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The line contour of cyclotron radiation from free electrons is derived quantum mechanically, including the 
effects of Coulomb interactions on the time-varying part of the wave functions ("adiabaticity") as a pertur­
bation in the Hamiltonian. The computation is similar to Lindholm's theory of atomic lines. The results, line 
shifts and half-widths, i.e., collision cross sections, are given for a variety of physical conditions. The limita­
tions of the treatment are discussed. 

1. INTRODUCTION 

TH E purpose of this study is to investigate on a 
microscopic basis the effects of Coulomb inter­

actions on the cyclotron line in a fully ionized plasma. 
The essential parameter is the collision cross section of 
the free electrons in the magnetic field with ions. The 
values most often used are either scattering cross sec­
tions derived from dc conductivity considerations, that 
do not account for the finite frequency of the radiation 
field, or are taken from the bremsstrahlung process, 
excluding effects of a magnetic field. 

The method to be followed in this paper is to compute 
from the wave functions of free electrons in a magnetic 
field the matrix elements for dipole radiation, with the 
time-dependent part of the wave functions subject to 
Coulomb perturbations. The statistical superposition 
of these perturbations is carried out in the manner given 
by Lindholm1 and leads directly to the expression for 
line shift and half-widths. 

In general, the Coulomb interactions will affect the 
space-dependent part of the wave functions as well as 
the time-dependent part. In this paper, the effects on 
the space-dependent part of the wave functions are 
neglected. This restriction corresponds to the assump­
tion of adiabaticity in the impact theory of line 
broadening. The "nonadiabatic" treatment involving 
changes of the spatial part of the wave functions is, for 
reasons obvious from the following sections, consider­
ably more complicated, and will be discussed in a later 
communication. Since the two effects are separable, it 
was judged advisable to postpone the discussion of the 
nonadiabatic case.2 

The work presented here accounts for a certain frac­
tion of the cyclotron line's half-width and, for this 
matter, of the scattering cross section in a magnetic 
field, but it has an additional significance, because it 
predicts a line shift which does not follow from the 
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1 E. Lindholm, Ark. Mat. Astron. Fysik 28B, No. 3 (1941). 
2 L. M. Tannenwald, Phys. Rev. 113, 1396 (1959). 

nonadiabatic case. I t is shown that this line shift should 
be observable under suitable laboratory conditions. 

2. WAVE FUNCTIONS AND MATRIX ELEMENTS 

The Schrodinger equation for an unperturbed electron 
in a magnetic field reads: 

h2 / e \ 2 ty 
P — A ) * = -ih—=3/r. (1) 

2m\ c / dt 

In Eq. (1), \[/ is the wave function for the electron, E is 
the eigenenergy, e and m are the electron's charge and 
mass, c the velocity of light, 2wh Planck's constant, p is 
the momentum operator. The vector potential A is 
related to the constant external magnetic field H by 

V X A = H . (2) 

Equation (2) does, of course, not determine A uniquely 
in terms of a given magnetic field. A convenient choice 
for A consistent with Eq. (2) is to set 

A = i H X r , (3) 

r being the radius vector to the field point from an 
arbitrary origin. 

Let the z axis be chosen parallel to the magnetic field 
H. The spatial part of the solutions to Eq. (1) is then 
found to be 

tnks = L-^eikz{2Tr)~ll V<n--> *(27)+1'2(» Is I)"1 '2 

Xexp[-p/2]p<«-*>>2Qa»-*(p). (4) 

The normalization length L is large and arbitrary. The 
parameter 

y=eH/2ch (5) 

contains the magnetic field, p is defined by 

p=yr2. (6) 

k is a continuous variable, s is integer and varies from 
1469 
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0 to oo, n—s varies from 

e*n-s(p)=(-)8Z 

oo to n. 

n=o fil(s—fj.)l(n—fx)l 
(7) 

is the generalized Laguerre polynomial. 
The form of the solutions corresponds to Sokolov's 

solution3 of the more general Dirac equation. The 
separate components of the solutions of Dirac's equation 
are themselves solutions of the corresponding Schro-
dinger equation. In this investigation, the Schrodinger 
equation will be used for mathematical convenience, 
limiting therefore the validity of the solutions to tem­
peratures below, approximately, 108°K. 

From Schrodinger's equation one finds the eigen-

energies4 

where 
JE»=(»+i)*«c+*2*V(2»»), 

o)c—eH/mc 

(8) 

(9) 

is the cyclotron frequency. The matrix elements for 
dipole radiation are 

\x\=(+n-its,k*\x\tn,s,k) = Kn/y)m (10) 

\y\=^n-ustk*\y\^n,s,k)^¥(n/y)m. (11) 
and 

The corresponding transition probability per unit time 
for decay by spontaneous emission is5 

MBp=4eWl\x\2+\y\2T3fczl~1 = (nh). (12) 
2>fic%m 

Msp gives the total transition probability integrated 
over the line contour about the cyclotron frequency.6 

