+ / dn*b)[ 
2 COSTX J M0 \ — 2\fj,k/ 

where 

M2 \"1 / 4 

X ( l + — 1 Ar*\ 
\W1 

(4 i 

M / M2 X1 

= - + ( l + — ) 
2k \ 4k2/ 

> 1 . 

Since this has poles at the negative half-integral values 
of X, we examine f e of (2.5): 

fe(X,fe) = f (MOr(£-A) COSTTX/TT. (4.9) 

In order to avoid the more than exponential increase 
of the r function, we consider 

*(x)^f.(M)f«(-M) 
= f(X,*)f(—X, k) COSTTX/TT, (4.10) 

which is an even function of X. As ReX —> -f- °° we get 

g ( X ) ~ (coS7rX/7r)+e~-i7rX(7/27r) 

X dp*Qi)[ ) ( l + — ) A2 \ (4.11) 
JM 0 \2\fikJ \ 4ft2/ 

while on the imaginary axis, g=0(X~1e7r|xi). 
Suppose first that V is a simple Yukawa potential. 

Then g(X) grows exponentially for large X. I t is of 
order 18>19 p = 1 and type r < <*>; thus it is "of exponential 
type." The same is true if V is a finite sum of Yukawa 

16 See G. N. Watson, reference 13, p. 389. It should be noted 
that the function Qv in formula (2) there is the Legendre function 
of the second kind, and not the function Qv defined previously in 
the book. The failure to notice that fact led to an error, in Grobner 
and Hofreiter, Integraltafel (Springer-Verlag, Wien and Innsbruck, 
1949), p. 203, No. 10. 

17 See Bateman Manuscript Project, in Higher Transcendental 
Functions, edited by A. Erdelyi (McGraw-Hill Book Company, 
New York, 1953), Vol. 1, p. 143, (22). There is a typographical 
error in formula (22); r(J— M) should be replaced by r ( |—v ) . 

18 See R. P. Boas, Entire Functions (Academic Press Inc., New 
York, 1954). 

19 g(\) may also be considered directly a function of X2. It is 
then of order § and must, therefore, have infinitely many zeros 
(see reference 18). We usually take that fact for granted. 

potentials, or if it is a proper integral of Yukawa 
potentials. We can then draw a number of conclusions 
about the asymptotic distribution of its zeros in the X 
plane. Since there can be no distant zeros of f in the 
right half plane, this tells us the zero distribution of f 
on the left, and hence that of the Regge poles there. 

For large | X |, g(X) grows exponentially, with different 
rates, depending on the phase of X. Application of 
Jensen's theorem20 tells us that 

N(r)= I dtt-hi(t), 

grows linearly with r, where n(t) is the number of zeros 
in a circle of radius t about the origin. Therefore, the 
average density Nf{r) of the magnitudes of zeros is 
asymptotically constant, which implies that the mag
nitudes of the zeros are asymptotically on the average 
evenly spaced: 

|Xn |oc^. (4.12) 

We now apply Carleman's theorem20 to g(i\). For 
imaginary X, g grows exponentially. Hence, 

|X„ |<R 

I ReX, I 
-oclnjR. 

X« 
(4.13) 

Next we apply the same theorem to g(X). For real X, 
too, g grows exponentially. Thus, we find that 

|ImX»| 
E cbiR, 

|Xn|<R | X „ | 2 
(4.14) 

where c tends to naught as k —-> 00 (since then A —-> 1). 
These results, together with (4.12), imply that both the 
real and the imaginary parts of the zeros are asymp
totically on the average evenly spaced, and that as the 
energy increases, they tend to remain closer to the 
real axis. We already know that in the limit as k —> °o 
they move to the real axis, with exactly even spacing.21 

The approach to the negative integral / values is clearly 
non-uniform. The larger —l—n, the higher we must 
make the energy in order to get the zero close to 1= — n. 

In the more realistic case of a general superposition 
of Yukawa potentials we cannot say as much. If all the 
moments of O-(JU) are finite, g is an entire function.3 If 
we make the stronger assumption that (T(JJL) goes down 
exponentially for large M> then the asymptotic behavior 
a(fjL)^ce~a,i of the JU integral in g(X) for large X is 
determined by the value of the integrand for large JJL, 
which is 

dn M
2*-y-«Moc x~1/2 exp{2X[ln(2X/a)-1]}. 

