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The existence of two Pomeranchuk-Regge trajectories is conjectured. It then follows, with a single 
numerical coincidence, that at high energies the scattering in each angular momentum state is dominated 
by inelastic processes. This reinstitutes the physical plausible semiclassical explanation of the origin of 
diffraction scattering. The width of the diffraction peak still shrinks with energy. It also follows that both 
total and elastic cross sections increase logarithmically, with a limiting ratio of approximately four. The 
real part of each phase shift approaches an integral multiple of TT, providing a basis for a general Levinson's 
theorem; the approach is from above as (InE)-1 for increasing energy E. The inelastic scattering in each 
partial wave approaches its maximum value only as (InJS)-2. Rough quantitative estimates indicate that 
the typical contribution of two Pomeranchuk trajectories to a total cross section might be quite large (of the 
order of 66 mb) at 20 BeV. 

I. INTRODUCTION 

THERE are two conflicting points of view on the 
mechanism of diffraction scattering. The gross 

features have been interpreted in terms of a simple semi-
classical model based on the assumption that at high 
energies the scattering in each angular momentum 
state is predominantly absorptive. Although this ap­
proach has the advantage of being physically plausible, 
the simple method of summing partial waves yields 
predictions that are contradicted by current experi­
mental measurements.1 In the alternative approach it is 
assumed that the high-energy behavior of the elastic 
scattering amplitude is controlled by Regge poles.2-3 

This has the important advantage that sums and limits 
can be evaluated precisely in terms of trajectories a (t) 
of pole singularities in the complex angular momentum 
plane. The degree to which inelastic processes partici­
pate at high energies, as well as the asymptotic behavior 
of total and differential cross sections and each (com­
plex) phase shift, is predicted in terms of Regge trajec­
tories. Furthermore, the hypothesis of Regge poles is 
probably consistent with the 5-matrix theory and 
eventually this form of diffraction theory may follow 
from first principles. 

In order to fulfill Pomeranchuk ?s condition4 of con­
stant total cross sections at high energies, Chew and 
Frautschi3 postulated the existence of a trajectory 
ap(t) of even signature which hasap(0) = 1, and is called 
the Pomeranchuk-Regge trajectory.5 It then follows 
that the elastic cross section and the absorption in each 
angular momentum state vanish slowly at high energy. 
This has the semiclassical interpretation of an inter-

* Supported in part by the U. S. Atomic Energy Commission. 
1 C. Lovelace, Nuovo Cimento 25, 730 (1962). 
2 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23. 

954 (1962). 
3 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 1, 394 

(1961); 8, 41 (1962). 
4 1 . Ya. Pomeranchuk, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 

758 (1958) [translation: Soviet Phys.—JETP 7, 499 (1958)]; 
L. B. Okun' and I. Ya. Pomeranchuk, ibid. 30, 424 (1956) [trans­
lation : ibid. 3, 307 (1956)]. 

6 C . S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. 
Rev. 126, 2204 (1962). 

action region that increases slowly in size, while becom­
ing more transparent. Such a behavior appears to be 
consistent, but experiment doesn't yet dictate the 
details of any single trajectory.6 It is worthwhile, there­
fore, to point out that even within the framework of 
Regge poles there is a possibility that at high energies 
inelastic processes saturate the unitarity condition 
(maximum absorption in each partial wave). This 
possibility exists provided that it is consistent for 
trajectories to cross and, furthermore, provided that two 
happen to cross a= 1 at /=0. That is, we conjecture the 
existence of two Pomeranchuk-Regge trajectories ap(t), 
aF(t) having ap(Q) = aF(0) = 1. In this note we examine 
the consequences of such a coincidence. 

In a previous letter,7 it was argued that a constant 
behavior of the total cross section is inconsistent with 
the dominance of inelastic processes. It was inferred that 
both total and elastic cross sections must increase 
logarithmically with energy, and have a limiting ratio 
(<Ttot/<Tei) = 4. The dynamical origin, and in particular 
the interpretation in terms of singularities in the com­
plex angular momentum plane, was obscure. These 
same conclusions now follow from the above conjecture. 
The asymptotic behavior of the real and imaginary 
parts of each phase shift are evaluated. The results are 
of importance for partial-wave dispersion relations be­
cause they show that the so-called8 N/D method is sus­
ceptible9 to classical Fredholm theory. 