3. INCLUSION OF COULOMB INTERACTIONS 

So far, we have considered the wave function of 
electrons subject only to a constant external magnetic 
field. We now proceed to include the effects of inter­
actions between the electron and positive ions in the 
two-particle approximation. The interaction adds a 
time and space varying part H(r,t) to the Hamiltonian 
in Eq. (1) which now reads 

f ft2/ e \ 2 "1 # 
p — A +H(r,t) k = -ift—. (13) 

L 2m\ c / J dt 

Assuming that at the initial time (t= — <x>) there are no 

3 A. Sokolov, Suppl. Nuovo Cimento 3, 743 (1956). 
4 R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 196 

(1960). 
6 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­

pany, Inc., New York, 1955), 2nd ed., p. 262. 
6 We mention in passing that from the preceding formulas the 

line contour due to radiation damping can be derived. One finds 

/(«) oc {(w-Wc)2+[4e2aJcV(3wc3)]2}-1. 

Under most conditions the half-width due to radiation damping is 
negligible compared with the half-width due to collisions. If this 
is not the case, the two quantities can be added in first approxima­
tion to an effective linewidth. 

perturbations present, ^ is a solution of Eq. (1). The 
time-varying part can be written in the form exp[iEt/ff\. 

In order to facilitate comparison with similar work 
on atomic lines, we quote the alternate notation of 
Heisenberg for the wave function, i.e., we replace 
Schrodinger's \p in Eq. (13) by the product of the time 
development matrix U and the wave function ^ in the 
Heisenberg representation.7 We then have 

h2 / e \ 2 I d 
( P — A ) +H(ryt) UV= -ih—(UV). (14) 

2m\ c I J dt 

The initial condition, i.e., that \p at / = — *> is an 
eigensolution to the unperturbed Schrodinger equation, 
can then be written in the form 

Uab(t= — X>) = dab} (15) 

where a and b are quantum numbers specifying the 
initial wave function. 8 is the Kronecker symbol. Since 
the momentum in the z direction is proportional to the 
value of k, the specification of Eq. (4) introduces an 
infinite uncertainty in the position of the electron 
along the z axis. 

For computing the contour of the cyclotron line due 
to interactions with heavy ions, the details of behavior 
during an encounter are of no interest, as it will be 
shown presently. Hence, the total change of the wave 
function in time can be replaced by the time average of 
the change caused by the interaction. For the same 
reason, in this approximation the variation of the wave 
functions in z direction need not be included. 

Before we proceed to write down the solution of 
Eq. (14), we define the spectrally resolved intensity of 
spontaneous emission in terms of the wave functions 
\pi before and \f/f after emission of a quantum with 
energy hoo: 

I(u) = Ca>* 
-oo J r 

tt*(t,t)e*ltt{T,t)d*dt (16) 

C is the normalization constant given, for instance, by 
Margenau and Lewis.8 From the initial condition of 
Eq. (15) it follows that at time t= — oo 

Uf=8af8bfy Ui~Bai8bi. (17) 

The problem we are now faced with is to find the time 
variation of U/ and Ui caused by the perturbation 
described by Eq. (14). 

The line broadening is then produced in the following 
way: Assume that a finite transition probability for 
dipole radiation exists only between states differing in 
quantum numbers by a certain value. The effect of 
collisions will be to spread the probability of finding a 
particle in a given initial or final state over a range of 

7 P. W. Anderson, Phys. Rev. 76, 647 (1949). 
8 H . Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 

(1959). 
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quantum numbers. Since, in general, this spread will 
not be exactly the same for initial and final states, the 
overlap between the states, which develop in time from 
the initial and final states, changes as a function of time. 

4. SOLUTIONS TO SCHRODINGER'S EQUATION Solving for <pa(t) results in 

space, we obtain 

Ea<pa(t)+ J <t>a*(r)4>a(r)H(ryt)<pa(t)dt=-ih<pa'(t). (24) 

The problem of solving Eq. (14) in Heisenberg's 
notation, or the equivalent Schrodinger equation is 
exceedingly complex. Several simplifications will be 
introduced and discussed in turn. 

Firstly, we represent the entire set of possible elec­
tron-ion interactions by the same electron wave func­
tion, but by varying ion positions R. The wave function 
of the electron can then be chosen as a function which is 
sharply peaked at the Larmor radius. The representa­
tion by sharply peaked functions results in a consider­
able mathematical simplification. In fact, specifying the 
energy in directions perpendicular and parallel to the 
magnetic field by quantum numbers n and k, respec­
tively, is sufficient to determine the initial and final 
wave functions to be 

^i = 'ftn,klQ, ^f = ^n-l,t (18) 

in the notation of Eq. (4). Mathematically, Eq. (18) 
implies that 

s = 0 (19) 

or, in physical terms, that the origin is chosen coincident 
with the center of the orbit.9 I t is obvious from Eq. (7) 
that s = Q corresponds to a minimum spread in radial 
direction. 

