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Resonances of a sphere of plasma in a magnetic field are discussed for a radius small compared to the 
wavelength of the incident radiation. There are two classes of resonances: radius independent and radius 
dependent. The former are the electrical analog of the resonant modes originally observed in ferrites by 
White and Solt. The latter are related to the electromagnetic resonances of a dielectric sphere. Although 
some of the approximations used in calculating the electromagnetic resonances are not obviously valid, 
they give remarkably good agreement with experiments on small spheres of indium antimonide. In particular, 
it is shown that a strong resonance is associated with a mode which is essentially a rotating magnetic dipole. 

INTRODUCTION 

THE effective dielectric constant of a plasma in a 
magnetic field is a tensor. The mathematical diffi

culty of solving boundary value problems involving 
finite plasmas in a magnetic field is therefore great, and 
very few have been solved. The resonances of a spherical 
plasma in a magnetic field is still an unsolved problem. 
We have observed such magnetoplasma resonances in 
small spheres of indium antimonide where the plasma 
consists of the free electrons and the immobile, posi
tively charged, donor impurities. 

The resonances were observed by placing a small 
sphere of indium antimonide in a waveguide or a reso
nant cavity and observing maxima in the absorption of 
K-bsmd (/«25 kMc/sec) radiation as a function of 
applied magnetic field. In order to reduce the scattering 
frequency the sample was cooled to about 60°K. At this 
temperature the scattering frequency was generally 
smaller than the plasma frequency and the cyclotron 
frequency, but almost a few times greater than the fre
quency of the exciting radiation. The resonances were 
studied as a function of sphere diameter, electron 
concentration, and the symmetry of the exciting micro
wave field. The electrons in indium antimonide have an 
isotropic effective mass equal to 0.014 times the free-
electron mass. This low effective mass makes this ma
terial particularly useful for plasma studies since one can 
have a high plasma frequency with fewer carriers (and 
therefore fewer scattering impurities) and a high cyclo
tron frequency with a relatively small magnetic field. 

The standard treatment of the electromagnetic reso
nances of a dielectric sphere1 shows that these resonant 
modes may be divided into electric (TM) modes where 
the magnetic field is always perpendicular to the radius, 
and magnetic (TE) modes where the electric field is 
always perpendicular to the radius. When the "dielec
tric" sphere is a plasma in an applied magnetic field the 
dielectric constant is a tensor and the separation into 
electric and magnetic modes is not generally possible. 
However, if the radius of the sphere is much smaller 
than the wavelength of the radiation in the material of 
the sphere, the electric field in the electric modes is much 
larger than the magnetic field. We can, therefore, neg
lect the magnetic field and all propagation effects and 
solve the problem in the electrostatic approximation 
using Laplace's equation. If the dielectric constant is a 
tensor, we solve a generalized Laplace equation. In the 
case of a plasma where elements of the dielectric con
stant tensor are negative, we obtain radius independent 
resonances. For the magnetic modes the magnetic field 
is much larger than the electric field, and the problem 
can be treated in the magnetostatic approximation. For 
a plasma the permeability is positive, and one does not 
obtain magnetostatic resonances. In ferrites one has a 
positive dielectric constant and a tensor permeability 
with negative components and one observes magneto-

1 J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book 
Company, New York, 1941). 
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static resonances.2 These have been extensively treated3-7 

and we adapt these solutions for the case of the plasma. 
One of the electrostatic modes of a plasma sphere is 

the well-known plasma resonance of Langmuir and 
Tonks8 which has also been studied in InSb.9 This mode 
can be identified with the lowest TM mode of a plasma 
sphere. We refer to it as the uniform mode; the displace
ment of the carriers is the same throughout the sphere. 
This mode is analogous to the uniform precession mode 
usually observed in ferromagnetic resonance. 

If up
2^>a)du and o?c>co, where aip is the plasma fre

quency, coc the cyclotron frequency, and co the frequency 
of the applied field, the effective dielectric constant of a 
plasma can be large and positive. In such a case the 
radius of a sphere may not be small compared to the 
wavelength inside the plasma in spite of the fact that 
the radius is small compared to the free-space wave
length. The electrostatic approximation is, of course, 
invalid and electromagnetic resonances are to be ex
pected. These resonances are closely related to the 
"helicon" waves and resonances, which have been dis
cussed recently.10-13 We have not solved this boundary-
value problem, but it appears that an assumption of an 
effective scalar dielectric constant fits the experiments 
surprisingly well. The lowest resonant mode observed in 
this case behaves very much like a magnetic dipole 
precessing about the applied magnetic field. 

THEORY 

A. Electrostatic Modes 

The effective dielectric constant of a plasma without 
losses in an applied magnetic field can readily be 
computed from the equations of motion to be 
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where ex, is the dielectric constant of the material in the 
absence of free carriers; w is the frequency of the applied 
electric field; a>c= eB^/mc, oop

2= 4^wNe2/m; B0 is the con
stant magnetic field in the z direction; N, e, and m are 
the electron concentration, charge, and mass, respec
tively. In the case of electrons in a solid, m would be the 
effective mass of the carriers. 

If we have a circularly polarized incident field, one 
can write an effective dielectric constant tensor for each 
direction of circular polarization: 

€L 
co(co±coc) 

0 

0 

0 0 

€ L " 
CO(CO±OJC) 

0 €L 

(2) 

Equations (1) and (2) are referred to the same system of 
coordinates. 