II. FORM OF THE SCATTERING AMPLITUDE 

Let / be the momentum transfer invariant and s the 
square of the barycentric total energy. Let us define 
A (s,t) to be that part of the elastic scattering amplitude 
that arises from two Pomeranchuk-Regge trajectories.5 

In order to construct an expression for A (s,/), we con­
sider the partial-wave amplitude f(J,t) of the crossed 
channel in which t is the square of the total energy and 

6 A. N. Diddens, E. Lillethun, G. Manning, A. E. Taylor, T. G. 
Walker, and A. M. Wetherell, Phys. Rev. Letters 9, 111 (1962). 

7 G. Frye, Phys. Rev. Letters 8, 494 (1962). 
8 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); 

Nuovo Cimento 19, 752 (1961). 
9 G. Frye and R. L. Warnock (to be published). 
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/ the angular momentum. For fixed /, we display two 
poles as a function of J , 

/ ( / , 0 = J 5 ( / , 0 C / - a ( 0 ] - 1 [ / ~ a 1 ( 0 ] - 1 , (2.1) 

and assume that any singularities of B sue unimportant 
for the present discussion. If z is the cosine of the scatter­
ing angle in the t channel, the two pole terms in the 
Somerfeld-Watson transformation are given by 

/(*,*) = + , (2.2) 
Aa (t) sin7ra (t) Aa (0 sin7roi (t) 

where Aa(t)=a(t)—ai(t) and, except for trivial factors, 
p(t) = B(pt(t),t) and0i(O = 5(«i(O,O. Since a ( 0 a n d a i ( 0 
are to be Pomeranchuk trajectories, f(z,t) must be 
symmetrized with respect to z (even signature5) and 
a ( 0 ) = a x ( 0 ) = l ; then Aa(0) = 0 and /5(0)=/3i(0). For 
fixed t, z is proportional to s and for large s, z is large 
and negative and the "pole terms' ' f(z,t) dominate the 
residual Sommerfeld-Watson integral. As customary, 
we identify A (s,t) with f(z,t) and assume this A (s,t) is 
the exact dominant term of the complete elastic ampli­
tude, any "unitarity corrections" being supposedly 
additive corrections to A{s,t) that have a weaker be­
havior in s as s increases and t remains finite. The 
expression for A (s,t) is then 

A, N 0 (0 [^<»( -* )+P«<i>(*) ] 
A(s}t)= 

Aa(t) sin7ra(/) 

|8i(0Ci>«i(o(-*)+P«l(i)W] t x 
+ . (2.3) 

Aa(t) sin7rai(0 

If we use unequal mass kinematics where m and /x are 
the two masses in the s channel, we have z=z(syt) 
= (s+p2+q2)/(2pq), where p=p(t) = {\t-m2)m and 
2= 2(0 = (i*-/*2)1 '2. For fixed t<^2, we have pq<0 and 
z^=Fl for s%-(p±q)2. 

Now for a not an integer, Pa{z) has a branch point 
at z= — 1 and the cut may be taken along the real axis, 
z^ — 1. The discontinuity across the cut is 