Secondly, we assume that the effect of the electron-ion 
interaction is to change the time varying part of the 
wave functions ^ ; and \pf without changing their spatial 
parts. In the following, this type of solution will be 
called "zero-order solutions." Then, \j/ is separable in 
r and £, i.e., 

*«(r,O = *«(r)*a(0. (20) 

Splitting the Hamiltonian H(t,t) into a part H0 con­
taining the magnetic field and a part Hi containing the 
Coulomb interaction, we have 

lHQ+Hl(r,t)']Mr,t) = -ihd^a/dL (21) 

Since there is no change in the spatial part of the 
wave function, 

H1(r,t)<t>a(r) = <t>a(r)Hl(r1t). (22) 

From Eq. (21) it follows that 

Ea<t>a(r) <pa(t)+<j>a(r)H(r,t) <pa(t) = - ih4>a(r) <pa'(t), (23) 

where Ea denotes the eigenenergy introduced by Eq. (8). 
Multiplying by the complex conjugate of the spatial 
part of the wave function, and integrating over all 

<pa(t) = exp -(«)-

xf \Ea+f 0 a*(r)0 a ( r ) f f ( r ,O*J(»l . (25) 

By taking Eq. (25) together with the previously dis­
cussed spatial part of the solution, for which Eq. (4) 
is to be inserted, we have a complete expression for the 
wave function. 

I t may be wise to note that a choice of 

<t>a(r)=4'n,k,o, (26) 

with the perturbing ion located at variable position R in 
the plane perpendicular to the magnetic field is equiva­
lent to a choice of 

<t>a(r)=$n,k,s, ( 27 ) 

with s=0, i.e., it is equivalent to placing the ion at the 
origin in the plane perpendicular to the magnetic field. 
Adopting <£a(r) from Eq. (26) leads to the explicit 
specification of the problem. We have 

^n ,A ; , o (0 = = expj - ( « ) " dt 

X \En,k.0+ f <l>n,k.Q*<l>n,k.oH(R,T9t)dT [ 1 . ( 2 8 ) 

which is equivalent to Eq. (25). 

5. PHYSICAL SIGNIFICANCE OF ZERO-ORDER 
SOLUTIONS 

It was pointed out previously that making use of 
zero-order wave functions for the interaction corre­
sponds to letting the wave function be constant in 
space. The physical significance of working with these 
solutions can be seen in the following way. 

Firstly, compare the wave functions before and after 
the interaction, i.e., at times — <x> and +<x> : The total 
energy of the electron cannot have changed. The impli­
cation is, therefore, that any energy loss due to radiation 
during the Coulomb interaction (bremsstrahlung) is 
neglected. This neglect can be justified whenever the 
Coulomb interaction is of a type, in which the ratio of 
the emitted photon energy fua to the total kinetic energy 
of electrons \mv2 is small, i.e., if 

9 (n—s) is the value of the generalized angular momentum. 2fooo/mv2<Zil. (29) 
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The probability of emission of a photon with energy 
ha) is greatest if, in the classical picture, the distance of 
closest approach 

b~v/u. (30) 

Therefore, only interactions with collision parameters 

by>2fi/tnv (31) 

can be treated according to this criterion. Under all 
physical conditions of interest, the number of inter­
actions violating Eq. (31) is negligible.10 

Secondly, use of zero-order functions also implies 
tha t the ratio of velocities parallel and perpendicular to 
the magnetic field is not changed by the Coulomb inter­
action. We therefore exclude any possible redistribution 
of kinetic energies by Coulomb interactions. 

Thirdly, combining the two mentioned effects, one 
may say tha t the classical counterpart of assuming a 
spatially undisturbed wave function is to neglect a 
spatial change in the orbit of the particle due to the 
interaction. If there were no magnetic fields present, 
this orbit would be a straight line. The "straight-line 
approximation/ ' however, is well justified even in most 
cases dealing with pure Coulomb interactions, where 
the magnetic field does not support the motion of the 
orbit 's center along a straight line.11 

A mathematical consequence of this "straight l ine" 
picture is the possibility of replacing the time coordinate 
by the z coordinate, i.e., the relation 

dz=Vzdt, (32) 

Eq. (20), 

I{oi) — const 

with a constant velocity vz along the magnetic field. 
Equation (32) is, of course, subject to the uncertainty 
principle, in the sense, tha t fixing the velocity vz within 
certain limits results in corresponding limits for z. 

6. COMPUTATION OF THE LINE CONTOUR 
BY LINDHOLM'S METHOD 

Lindholm1 has developed a theory for the broadening 
of spectral lines in the case of interactions producing a 
"random-phase change."8 This type of interaction 
produces a certain change in the eigenfrequency of the 
oscillator, whereby in a large number of interactions the 
distribution of frequency modulations is random. In 
essence, the postulated randomness amounts to saying 
tha t the interactions are uncorrected, and tha t their 
effects therefore are additive. The Debye shielding in a 
completely ionized plasma studied in this investigation 
does not affect the applicability of Lindholm's theory, 
since it will be shown in Sec. 6 tha t the effect of a finite 
cutoff length of the perturber 's potential is negligible. 