20 See reference 18, p. 2. 
21 We neglect the possibility that some trajectories may termi

nate at infinity. 

file:///2/fikJ


5 M A T R I X I N T E R M S O F I T S A N G U L A R M O M E N T U M P O L E S 1449 

I t follows that g(X) is of order p = l and type T = Q ° . 
Jensen's theorem then tells us that 

N (r) oc r lnr, 
and 

n (r) oc r lnr. 

Thus, the average density of the magnitudes of zeros 
grows logarithmically; the average spacing between the 
magnitudes of successive zeros decreases as 1/lnn and 
hence 

|Xn |oc^/lnw. (4.15) 

On the imaginary axis, g(X) still grows exponentially. 
Carleman's theorem applied to g(i\), therefore implies, 
that 

|ReXn | 
£ ocmi?, (4.16) 

M<R IXnl2 

and, therefore, 

while 
|ReX„| oc;z/(lnn)2, 

|ImX»| ccn/\nn. 

(4.17) 

(4.18) 

Thus, while the projections of the zeros on the real 
axis get more and more closely spaced, they diffuse 
more and more away from the real axis and toward the 
imaginary axis. Nevertheless, as the energy increases, 
the diffusion toward the imaginary axis is less and less 
rapid. 

In the physically somewhat less interesting case of a 
square-well potential, we may insert the asymptotic 
form of the Bessel functions in (4.6) and get as 
ReX -> + oo : 

g(\) - ( 1 / T T ) C0S7rX+e~i7rX(sin27rX/27rX)e2XlnX-2X 

Jo 

= (1/TT) C0S7rX-e-i7rX(sin27rX/47rX2)e2XlnX-2X 

XQkR)~2XVoR2. 

So again the function is of order p = 1 and type r = oo. 
The asymptotic zero distribution is essentially the same 
as in the case of a superposition of Yukawa potentials. 
We, therefore, expect that these results are of rather 
general validity. 

5. THE ZEROS OF f(3t,*) FOR k~0 

Let us examine f(X,&) in the vicinity of k = 0. We 
then have 

1 r(i-x) -

r(i+x) 
#x<2) (kr) ( i fcO~ x r ( l+X) |V*(i-

and 
1 / r ' \ * r r ( l - X ) 

H^(kr)Ji(kr') ( — ) e-x(|£r)2X-
iw\\r ) L r ( l + X ) -} 

The " 1 " in the bracket has been kept, while other terms 
relatively small as k—>0 were discarded, because in 
the limit as X —* 0 it is equal to the first term. Insertion 
of these values into the series expansion for f (\,k) yields 

f (X,^)-^(XA7)^l+X- 1 [^ 2 X C(X,7)-C(0,7)] , (5.1) 

where 

r(i-x)| 
r(i+x)i 

C(\,y)=-iei*x2-^ 

+ 7 2 / drj dr' 
Jo Jo 

'f 
Jo 

y , drri+2xy^ 

Jo 

7 ( r ) 7 ( r ' > 1 + V 1 + x 

X (7)'-(7)Va +- l - (5'2) 
and 7 is the strength of the potential. 

We now look for the zeros of h. Write z= — X, 
R= — ln&2. Then the zeros of h are the solutions of 

P ( 2 ) s ^ - [ 2 f + C ( 0 , 7 ) ] / C ( - » , 7), (5.3) 

where R is to be large. What are the possible endpoints 
as JR—> oo (i.e., E—»0) of the zero trajectories? There 
are evidently only two kinds of possible endpoints: 
(1) The zeros of C(—z/y), with Rez> 0 and its poles with 
Rez<0 (7 is fixed now); (2) the point z=0.21a 

Consider the vicinity of z = 0 . There the function 
P(z) is approximated by 

where 

a = j l -

P(z)^Q(z) = ezR-l-az, 

dC(-zyy) 

(5.4) 

dz 
C(0,7). 

WTrite z=x+iy, a=a\-\-iir. Then Q(z) = 0 implies the 
two equations 

exR cos(yR) = l+ai$—iry, 

exR sm(yR) = aiy-{~TX. 
(5.5) 

For each fixed R and a± these equations are easily seen 
to have infinitely many solutions. As R —> 00 each of 
these solutions moves toward 2=0, i.e., X=0. Now as a 
function of k = e~~*R, Q has infinitely many sheets; but 
on the first sheet it has infinitely many zeros as a func
tion of s, which move toward s = 0 as k —•> 0. The zeros 
near z = 0 are (approximately) zeros of P. So we con
clude that specifically with k fixed on the first sheet, 
P has infinitely many zeros, and they all move to X = () 
as k —> 0. There are, therefore, infinitely many zeros of 
f(X,&) which, as functions of k on the physical sheet, 
move toward X = 0 as k —> 0. The restriction that forces 
the zeros of f(X,&) for negative k and ReX>0 to lie in 