Pa(x-iO)-Pa(x+iO) = -2m simraPa(-x), 

where x is real, x< — 1. Thus, as a function of s, for 
/<4/x2, ^4(^,0 has a cut from the terms Pa{—z) in 
Eq. (2.3) from s= —• (p—q)2 to s= + <x>. The absorptive 
part As(s,t)= (l/2i)[A (s+iO, t)-A ( j - iO , *)] is 

v l s (5 ,0=&(0 i > a (o ( -2 ) - / 3 1 (0P« 1 (o ( -2 ) ] /Aa (0 (2.4) 

for / < 0 , s^ — (p+q)2. The forward scattering amplitude 
is obtained by taking the limit t —> 0; for the absorptive 
part we have 

d 
As(sfl)=mcPi(-z)+m-p«(-z)\«-i 

da 

= j 8 ( 0 ) { - 2 C - 2 l n C i ( l - « ) ] - l « * } , (2.5) 

where10 / 3 ( 0 ) C = & , ( 0 ) - f t , ( 0 ) ] [ a ' ( 0 ) - a 1
, ( 0 ) ] - 1 . We 

normalize A(s,t) so that the optical theorem reads 
o- tot=47r(^1/2)-1^s(5,0), where k is the magnitude of 
the barycentric three-momentum, 4.s&2=[s— ( W + M ) 2 ] 
X[s— (m— M) 2 ] . I t is useful to use the variables p and 
E, the momentum and total energy of the particle of 
mass M in the laboratory system of the other particle. 
Then ksl,2=tnp, z(s,0)=—E/n and the contribution to 
the total cross section from the two Pomeranchuk lines 
GPF is 

aPF(s)^^(0)(m^p)~l 

X{CE+E\nl(E+fx)/2n2+E-fx}. (2.6) 

Thus, 47r/5(0)/w/i, estimated to be 10 mb in Sec. I l l , is 
the coefficient of the logarithmic increase. The scale 
factor EQ in the behavior o-^(10 mb) ln(£/£o) , is 
determined by C, which is roughly the strength of the 
first-order Regge pole that is concealed under the 
second-order pole. The rough linear approximation of 
Sec. I l l indicates that C ~ + l, yielding aPF(20BeV) 
« 6 6 mb and £ o ~ 3 5 MeV. This estimate gives only a 
preliminary orientation and should not be taken too 
seriously. If it is roughly correct and if there are two 
Pomeranchuk-Regge trajectories, the contributions to 
o-tot of the remaining trajectories must be large and 
negative. 

I t is useful to have a more explicit expression for the 
asymptotic behavior of A(s,f). For a > 0 , we have 
Pa{z) = D{a)za+Q{za~2) for large z, where D(a) = (1/TT) 
X / o 7 r ^ ( l + c o s ^ ) a = 7 r - 1 / 2 2 a r ( o : + J ) / r ( a : + l ) . I t is con­
venient to introduce a scale factor A>0 and define 
auxiliary coefficients b(t) and bi(t) by 

b(t) = 0(t)D(a(t))(-2pq\)-^H(Aa(t))-^ (2.7) 

and a similar expression for b\{t). After detailed calcula­
tions the dependence on X can be removed with the help 
of the following formulas: 

2WMA(* ,(0) X6(O)=0(O), (2.8) 
and 

2wMAo:'(0)\6'(0) 

= ^ / ( 0 ) + / ? ( 0 ) ( l - l n 2 K ( 0 ) - ^ ( 0 ) A a / , ( 0 ) [ A a , ( 0 ) ] - i 

+/3(0)(m2+M2)(4wV)-1~^(0> ,(0) ln(2wMX). (2.9) 

The asymptotic form of A (s,t) can now be written as 

A(s,t)==b(t)t-l(s\)«M[i-cotiTa(t)~] 

-6 1 ( / ) / " 1 ( ^ ) a i ( < ) p-co t i 7 r a i (O]+0(^ 1 ) . (2.10) 

The ratio of real to imaginary parts is interesting. If 
a(t)>ai(t) for some small /, the term sa dominates and 
one easily sees that 

Re.4 (s,t)/ImA (s,f) ~ - cot^ira (t) ~ \-wta (0). 

For the forward scattering amplitude we have 

1mA (sfl^Xstb'W-h'W+bWAa'iO) Into] 

and 
Re.4 (S,0)~TCP (0)*/4m/i. 

file:///-wta
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So the imaginary part dominates only by a logarithmic 
factor. 