Lindholm begins his treatment by considering the 
expression for the intensity distribution in a spectral 
line, Eq. (16), which we specialize with the aid of 

10 L. Oster, Rev. Mod. Phys. 33, 525 (1961); cf., Appendix H. 
11 See reference 10, Sec. 4. 

<*.*|r|*»> 

/

-H» 

-00 

X / exp(—•io>t)<f>a*(t)<pb(t)dt . (33) 

For the time-varying part we take the solution (25). 
Equation (33) then becomes 

I(CJO) = const (0a* | r | <j>b) 

X / expf l — u 
EB-EA -il I2 

ia>+i hA(a,6,0 \\dt\ , (34) 
ft J J I 

where A(a,b,t) describes the effect of all the collisions 
and is represented by the following expression: 

/ (<t>a*<t>a-<t>b*4>b) 

XH(r,t')drdt'. (35) 

Alternately, if we fix the wave function, but let the 
ion's location be variable, we have for a particular ion 
located a t R,. 

= («)" 
/

t /.+QO 

/ [j>n-l,k,0*<l>n-l,k,0~<t>n,k,0*4>n,k,0J 

XH(r,'Ri,t')dfdi, (36) 
with the Hamiltonian H(r,Ri/) defined by 

Ze2 

ff(r,R</) = , 
[ ( r - ^ ) 2 + ^ ' - 0 2 ] 1 / 2 

t-tQ<t'<t+t0, (37a) 

# ( r , R t / ) = 0, otherwise. (37b) 

Z is the charge of the positive ion. At time /, the center 
of the electron's orbit passes through the ion location. 
to is defined by 

/o=C^max2-Pi2]1 /2A- (38) 

Let k denote the unit vector parallel to the magnetic 
field direction. Then 

Dt-| = |R*Xk | (39) 

The finite value of t0 takes the shielding of the ion po­
tential into account. At present, there is no accurate 
theory available which predicts the correct value for 
Rmax in a magnetic field. We shall use tentatively the 
Debye length 

\D « ( K T ) l f 2 / 2 ^ 2 e N 6
m (40) 

as shielding distance, and verify tha t the numerical 
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results are insensitive to the choice of the cutoff 
parameter. 

Equations (36) and (37) describe the effect of a single 
collision with an ion at position R;. Cumulative effects 
of many collisions are then obtained by summing over 
all collisions, i.e., by calculating 

I(co) = const 
-EA 

L expl(' 
+ £ A(N,Ri,t) \dt(<t>n-l,k,0*\r\<l>n,k,0) (41) 

Lindholm has carried out this calculation for a random 
distribution of perturbers, assuming that the time scale 
of the interaction is small compared with the lifetime 
of the states.12 We shall verify below the applicability 
of this assumption by computing the relative magnitude 
of encounter time and line width. 

It is not the scope of this paper to summarize the 
several steps in the transition from Eq. (41) to Lind-
holm's final form which reads: 

4e2co3 

I(u>)do)= nh 
ii\ 

3wmcs Ui2+(o)—a)c—U2)2 
-doo. (42) 

The line contour represented by Eq. (42) is very close 
to a Lorentzian form, except that in addition to the 
classical broadening represented by the parameter u\ 
there occurs a shift of the resonance frequency 

a)c=(EB-EA)/h, 
given by u2. 

The linewidth parameter u\ reads 

(43) 

U\ = J l - / P ( R ) cos{A(»,R)}dRL (44) 

with 
A(»,U) = -iA(»,12,*==oo). (45) 

/= oo represents the completed collision. The limits of 
integration in Eq. (44) are R=0 and R=Rma,x. 

For the finite value of i?max we take again the Debye 
shielding distance. It should be pointed out that the 
integration over the ion position R is extended only over 
the two components perpendicular to the direction of 
the magnetic field. Since we have neglected spatial 
correlations by the assumption of randomness, we are 
not concerned with the absolute value of the ion position 
in z direction. 

The probability function P(R) depends on the geo­
metric probability of finding an ion at a distance R from 
the guiding center of the electron: We have 

P(R)dR=2wRdR/w\D
2. (46) 

v is the number of interactions per unit time. Since we 
have assumed complete randomness in the spatial dis­
tribution of ions, and did not allow for time changes of 
the velocity of the electrons, we find v, again from 
obvious geometric considerations, to be 

v = ntir\D2vz (47) 

rii is the number of ions per cubic centimeter. 
In a similar manner, u2 which represents the shift of 

the resonance frequency in Eq. (42) is given by the 
expression8 

•» •K==xtmax 

«,=*/ P(R) sin{A(M,R)}<fR. (48) 

The problem of computing U\ and u2 reduces therefore 
to the evaluation of A(NyRy<x>) from Eq. (36). The 
mathematical details are summarized in Appendix A. 
The result reads 

A ( ^ ) = A0=-
Ze2 Ze2 

—R2 
2\D+(\D

2-R2yi2 

km hv \y\D
2+y\D(\D

2-R2)lt2 2y\D£KD'+2\D
3(\D

2-R2yf2+\D
2(\D

2-R2) 

A(n,R) = A 0 - Ze2/hvn, yR2>n. 