21a The Regge poles arising from the poles of C with Res <0 are 
the familiar right hand poles associated with bound states and 
resonances. These have already been discussed in references 1 
and 3. 
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the upper half of the X plane is not operative when 
ReX<0. Equation (4.6) of reference 3, 

/»0O 

ImX2/ drr~2\f\2=-k, 
Jo 

which holds when f(X,&) = 0, cannot be analytically 
continued to ReX<0. Nevertheless, we may expect 
that for negative k its shadow, so to speak, still falls 
somewhat across the imaginary X axis and makes most 
of the infinitely many zeros that approach X = 0 from 
the left as E —> 0 do so from below (since it is the sign 
of ImX2 that is to be positive). Of course, this must not 
be taken too seriously, since clearly there are zeros 
which do approach X = 0 from the above left. 

We have so far considered only E>0. But when 
E < 0 then the only change in the Eq. (5.4) for the zeros 
of f near X = 0 is that the imaginary part of a is missing. 
We, therefore, expect that most of the zeros which for 
E —> 0 approach 1= —%, are not on the real axis for small 
negative energy .12a 

I t must not be concluded from the foregoing dis
cussion that for fixed k, f (X,&) has infinitely many zeros 
in a neighborhood of X = 0. For fixed &, f is an analytic 
function of X at X = 0; hence, there can be no accumu
lation point of zeros there. For each fixed k there is 
only a finite number of zeros near X = 0, but as k —> 0 
that number increases without limit; infinitely many 
zero trajectories arrive at X = 0 when k = 0. 

Observe what happens to the motion of the zeros 
when the potential strength is decreased. Since 

Q=etRlai-l-t-iwt/ah 

with t = zaiy the trajectories in the / plane are for / « a i 
independent of ai, but the larger d\ (i.e., the smaller 
the potential strength 7) the larger must R be (i.e., 
the smaller must E be) in order to get close to the 
origin. Consequently, in the X plane the decreasing 
potential strength 7 results (near X = 0) in a scale 
reduction of the geometrical shape of the trajectories 
and, more importantly, in a speeding up of the motion 
of a zero on its path near X = 0 as a function of the 
energy.22 In a picturesque sort of way, one may say 
that, as the potential strength decreases, the trajectories 
near X = 0 get thinner and thinner. 

Now there are other possible zero-energy zeros, as 
we have seen. These are the roots of C(X,7). In general, 
we expect that there are infinitely many of them. 
However, we may consider what happens as the 
potential strength 7 is made smaller and smaller. The 
zeros of 

C,(X) = limC(X,T)/7, 
r-»o 

are then the possible zero-energy zeros of / in the limit 
of vanishing potential strength. If C(X) has no zeros, 
then the zeros of C(X,7) must, in the limit as 7—^0, 

22 In the t plane the zero moves essentially as £>. 

move to infinity, and X = 0 is the only possible arrival 
point a s £ - > 0 . l l a 

The foregoing general demonstrations may be illus
trated in detail by two special examples for which 
"experimental" evidence is at hand. These are very 
useful numerical computations performed at Berkeley. 

Ahmadzadeh et at.11 have computed trajectories for 
a single Yukawa potential. Their curves show the be
havior to be expected from the above discussion. In the 
case of a simple Yukawa potential of unit range, it is 
easy to see that C(X) has no zeros. We find that 

1 T ( l - X ) r ( l + 2 X ) 
C(X,7) /7= —eiffX2~2X 

2 r(i+x) 

x|~l+—(1-2~^)H 1. (5.6) 

For 7 ^ 0 this has infinitely many zeros real as well as 
complex which move to infinity as 7 —> 0.22a Hence, not 
only are there infinitely many trajectories that approach 
X = 0 (i.e., l= — | ) as E—»0, but as the potential 
strength decreases the other possible £ = 0 poles of S 
move to infinity. Now if a trajectory, one end of which 
is attached to a fixed point (a negative half-integer at 
E-+ cc), had its other end (E=0) attached to a point 
that moves to infinity as the strength of the potential 
decreases, it would have to get longer and longer as the 
potential gets wreaker. The remarkable solution to this 
quandary was shown in the numerical computations of 
reference 11 to be that as, in course of the weakening of 
the potential, two trajectories cross, they may suddenly 
exchange tails. The pieces from the crossing point to a 
"C = 0 zero energy pole" gets handed from one trajec
tory to another as it moves to — 00 with decreasing 
potential strength, and no trajectories are forced to be 
stretched beyond bounds. A look at the curves also 
shows the expected rapidity with which the poles move 
near X= 0, if that is their zero-energy destination. Refer
ence 11 did not examine the negative-energy trajectories 
off the real axis. 