III. PARTIAL-WAVE AMPLITUDES 

The task of this section is to examine the structure 
of the angular momentum components of the elastic 
^-matrix elements. This brings out the limitations 
imposed by unitarity and presence of absorptive 
processes. The partial-wave amplitude Ai(s) is related 
to the complex phase shift 5i(s) by 

Ai(s)= (s*/2ik){m(s) exp[2* Re«i (*) ] -1} , (3.1) 

where 
w(*) = exp[—2Im$j(s)], O ^ i ^ l , 

is the absorption parameter. The assumption that in­
elastic events dominate each partial wave at large 
energies implies that for each /, TJI vanishes for large s. 
This means that any fixed I, 

lim ImAi(s) = l. 
8-*QO 

(3.2) 

We now show that the behavior of the two Pomeranchuk 
poles has a form such that Eq. (3.2) can be satisfied. 

The partial-wave amplitude is expressed in terms of 
A(s,t) by 

for small Aa (0). The coefficient B can be evaluated with 
the help of ^Hospital's rule. We find 

B=<pf dt {6'(0y«'<°> *-6i'(0y«*'<°> *} 

d r° 
+ lim-6(0)*>2— / dtt-^eWW-e1"1™-1**} 

*-M0 dip 7-ao 
or 

B=b'(0)/a'(0)-bl'(0)/a1'(0) 

Finally B is expressed in terms of the original param­
eters by 

= - / 3 ' ( 0 ) - ^ 1 ' ( 0 ) + / ? ( 0 ) [ a ' ( 0 > / ( 0 ) ] - 1 

+ [a ' (0)+ai , (0) ]^(0)C 

- 0 ( 0 ) (w2+M
2) (4f»V)"x. (3.8) 

Before making an estimate of the magnitude of B, let 
us display its significance. For this we evaluate the 
leading term in the asymptotic expansion of ReAi(s). 
Using Eqs. (2.10) and (3.3), we have 

Al(s) = — [ dtPlll+t(2kT1lA(sJt). (3.3) f° 
dtrl{b(t) cotj7ra(Os[a(f)-13 

The part of A i (s) that is independent of I was identified 
in reference 7. An argument was given there to show 
that the asymptotic behavior is independent of the lower 
limit of integration. Inserting Eq. (2.10) for the asymp­
totic behavior of A (s,t), we have for large s,n 

ImAi(s) = dt 

xr^^^^-^ iW^^^l+eM, (3.4) 
where v>0. I t is easy to show that the asymptotic ex­
pansion of the integral in Eq. (3.4) has the form 

ImAiis^A+Qns^B+oQir^s), 

and that A is given by 

.4 = 6(0)/ <ftrva'(0)--*'ai'(0)} 

(3.5) 

= 6(0) m[a ' (0) /a i ' (0)] . (3.6) 

Condition (3.2) can be achieved by requiring the 
numerical coincidence that A is unity. Using Eq. (2.8), 
we write this in terms of the original parameters: 

P (0) = 2mtxAa' (0) {ln[a' (0)/a1
/ (0)]}"1 

~2w/xc/(0), (3.7) 
10 Prime denotes differentiation with respect to /, 
11 We set X equal to unity. 

- M O cotbral(t)steW-1i} + 0(sr'), (3.9) 

where v>0. Since cot%wa(t)^ — %Ta'(0)t, there is no 
singularity in either part of the integral near / = 0 , and 
integration by parts sufiices; we use10 sa=\jx'(t) Inslr1 

X {exp[a(t) Ins]}' . The first term (~ln - 1s) vanishes and 
we find 

ReAi(s)= -±TrB(lns)-2+e(\ir*s), 

where B is the same B as given by Eq. (3.8). Now from 
Eq. (3.1) we have 

tan2 R e M ^ ^ x O n s ) - 1 

or 

Redl(s) = §nw+l7r(lns)-l+e(lir-2s), (3.11) 

where n is an integer. Hence, rji(s) is given by 

m(s)=-B cosnwilns^+eilii-h). (3.12) 