, yR2<n, (49) 

Equation (49) shows that the result, A(n,R) is discon­
tinuous at R= (n/y)112. This fact appears to correspond 
to the physical situation that, for an ion position within 
the projection of the trajectory on the #-;y-plane, the 
component of the force on the particle along the line join­
ing ion position and the guiding center changes sign, 
whereas this sign change does not occur if the ion position 
is outside of the trajectory's projection. The first term 
in Eq. (49) outweighs the second term, which can be 
neglected in general. The error is of the order (TL/XD)2, 
TL being the Larmor radius. In numbers, A(n,R) is 

^ 12 A more accurate quantum-mechanical definition using correla­
tion functions is given by Margenau and Lewis, reference 8. See 
also the discussion in Sec. 7. 

positive for R<(n/y)m, and negative and much smaller 
for R>{n/y)li2. In both cases, | A(»,j?)|«l. 

Using the fact that | A|<$C1, we expand sin A and cos A 
in the formulas for U\ [half-width, Eq. (44)] and w2 

pine shift, Eq. (48)]. After some algebra, including 
again the neglect of terms of order (TL/XD)2 with regard 
to unity, we find 

7T Z V rL
2 

«i=n% , (50) 
2 ft2 vzn

2 

in is the quantum number as before) and 

4T Zee 
u2=nt . 

3 H 
(51) 
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log 

FIG. 1. Log(Q/Z2) vs log£n with a = Ei/Eu as parameter. 
<3/Z2 in cm2, E in eV. 

In terms of Ek and E\\, i.e., the kinetic energies of the 
electrons perpendicular and parallel to the magnetic 
field, we obtain instead of Eq. (50) 

Ux—Yli 
w Z2e4vz 

2 EiE\\ 
(52) 

7. DISCUSSION OF THE LINE PARAMETERS 

uh which represents the collision half-width of the 
cyclotron line depends on the ion density Hi, the ionic 
charge Z, and the electron energies EL and E\\. I t neither 
depends on the magnetic field nor on the cutoff distance 
AD. The independence of \D is plausible since we assume 
throughout this paper that the electron motion is deter­
mined by the magnetic field rather than the Coulomb 
interaction. The independence of the magnetic field is 
derived from the compensation of the strength of the 
interaction and its probability. This can be seen from 
Eqs. (44) and (49) which state that the strength of the 
interaction is proportional to [Aw,i?)]2ocrL-2 after ex­
panding cos[A(w,2£)], whereas the probability of a 
single interaction is proportional to rL

2. Therefore, in 
averaging over all interactions (of particles with the 
same parallel and perpendicular energies), the magnetic 
field vanishes from the collision half-width. 

From Eq. (52) we obtain geometric cross-sections Q 
by the conventional definition 

Ui = Qvzn{. (53) 

Figure 1 shows a plot of \og(Q/Z2) vs logjEM with 

a=E,/'Eu (54) 
as parameter. 

_ 

'' 

y 

h 

/ 
s 

/{ 
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/ 
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vfc 
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1 

1 
/ 1 

Z sX\/ i 

</' \&J 
/ x X 
^ v X 

\° X 

i X 
6 8 

log H (gauss) 

FIG. 2. Log(w2/Z) vs logH with m as parameter. u%IZ in sec-1, H 
in G. The dashed lines illustrate the locus for the occurrence of a 
line shift of 3 % at low magnetic field intensities, corresponding to 
a nuclear charge Z— 1 and Z = 10, respectively. The solid lines may 
be extended to the upper left. 

The line shift, which is not obtained from the simple 
collision theory of the Lorentz-type, depends on the ion 
density and the magnetic field, but not on the electron's 
energy. Since the nonadiabatic spatial variations of the 
wave functions do not lead to a line shift, u2 is the 
final result. We have plotted in Fig. 2 log(u2/Z) vs logH 
with Ui as parameter. The shift increases with increasing 
ion density and decreasing magnetic field, as long as 
the basic assumption 

rL
2«\D

2 (55) 

is satisfied. For a combination of tii= 1010 cm - 3 , 
# = 1 0 3 G , the line shift is about 3 % of the gyrofre-
quency. Hence, it should be observable under suitable 
experimental conditions. 

8. LINEWIDTH FOR A MAXWELLIAN ASSEMBLY 
OF ELECTRONS 

For practical applications, the average over the line-
width parameter ux with regard to a distribution func­
tion of electron energies is needed. As mentioned in the 
Introduction, the line contour due to adiabatic inter­
actions by itself is not too significant for experimental 
applications since the observed line shape for cyclotron 
radiation is due to the combination of adiabatic and 
nonadiabatic interactions with the addition of Doppler 
effects. However, the calculation of the line contour 
does provide an effective collision half-width for adia­
batic interactions, and a measure of deviations from the 
Lorentzian shape for the collision broadened line, which 
then may be folded with the Doppler profile and, of 
course, the nonadiabatic effects. 
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TABLE I. Line contour for a Maxwell-Boltzmann distribution. 
a^ninZi^(mKT)-1(m/2KT)lli. Column III is explained in the 
text. 