Barut and Calogero8 have computed a number of 
curves for square-well potentials. In that case 

C (X,7)/Y = ~ ie-x2-2Xi?2+2Xr (1 - X) 

Lr(2+x) r(3+7) J 
Hence, the " C = 0 zero energy poles" move to the 
negative integral values of X, starting at X=— 2; i.e., 
to the negative half-integral values of /, starting at 

22a For a weak attractive potential (i.e., for small negative 7) 
this statement is at once verified by taking the first two terms in 
the bracket of (5.6). The term outside the bracket does not 
vanish for any finite value of X. For ImX —* -{- 00, however, 
C —» 0. For E<0, where the exponential term is absent, C —> 0 
for ImX —> ± 00. 
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/ = — 5 / 2 . The larger the value of —X, the slower the 
change with y from 7 = 0 , since the X=—2 zero is 
shifted by the second Born approximation, that of 
X=— 3, by the third, etc. In addition to these tra
jectories, there is in the attractive case, of course, 
always the trajectory which at £ = 0 lies to the right of 
X=0 and which moves toward X = 0 as Y — > 0 . That 
was shown in general in references 3 and 4. These facts 
are all explicitly visible in the curves of Barut and 
Calogero,8 including the fact that the trajectory whose 
£ = 0 position tends toward / = —3/2 is missing.22b Again 
the negative-energy trajectories off the real axis were 
not computed. 

I t is now possible to understand in general terms how 
the S matrix approaches unity in the limit as the po
tential strength y vanishes, meanwhile always main
taining poles at the negative integral / values (at E= oo) 
and at /= as well as at possibly other more or less 
fixed finite points (at £ = 0 ) . The approach to unity is, 
of course, highly nonuniform in k and /. The smaller 7, 
the closer to their £ = 0 0 positions stay the pole tra
jectories for long ranges of the energy. But at smaller 
and smaller energies a trajectory may suddenly race 
toward / = — J. In other words, the smaller the coupling 
constant, the flatter are the trajectories' loops near their 
E= 00 position, and the thinner the tails of those that 
stretch to 1= — J. 

6. S AS AN INFINITE PRODUCT OF ITS POLES 

In Sec. 4 we found that both for a superposition of 
Yukawa potentials (with exponentially decreasing 
weight factor) and for the square well the asymptotic 
distribution of the zeros of f (X,&) for fixed k is as 

| \ n | ccn/\nn. 

Consequently for such potentials (and a much wider 
class as well23) 

E |x.| * < c c , 

for all a > l . Thus, the genus18 of the set of zeros of f 
in the X plane is p= 1. Furthermore, \e is in these cases 
an entire function of order p = l . I t can therefore be 
written in Hadamard's restricted form of the Weierstrass 
factorization24: 

f.(X, - * ) = f.(0, ~k)e^ n [ 1 - ( X / X n ) > ^ , (6.1) 

22b if y^r at r = 0 then from (5.2) we find that X = - l is a 
possible solution of C(X,y) = 0. In general, if at r — 0 all the deriva
tives of rV exist and V^rm then the negative integral values of X 
up to m are possible E — 0 poles. Notice also that for precisely 
these potentials the negative half-integral values of X up to \m as 
absent as possible £ = ± 00 poles. 

23 It is not hard to extend the investigation of Sec. 4 to cases in 
which crG*) decreases in a way other than exponential; say, like a 
Gaussian, or like an exponential of a fractional power, etc. 

24 See reference 18, p. 22. 

provided that f«(0, — k)^0. Here a and all Xn are, of 
course, functions of k. The exponential factors cannot 
be eliminated, since without them the product does 
not converge. For the S matrix we get 

5(X,*)=5(0,*)^W-*)—(«] 

00 X»(*) X - X » ( - * ) 
X l l £X[Xn(*)-i-x„(-A0-i]? (6.2) 

1 X n ( - * ) X-Xn(t) 

where —k=ke~iT. Now, for real k 

f,*(X*,-ft) = f.(X,fe) and, hence, 
X n ( - * ) = X„*(*), 

an(—k) = an*(k). (6.3) 

Therefore, for E>0 

S(\,k)=S(0,k)e~2a Imo(A;> n — -e2A ImX"_1. (6.4) 
1 X„* X—X„ 

For £ < 0 we take k= \k\e*iT; then 

f(X,-*) = f(X, I *|*-*'') 

is real for real X;25 hence, a(\k\e^ir) is real. The zeros 
Xn which are in the left half-plane need not be real, but 
if they are not then they must occur in complex con
jugate pairs.3 On the other hand, 

need not be real25 for real X, except for half-integral X 
(i.e., in integral /). Hence, except for integral /, 5 is in 
general not real when E < 0 . 