Since t\i ̂  0, it follows that n is even if B is negative. To 
estimate B, we use Eq. (3.7) and assume that c/(0) 
«a i ' (0 ) and /3'(O)«0i'(O). Then B is approximately 

5«a / ' (0)[a /(0)3~«--(f»2+/i2)C8f»VV(0)3-1 

-p'(0)Z2mva'(0W(P)J-1+C. (3.13) 

Now a(t) presumably vanishes near t= — 50/*2, where fx 
is the pion mass. In order to avoid a ghost, /3(— 50ju2) 
must also vanish. In the linear approximation we, 
thus, have a ' ( 0 ) « (50M2)-1 , j8'(0)«/3(0)a'(0). This gives 
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C ~ + 1 . To estimate a" (0), we represent a (t) by a single 
pole formula with pole at *= T, then a " ( 0 ) « 2 r - W ( 0 ) . 
Another way to estimate /3'(0) is to suppose (ad hoc) 
that 0'(O)«2m/ia"(O), since 0(O) = 2m/ia'(O). The two 
estimates agree for T^lOOju2, which seems somewhat 
small, but is adequate for determining the sign of B. The 
respective terms in B are 

J B « l - 6 - l + l « - 5 . 

There doesn't seem to be any reason to doubt the con­
clusion that B is negative. Therefore, Re5*(s) approaches 
an integral multiple of T, slowly from above, as s tends 
to infinity. This provides a basis for a generalized 
Levinson's theorem.12 

The results of Eqs. (3.11) and (3.12) have an im­
portant application to partial-wave dispersion relations. 
First, arguments of the Pomeranchuk type used by 
Chew and Mandelstam8 to infer the asymptotic be­
havior of the discontinuity across the "left-hand cut" 
are invalid because they depend on the existence of 
integrals of the form 

dssrhn(s), 

which diverges in our model. In a more detailed 
analysis,9 it was shown that the so-called N/D method 
is susceptible to classical Fredholm theory provided, 
principally, that the integral 

This can be written in the form 

croiW = 4i r6(0){6(0)7( j )+[y(0)+J 1
, (0)] / 

+ C6,(O)-fti/(O)]«:} + 0(lii-1j), (4.2) 
where 

I(s)= f dtt-^s^^-^-s^^-^}2, (4.3) 

J= / <f / r 1 {s , a ' C 0 ) - s ' o l ' ( 0 ) } 2 , (4.4) 

and 

• / . 

K= I dtt-l{s2t«'<0)-s2tai'W). (4.5) 

The integrals / and K are independent of 5 and can be 
evaluated with the change of variables 

ds s^Tjiis) sin2 Re5/(s) 

exists, which it does in the present theory. The existence 
of two Pomeranchuk-Regge trajectories, therefore, gives 
a fairly complete and useful picture of the diffraction 
limit. 

IV. ELASTIC SCATTERING 

Further insight into the behavior of two Pomeran­
chuk trajectories can be achieved by evaluating the two 
leading terms in the high-energy behavior of the total 
elastic cross section. First, since the total cross section 
increases with energy, a theorem of Martin13 ensures the 
shrinking of the width of the diffraction peak. 

We use Eq. (2.10) for A(s,t). I t is easy to see that 
Re A(s,t) contributes only to order In-1.? for large s. 
We neglect terms of this order. Keeping only Im^4 (s,t), 
we have 

0"ei (s) = 4nrs~~ 
•J — 8 

dt 

Xr 2 {6(05«^ - i i ( / ) 5« l ^>} 2 +e( ln -^ ) . (4.1) 
12 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-Fys. 

Medd. 25, 9 (1949); R. Haag, Nuovo Cimento 5, 203 (1957). 
13 A. Martin, Annual International Conference on High-Energy 

Physics at CERN, July, 1962 (to be published). 

and 
0=exp{[a'(O)+ai '(O)]liw} 

£ = A a W [ a ' ( 0 ) + a / ( 0 ) ] . 

The result is 

/ = l n ( l - ? ) , 

tf=ln[(l+$)/(l-£)]=ln[a'(0)Ai'(0)]. 