Aw/a $(&u) III 

0 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

1.00 
0.93 
0.77 
0.50 
0.29 
0.15 
0.05 

1.00 
0.97 
0.87 
0.50 
0.20 
0.06 
0.01 

Using U\ from Eq. (52) and the expression for the 
intensity given by Eq. (42), we obtain by integrating 
over the distribution function of electron velocities: 

2 eW f+0° 

3TT mcz J -oo 

X / £ i P(E i ) JE J 

'o 

2n{jrZ2eA' 

X 

•ZW\ 

,EL J 

( ) +(ccc+U2—o))2 \ < 
A rnvzEi I J 

d(Ezu*)y (57) 

writing P(Ez)d(Ez
l/2) for the relative probability of 

finding a single particle with a velocity between Ez
112 

and Ez
1/2+d(Ez

1/2)y and P(E^dEL for the relative 
probability of rinding a single particle with an energy 
between Ex and EL-\-dEx. 

Assuming a Maxwell-Boltzmann distribution for the 
electrons we have 

P{Ez)d(Ez^
2) = expZ-Ez/KTld(EzV

2)/(7rKT)V2 (59) 

and 

P(El)dE1 = expZ-El/KT^d(El/KT). (60) 

Letting 

Aa) = Q)c-\-U2—o> = G(ntirZ2e*/tnvzKT), (61) 

Eq. (56) becomes 

4e2co2 

/ («) = 

X 

where 

3Trmcs 

+00 zxp[-rnvz
2/2KT~\d{Ez

112) (KT)2f(G) 

(TrKTyt^n&Zty/mVt) 
(62) 

^-^K^Q+'K^Hi))-<63) 

with 

/ 1 \ r*> smx / 1 \ /•* cosx 
s\~?r ~~dx' d\~?r —dx- (64) 

\(jr/ J no X \Lr/ J HG X 

TABLE II. Line shift and width for typical values of ion density 
Ni (cm"3), temperature T(°K), and field strength H(G). 

iV i=1010;i7=103 ui/o>c UbT/a) U^/ui 

r=io4 

r=io5 

r=io6 

1.4 
4.4 
1.4 

^ i = 1010;5 r=106 

r = i o 4 1.4 
T==105 4.4 
r = i o 6 1.4 

iVi=101 4 ;#=106 

T=IW 1.4 
r = 1 0 5 4.4 
r = i o 6 1.4 

21 
97 
30 

6.4 
43 
23 

6.4 
43 
23 

25 
103 
41 

25 
103 
41 

14 
69 
30 

10"6] 
10-8] 
10-9] 

10-9] 
10-"] 
10~12] 

10-5] 
10-7] 
10~8] 

On letting 

we obtain 
••{2KT/m)ll2x 1/2 

8V2aj2(£T)5/2 

where 

J 0 \(n. 

$<Khl2e2Z2n%mmcz 

Acox1/2 

(n^rZ2e4/mKT)(m/2KT) 1/2/ 

(65) 

(66) 

<&. (67) 

A simple numerical calculation yields for #(Aco) the 
approximate values in Table I. Normalizing the half-
width of the Lorentzian line to 

rn{irZ2e*/ m 
A J _ 

L mKT \2K 

n \ 1/2-1-1 

— J =0.50 (68) 

with center intensity one, we obtain column I I I of 
Table I. 

From Table I, it follows that the half-width of the 
adiabatic part of the cyclotron line in the case of a 
Maxwell-Boltzmann distribution of electrons is 

O.Sn*rZ2e4(fn/2KT) ll2(mKT)-\ (69) 

The effect of a Maxwellian spread of velocities is the 
shifting of a part of the intensity distribution from the 
line core to the wings. 

For a rough estimate of orders of magnitude, some 
representative values of U\ in units of the gyrofrequency 
o)c are given in Table II . In computing these values we 
have assumed equal partition of EL and E\\. For Ex and 
E\\ we take the equilibrium values 

EU = $KT, EL=KT. (70) 

Also included in Table I are values u8c of the half-width 
computed with the aid of momentum-transfer cross 
sections, i.e., from scattering processes of the type con­
sidered in dc conductivities.13 The values uhr are derived 
in a similar manner making use of "bremsstrahlung 
cross sections." Here the absorption coefficient for a 

13 R. S. Cohen, L. Spitzer, and P. Routly, Phys. Rev. 80, 230 
(1950); L. Spitzer and R. Harm, ibid. 89, 977 (1953). 
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bremsstrahlung process is written in terms of a cross 
section.14 with the frequency w fixed at the gyrofre-
quency. Ubv and usc are derived neglecting adiabatic 
effects. 

It should also be noted that the adiabatic broadening 
because of its Erleoz~

l dependence may become compar­
able to the more significant nonadiabatic broadening for 
distribution functions for which the average energy in 

The variation of 4>n,k,o in the direction along the mag­
netic field is given by 

<t>n,k,o^eik*/LV*, ( A 2 ) 

according to Eq. (4). By the uncertainty principle we 
have 

ApzAz^h. (A3) 

Apz is the uncertainty of the momentum in z direction? 
Az the uncertainty of the position in z direction. It 
follows that AvzAz^h/m. Avz is the uncertainty of the 
velocity component in the z direction. 