7. S AS A SERIES OF PARTIAL FRACTIONS 

In order to write the S matrix as a series of partial 
fractions, i.e., a Mittag-Leffler expansion, we examine 
its residues Sn at the poles X„. According to Appendix 
B of reference 3 we have 

Sn(k)=(e^k/\n) drr-*P(\n,-k)r).{1.\) 

The asymptotic behavior of this can be estimated 
rather simply by means of (4.2). As ReX—> — 00, 
which is the direction in which the distant zeros of f lie, 
we have 

/2(X, -k; r)~±irikre-i^[HxW(-kr)J 

--i(^kr)n(kr/\)e~iirX+2^-2Xln^\ 

Of course, this cannot be used for the whole integral 
from zero on, since that converges only because 
f(X, —k) — 0 and, hence, /(X, — k; r) is proportional to 
the regular solution. Nonetheless, we expect that 

In / drr-2f(\ - f t ; r ) c c - 2 X l n ( - X ) , 

25 See Appendix. 
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as ReX —> — °o, and so the residue Sn will decrease very 
rapidly: 

lnSn=0[2Xnln(-Xn)]. (7.2) 

It must be recognized though, that there may well be 
exceptions to this generally expected behavior. We 
cannot rule out the possibility that there are large 
cancellations in the integral in (7.1) which may make 
the residue much larger. 

Barring such fortuitous cancellations, the series 

E^n(X-Xn)"1 

converges extremely rapidly in all the cases examined 
in Sec. 4. We, therefore, expect that generally the 
simplest possible Mittag-Leffler expansion of the S 
matrix should be possible26: 

» Sn(k) 
S(X,ft) = P(X,ft)+£ —, (7.3) 

1 X-Xn(*) 
where P(X,ft) is for fixed ft, an entire function of X. For 
large | X |, it is P that dominates, in general. But P is 
expected to be rather smooth and the rapid variation 
for finite X should all be contained in the series. 

APPENDIX 

We collect some relevant remarks here about the 
branch point of f(X,ft) at ft=0. The equation 

f*(X,*) = f(X,-*)sf(X,*(r") , (Al) 

which holds for real ft and X, implies that for negative 
imaginary ft, f(X,ft) is real. But for positive imaginary 
ft that is not necessarily true. It does show that 

f(X,|ft l^') = f*(X,|ft|6r*l'). (A2) 
26 See, for example, C. Caratheodory, Funktionentheorie 

(Birkhauser, Basel, 1950), pp. 215 ff. 

The discontinuity of f across the cut along the positive 
imaginary axis (if that is where we choose to put it) is 
thus purely imaginary. The circuit relation (A8) of 
reference 3, 

f(\ke-^ i)= -e~27riXf(X,ft)+ (l+e~2-x)f(X, -ft) (A3) 

shows that for half-integral X (i.e., integral /) f is single 
valued and thus real on the positive imaginary axis. 

Equation (A3) together with (A2) implies that 

c/ f(X,|^le^)e-2^+f*(X,|^|^) 
f(X, ft er«»)= , (A4) 

l+e~2iriX 

and, hence, for integral X 

f(X,|ft|e-^) = Ref(X,|ft |^). (A5) 

Similarly, for integral X and real ft, 

f (X,fte-27r0-f (X,*)= - 4 i Imf (X,ft). (A6) 

It should also be remembered that f(X,ft) has been 
defined so that for ReX>0 it is finite at ft=0. For 
ReX<0, however, it is then not finite there but goes as 
ft2\ 

As for the S matrix, while it is unitary for real X and 
ft, it is real for real X and purely imaginary ft only when 
X is a half-integer (i.e., in the "physical" case). Other
wise, we have 

f(\,|ft|«'*-) f*(x,|*!*-«•) 
S(\,\k «*»')= = 

f(X,| ft|*-«') f*(X,|A|<r«') 

= 1/S*(X, |*| «-*'), (A7) 

and the combination 

r^k^e-^-vis^k)-1] 
is such that 

r(x, | k | «*»') = r* (x, | k | «-«*-). (A8) 