We now construct the asymptotic expansion of I{s), 
finding 

7(i) = l m / 1 + / 2 + e ( l n - 1 i ) , (4.6) 
where 

J —c 

dt £"2{e'° ' ( 0 ) f—etcci'(o) <p\t 

= [ a ' ( 0 ) + a i ' ( 0 ) ] 

X { l n ( l - p ) + f l n [ ( l + { ) / ( l - f ) ] } (4.7) 

and where 
d //[exp(<p)]> a mexp(<p)J\ 

12= h m — <p2—( ] 
^°° d<p\ <p ) 

_ l / « " ( 0 ) « i" (0) \ a" (0)+a i" (0) 

2 W ( 0 ) a i ' ( 0 ) / a ' ( 0 )+ a i ' ( 0 ) " 
(4.8) 

The final result for <rei(s) can be written in terms of the 
original parameters 0 with the help of Eqs. (2.8) and 
(2.9). We find 

<r.i(j) = 47T&3 (0)/2wMAa' (0)] - 2{/! In {s/4mn)+h 

+iTAa'(0)( l+C)+/C^'(0)+/3 1 ' (0)) /3- 1(0) 

+ « , ( 0 ) + o i ' ( 0 ) + (w2+M
2) (2mfi)~

1 

- / ^ " ( O V A a ' ^ J J + e a n - ^ ) . (4.9) 

Therefore, both elastic and total cross sections increase 



as Ins; the limiting ratio is 

Ctot ( i ) 
Km • 
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length and 

ffu*i+)(p) = K*t»t'+'(P)+*u*^*(P)l. (5.3) 

An integration by parts served to extract Imfl+)(p), 

r<r(p')dp' tp'a(p) p /•• 
- / = — + — / dp' 
••Jo P'2-p2 4x - W o 

£_ f° <r(p'W ip'c(p) 

2ir2y0 pn 

Thus, 

dvjp') 

dp' 
In 

P'+P 

P'-P 

Re/(+)(/,)=(l+M/OT)a(+> 

+PP2™'1 (1 - MV4W2)-1 (£2-MV4W2)-1 

+— f <fctotc+)(#')ln 
P'+P\ 

= 2 { l + l n ( l - f 2 ) K l n ( ( l + ? ) / ( l - ^ ) ) ] - 1 } - 1 

« 4 ( l + £ 2 / 1 2 ) (4.10) 

for small £. If we again make the approximations em­
ployed following Eq. (3.12), the expression for <rei(s) 
becomes 

<Tei W « 27ra'(0) {In (5/4w M )+1+2C 
- , 3 W 0 ( O K ( O ) - [ V a ' t O ) ] - 1 

+ A a " ( 0 ) [ > ' ( 0 ) a ' ( 0 ) ] - 1 } . (4.11) 

In a preliminary estimate based on a single-pole model 
for a ( 0 , it seems to us that Aa" (0)/Ac/ (0) should be 
positive and less than about (25M2)"1 . With this and P- For p greater than some value p0, we suppose that the 
previously estimated values, aei(s) becomes forward amplitude can be adequately approximated by 

a few Regge-pole terms: we consider a single or double 
crei($)« (2.5 mb)[ln(£/2/i) — 3] , Pomeranchuk term, a term with a2=a2(t=0) that has 

, . , . . . , „ , ^ T7 x , . , 0 < a 2 < l and a term with 0:3=0:3 (0)<0. The Regge be-
which is positive above £ - 6 BeV In this rough h a v i o r t h e n gives the following correlation between real 
estimate, the constant terms in crtot and <rei are not in a n d i m a „ i n a r y p a r t s o f /<+) .17 

* '~# 
(5.4) 

Let us examine the consistency of Eq. (5.4) for large 

the ratio four, and in any case the corrections to Eq. 
(4.9) are small only of order In-1.?; therefore there is no 
simple explanation of the empirical ratio (<rtotAei) ~ 4 
at energies 3-30 BeV. 