Consider an electron wave packet localized to within 
Az at the beginning of the transit of an electron through 
the Debye sphere surrounding the ion. During the 
transit, there is the following spread in the wave pocket: 

Avz(\D/vz) = -(Az)~\ (A4) 
m vz 

Minimizing after transits, the width of the wave packet 
is of the order 

Az+Avz(\D/vz)~2[ ) . (A5) 
\m vzJ 

If this width is small with regard to the Debye-length 
XD, the electron may certainly be regarded as a particle 
during the interaction, at least, as far as the z direction 
is concerned. Then, exp[ifof]Z,-1/2 can be replaced by 

[_Kz-vz{tf-t))Ji\ (A6) 

From the condition 

2(h\D/mvzy^«\D (A7) 

we obtain in numbers 

10-8(»1/2/r)1/2«l, (A8) 

with vz^(KT/m)1'2 and 

\D=1(T/Neyi\ (A9) 

The inequality (A7) holds for all "independent 

14 See reference 10, Appendix B. 

the direction parallel to the field is very different from 
the average energy in the direction perpendicular to the 
field. This is the case in many thermofusion plasmas. 

APPENDIX A 

We summarize here the mathematical computation 
of A(N,R,<x>) used in the development of Sec. 5. 

According to Eqs. (30) and (37), 

particle plasmas".15 Equation (Al) then becomes [cf. 
Eqs. (32) and (A6)]: 

A(AVR,oo) 

= ( « ) - 1 / / / / « [*-» . ( ' ' - ' ) ] 

/ e~xxn~l e~xxn\ 

\(n-l)!2ir n\2ir) 

( ~Z*2 \ 
X Wdxdzdd, (A10) 

\ [ ( r - R ^ H W - 0 2 ] 1 / 2 / 

or, since the integrand is independent of z, 

A(NJt,*>) 

= (**)-1/ / / — ( ) 
J t'-t^-uJ x~oJ0=0 2ir\(n—1)1 n\I 

XI )dt'dxdd. (All) 
\ [ ( r -R t - ) 2 +^ 2 ( ^ -0 2 ] 1 / 2 / 

Recalling the fact that 

v.(*'-0 = «, (A12) 

the time integration can be transformed back into an 
integration over z: 

A(n,Pi) = A(n,R) = - iA(N,R, °o) 

= (fc.)"W / / —( ) 
y_(xD

2_Pi
2) Jx=oJe-o 2ir\nl (n—1)1/ 

X )dzdxdd. (A13) 
\ [ (r-P t-)2+z2]1 / 2 / 

The limits on x=yr2 [cf. Eq. (5)] are not critical, since 
the wave functions are sharply peaked at rz<3CX/). 

15 J. L. Delcroix, Introduction to the Theory of Ionized Gases 
(Interscience Publishers, Inc., New York, 1961), p. 108. 

A(iv,i?, oo ) = (;&)-* I. / 
J t'-t^-to J —x 

fan-l.fc.O <Pn-l,k,0~ -<t>n,k,§ (/>n,k,o) 
-Ze2 

[(r-R^+^-On1'* 
-dt'dx. (Al) 



C O U L O M B I N T E R A C T I O N S I N S T R O N G M A G N E T I C F I E L D 1477 

The integration can be readily performed and yields 

1/2-1-1/2 -2 r -(X/>»-pi*)i/i r-x /X\1/2-T 
! / / dddz -+pi2+z2- 2Pi costff - J 

r2w [Tx /x\112 ~]lf2 } r2* rx /x\1^2 "I112 

= 2 / In — I p i C o s d l A + X D 2 +(Xz>2-pi2)1 / 2 \dd-2 In — 2 P l c o s ( ? f - J +p*2 dd. (A14) 

First, consider the second term on the right-hand side: for x1/2/y1/2pi>l, and 

rypi2 Fe~xxn e~~xxn~^~\r Ze2~\ 
Xnlx+ypt-ly^x^pi cosd^dS. (A15) _27r / ln(7P i

2) 
A - o L nl ( » - l ) ! J L 2 i r f a U 

\dx (A22) 

Letting 

we obtain 
y = * * , 

0 In x + 7 P i 2 ~ 7 1 / 2 ^ 1 / 2 P O + - ) 
^ (unit circle) L \ y / J 

(A16) f o r ^ 2 / 7
1 / 2 P i < l . 

The sum of contributions (A21) and (A22) can be 
rewritten in terms of the incomplete gamma function 

or, with 

alternately 

X 

a=xM, & = Y1/2PX, 

( - ' ! ) • <*"> 

y(a,x)= / e-na~ldt, T(a,x)= / e~Ha~ldt. (A23) 

Disregarding the factor Ze2/hv> one obtains 

(A18) 
ln(7Pi2) 

"v(n+l,ypi2) y{n,ypi2) 

nl 

\n,ypizn 

( » - l ) I J 
X/yTl p—X/yll—1 — 

J K y J V b y + \\nxdx. (A24) 

- ; « lnfy J—\-iV> lny—. (A19) With the identity 

Using the contour illustrated in Fig. 3, we evaluate f __ _3 

the complex integrals, obtaining 

27 r ln ( -# )+ ;C , ^ V ^ P r ^ l , C=const, 

27rln(-7p; 2)+;C, x^y-^pr^l, C = const. 

The corresponding contribution to A(^,p») is 

r00 re~xxn e~xxn~l-]r'—Ze2~\ 
-2w / In* to (A21) 

JX=yPi* L »! ( » - l ) ! J L 2 T f e J 

\nxdx 

(A20) = e - ^ 7 1 " 1 ^ lnx— x)— I (n— \)xn~le~x \nxdx 

— I e~xxndx+ I e~xxn Inxdx 

+ / {n-\)e~xxn~ldx, (A25) 

one obtains for the integral in (A24) 

rre~xxn e~xxn~1^ 1 
I \nxdx= e~xxn~1(x \nx—x) 

J L nl (n—l)lJ nl 

§ o r - (whichever <l) 
D o 

+—[T(n+l,x)-(n-l)T(n,x)l. (A26) 
nl 

FIG. 3. The contour integral of Eq. (A19). 

Expression (A24) then becomes 

T(n7x)/n\, (A27) 

file:///dd-2
file:////nxdx
file:///nxdx
file:///nxdx
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or approximately, integrate: 

Ze2 r rre-xxn < r v n 
for » « 1 . (A28) / / 

ThvJ J L n\ (»-l)!J 
0 - 1 ) ! 

X l n [ ( x - 2 ^ 2 7 1 / 2 P i cos^+7Xi>2)1/2 

1/n, ypi2<n, c / / 1 r\^o\ ^ 

0, ypi2>n, 

Note that 
n~KT/ha>c> WT/H. (A29) 

+ 7 i /2(X l )2__ p .2) i /2]^^> (A3o) 
In the classical limit, our approximation (A28) holds 
exactly. Since ?££>!, e~xxn is sharply peaked at x=n. We there-

To complete the evaluation of A(n,pi) we must fore obtain 

/ In — 2 Picos$+\D
2 + (\D

2-pi2)^2 

T»VJO-A I LVy 71/2 / J 

K» - l (/*-l)1/2 X1 

2 j pi COS0+AD2 J 

1/2 v 1/2 

</0. (A31) -ln| ( 2 :—pi COS0+XD2 ) +(X2>2-Pi
2)1/ ; 

y 
Now, 

logC/(«)]-log[/(»-1)]=/ '(»)//(»), (A32) 
and the expression (A31) becomes 

Ze2 

irfiv, 

5 / ^ r l pi -\r/n n112 \^2 ~TlVn n112 n1/2 

- / cos* ( — 2 p.-cosfl+Xi)2) +(XD2-pi2)1/2 — 2 P<cos6H-Xi>2 <». (A33) 
J o L7 n1'*?1'1 JLVy 71/2 / J LT 71'2 J 

Since n=yrL2, and since we assume rz<3CXi>, this expression may be expanded in a rapidly convergent power series 
in cos0. The term in cos0 vanishes upon integration. To order of the dominant factor in the coefficient for cos20 
we have 

Ze2 r2r f 
- / [ T X ^ + T X D C X ^ - P ; 2 ) 1 ' 2 ] - 1 

r W PiK\D
2-Pi2)m 11 t x 

-COs20 h \dd (A34) 
L7[Xi>4+2Xz>3(XjD

2-pi
2)1/2+Xz)2(Xi>

2~pi
2)] y\D\\D

A+2\D*(\D*-p*yi*+\D*(\D*-pf)lJ\ 
and 

Ze2 Ze2 f 
A(njPi) = frXs^X^X^-p;2)1'2]-1^ 

fivn hv l 

- p ^ X ^ - p ; 2 ) 1 ' 2 ^ ^ (A35) 

if ypi2<n, peratures of the order 105 °K and lower, the argument 
A(»,p,-) = A0—Ze2/hvn (A36) of the log term must be altered slightly. 

•* 2^ T? *.' /A2c\ i / A o / \ +i i . j The dc limit of the conductivity can be written in if ypi2>n. Equations (A35) and (A36) are the desired ^ - ~, N .A, ^ * n • r if terms of a cross section (J(co) with the following func­
tional dependence: 

APPENDIX B 

The bremsstrahlung cross sections mentioned in ^o LvAw JJ • \ ) 
Sec. 8 are obtained in the following way. The con- On the other hand, the dependence of the conductivity 
ductivity cru (sec-1) for frequencies between a> and for finite frequencies on the cross section is conven-
co+du, and the absorption coefficient per cm, KU, are tionally written as 
related by <rw <x <2(co)/co2. (B4) 

w} tk
 w m The consistency of Eqs. (B3) and (B4) can be verified 

NeNi 32ir2Z2e* / m \ m r^KT~] hY computing the limit a> -> 0 of <2(co). 
- " r/ I J . (B2) We then have 

NiWz/2Z2ee F4KT' 
Q(u) = ! l n 

In Eq. (B2), y= 1.78- • • is Euler's constant. For tern- 4(6)1/2(KT)2 Lyfiwc 

(B5) 