V. FORWARD DISPERSION RELATIONS 

The pion-nucleon forward dispersion relation14,15 can 
be used to test for the existence of two Pomeranchuk 
trajectories. Consider the symmetric amplitude defined 
in terms of the notation of Chew, Goldberger, Low, and 
Nambu16 by 

/(+>(£) = / ( + ) ( - £ ) 

= (4TT)- 1 [^ <+> (s, t=0)+EB*» (s, t= 0 ) ] , (5.1) o f ra°sPital's m l e : 

o-tot(+)(/>)= « MP/po)+(rp(po)+(T2(po)(p/po)a^1 

+<rz(po)(p/Po)«>-1 (5.5) 
for p>po, and 

Ref^(p) = la\p\ -^00-2(^0)(47T)-1 

Xcot j7ro:2(^o) a 2 +0O a 3 ) (5.6) 

for large p. If the double Pomeranchuk behavior occurs 
<2=87r/3(0)/2w/z; otherwise & vanishes. We now split 
the integral in Eq. (5.4) into two parts at some 
pf=pi>pQ, and use Eq. (5.5) for p'>p\. The following 
behavior for large p can be evaluated with the help 

where E is the total energy of the pion in the laboratory 
system of the nucleon. The usual subtracted dispersion 
relation can be rewritten in terms of the pion momen­
tum p, p2—E2—fjL2, as follows: 

/ (+)(£)= ( l + M / ^ ) a ( + ) 

+f2p2mr1 (1 - M 2 / ^ 2 ) - 1 ( £ 2 _ M y 4 w 2 ) - i 

ap 
4TT2 J VI P' 

P'+P 

P'-P 

&\p\ &pl 
+ 0 ( r i ) , (5.7) 

pffi(p*)(a,-i) 
/ dp' p'<"~2 In 

J PI 

p'+p 

P'-P 

+-
P1 O*tot (+) (P'W 
2T2J0 pf2-p2 

(5.2) 

47r2^oa2_1 

= - M 2 ( ^ O ) ( 4 T T ) - 1 c o t ^ x a 2 ( ^ o ) a 2 

+ M 2 ( ^ o ) ( 2 7 r 2 ) - 1 ( l - a 2 ) a 2 - 1 ( ^ 1 / ^ o ) « 2 + 0 ( ^ - 1 ) (5.8) 

for 0 < a 2 < l , a n d 

where a^ is the 5-wave ( + ) amplitude scattering ^ O ^ X ^ - l ) 

14 T. J. Devlin, B. J. Mayer, and V. Perez-Mendez, Phys. Rev. 
125, 690 (1962), contains numerous references. A misprint occurs 
in their dispersion relation. 

15 Keiji Igi, Phys. Rev. Letters 9, 76 (1962). 
16 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 

Phys. Rev. 106, 1337 (1957). 

2TT 2 ^ 0 
a 3— 1 

dp' p'™-"1 In 
P'+P 

P'-P 
- po<r3 (po) (27T2)-1 (1 - ajar1 (pi/po) a3+ 6 (p~l) (5.9) 

17 The use of the asymptotic form of Legendre functions intro­
duces a small error of order (ti/po)2. 
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fo ra 3 <0 . One can see that the components of the right-
hand side of Eq. (5.4) that increase with p are given by 
Eqs. (5.7) through (5.9) and that they agree with 
Eq. (5.6). The constant components must agree as well; 
this gives a sum rule,17 

0 = (l+fM/m)a^+f2m-1(l-fi2/Am2)-1 

+ (27T2)-1 j Mtc t ( + ) (Pl)- [ dp (Ttot
(+) (P) 

- api+po(T2(po)(a2~
1- l)(pi/po)a2 

+ M » W («3_ 1-1) (pi/po)a3 . (5.10) 

This expression is independent of pi for pi>po where 
Eq. (5.5) applies. The sum rule can be generalized in an 
obvious way to include several terms of the type that 
have parameters a2, o"2(^o). 

We take pi=po—20 BeV/c and evaluate the low-
energy terms in the sum rule using the same experi­
mental data as Igi.15 This gives 

-Ct+Eycry(#o)(«y- 1 - l ) = 3.2d=1.6mb> (5.11) 

where 7 = 2, 3. If there are two Pomeranchuk trajec­
tories, the theory given in Sees. I I and I I I suggest (using 
C = + l) a = 1 0 mb, £y<ry(/>0) = - 4 1 mb. The slope of 
the total cross section at 20 BeV/c can be used to 
obtain a second constraint on the parameters; using the 
experimental data of von Dardel et a/.,18 we find 

®+ZJcrj(po)(aj-l)==p(d<j/dp)=-2±5mb (5.12) 

at p=20 BeV/c. In principle, a third constraint 
could be obtained from a "£-wave sum rule" for 

TABLE I. Parameters that satisfy the sum rule Eq. (5.10) for 
the case of a single Pomeranchuk trajectory, Ct=0. The ay are 
the / = 0 intercepts of additional vacuum Regge trajectories and 
a, is the contribution of the jth trajectory to the total cross section 
at 20 BeV/c. 

Set 

I 
II 

«2 

0.3 
0.5 

G=3 

- 0 . 2 

0-2 ( m b ) 

2 
3.2±4.6 

0-3 ( m b ) 

0 
0±0.5 

18 G. von Dardel, D. Dekkers, R. Mermod, M. Vivargent, 
G. Weber, and K. Winter, Phys. Rev. Letters 8, 173 (1962). 

TABLE II . Parameters that satisfy the sum rule for the case of 
two Pomeranchuk trajectories. The predicted values (£=10 mb, 
<TPF (20 BeV) =66 mb are used. 

Set 

I 
II 
III 
IV 

a2 

0.3 
0.8 
0.5 

- 0 . 5 

<X3 

0.2 
0.5 
0.1 
0.1 

«4 

-0 .2 
0.3 

- 0 . 1 
- 0 . 1 

0-2 ( m b ) 

-300 
-131 
- 4 6 

-123 

<r3 (mb) 

226 
130 
-7 .7 
27 

o"4 (mb) 

33 
- 4 0 

12.7 
55 

d R e / ( + ) (p)/dp2, but this is insensitive to the high-
energy parameters and already satisfied well within 
experimental error.19 

Conditions (5.11) and (5.12) can be satisfied in a 
natural way if (2- vanishes and if there is no restriction 
on ]T y ay, as shown in Table I. The predicted values of 
d and X J °7 a r e rather large and give awkward results. 
Four typical sets of parameters are given in Table I I . 
The contributions of the individual trajectories appear 
to be too large to be reasonable. Therefore, if there are 
two Pomeranchuk lines we are forced to one or several 
of the following conclusions: (i) our estimate of C may 
be incorrect, (ii) there may be some structure at a = 0 , 
(iii) the structure a t a= 1 may be even more compli­
cated, or (iv) at 20 BeV/c, we are not yet in an asym­
ptotic region. 

VI. CONCLUSIONS 

The model of high-energy behavior presented here, 
based on the assumption of the existence of two 
Pomeranchuk-Regge trajectories, shows that the Regge-
pole hypothesis does not exclude the possibility that at 
high energies the unitarity condition is saturated by 
inelastic processes. I t is, however, a powerful framework 
for pinpointing interesting alternatives. The preliminary 
quantitative estimates given in Sec. V seem to speak 
against the existence of two Pomeranchuk lines, but a 
definite conclusion must await a more reliable deter­
mination of parameters. Actually, the structure of the 
diffraction peak might be a good deal more complicated 
than envisioned here, as indicated in the work of 
Amati, Fubini, and Stanghehini,20 and Polkinghorne.21 

19 The constraint on the high-energy parameters reads 

a - 2 / ( r y ( l - a ? ) ( 2 - a y ) - i = 0±100mb. 
20 D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29 

(1962); also, CERN Report 3755/TH 264, 1962 (unpublished). 
21 J. C. Polkinghorne, Phys. Rev. 128, 2459 (1962). 