If the size of the sphere is much smaller than the 
wavelength of the incident radiation, the time deriva
tive in Maxwell's equations can be neglected, and one 
can merely solve the equation 

V - e - v ^ O . (3) 

We first consider solutions of this equation when e is a 
scalar, which is the case for zero magnetic field. It turns 
out that there are also solutions for nonzero magnetic 
field which can be determined in this manner. In such a 
case the potential inside the sphere <£»• and the potential 
outside <f>o can be written1 as 

$ i = L n , m anmrnPnm(cOSd)eim+, 

$ 0 = L n , m bnmr-{n+l)Pnm(C0SB)eim^, 

where r, 0, and <f> are the polar coordinates and Pn
m are 

the associated Legendre polynomials. When r is equal 
to the radius of the sphere R, the usual boundary condi
tions must be satisfied: 

e(d$i/dr)R= e0(d$o/dr)Ry (5) 

where eo is the dielectric constant of the material outside 
the sphere. We can find homogeneous solutions, i.e., 
resonances, whenever 

e= — c0(»+l)/», (6) 

where n is an integer. For a positive eo we can have 
resonances only when e is negative, as in the case of a 
plasma. When there is no magnetic field these modes are 
(2#+l)-fold degenerate and e=eL—o)P

2/o)2. 
If a magnetic field is present, € is a tensor and we 

cannot use Eqs. (4) as a solution of Laplace's equation. 
However, we can note that for modes where m~n the 
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electric field is circularly polarized in a plane perpen
dicular to the z direction. The dielectric constant in the 
z direction is, therefore, irrelevant. For these modes we 
can thus write 

eL—o)p2/o)(o)zko)c)= — €o(n+l)/nJ (7) 

or, solving for coc, 

COC=T(W WpV"1]. (8) 
\ neL+(n+l)eQ I 

For the case of n= 1 and eo= 1 we have 

/ (47r/3m)iVe2 \ 
"c==F co — - c o " 1 , (9) 

\ 1+(4TT/3)X / 

where x~ (*L— l)/47r is the electric susceptibility of the 
lattice. This is just the uniform mode of Langmuir and 
Tonks, which has also been studied in solids.9'14 One can 
readily see that if e£^>^ all of the n=m modes resonate 
at approximately the same magnetic field for a fixed co. 
This is the usual case for a semiconductor in air. 

When m^n the situation is much more complicated. 
Fortunately, an analogous problem has already been 
solved for the case of a ferrite sphere and one can de
termine the solution for the case of the plasma from the 
results of the ferrite calculations. This is discussed in the 
Appendix. 

The resonances of Eq. (7) do not depend on the radius 
of the sphere. However, if we increase the size of the 
sphere, the assumptions in deriving Eq. (7) do not hold, 
electromagnetic radiation effects appear, and coc shows a 
size dependence. The first-order correction in R2 to Eq. 
(7) can be easily estimated by expanding the charac
teristic equation for the electric modes of a dielectric 
sphere1: 

ko'LkiRjnikJ^J/k^jnikiR) 

= CAofi*»(1)(AoR)]7*ncl)(*aR)l (10) 

in powers of R. In Eq. (10) ki and ko are the propagation 
constants of the material inside and outside the sphere, 
respectively, j n is the spherical Bessel function, and hn

a) 

the spherical Hankel function of the first kind and 
order n. Expanding Eq. (10) in powers of R and neglect
ing all terms higher than R2 we obtain for n= 1 

€ /€o=-2[ l+(6 /5 )W#] . (11) 

A similar expression can be obtained for n^ 1. Equation 
(11) and its equivalent for n^l show that the electro
static plasma resonances are the lowest electric modes of 
a sphere with k0

2R?<<:l. These modes only exist for 
negative dielectric constant. Using for e the exx com
ponent of Eq. (2), we obtain the magnetoplasma reso-

14 R. E. Michel and B. Rosenblum, Phys. Rev. 128, 1646 (1962). 

nance for the uniform mode at 

co(eL+2€o)\ 5 €L+2e0 / 

Actually, when R becomes finite the electric field in the 
z direction is not zero, and it is not permissible to use a 
scalar dielectric constant. However, the result obtained 
by analogy to the more careful treatment for the 
ferrite15,6 is identical to Eq. (12). We note that if €L»€O 
(the usual case for a semiconductor in air) the size 
correction is quite small. 

B. Electromagnetic Modes 

When cop
2 >̂cocCo and coc>co, exx and eyy in Eq. (2) can 

be large positive numbers, and the propagation constant 
for circularly polarized plane waves propagating in the 
direction of the magnetic field kh may be positive and 
very large. (It is this mode of propagation which has 
been referred to as "helicon" waves10 and observed in 
InSb,11 sodium,12 and other metals.13) Clearly, the treat
ment used in the previous section is no longer valid. In 
spite of the fact that an element of the dielectric con
stant tensor is a large negative number, one might 
expect electromagnetic resonance modes to exist when 
khR> 1. In this case the division into electric and mag
netic modes is no longer permissible, and the problem 
appears to be extremely complicated. 

An "approximation" which we can justify only by its 
simplicity is to consider the plasma in the magnetic field 
to be a dielectric with a dielectric constant equal to exx 

of Eq. (2). We, thus, choose the propagation constant 
for the plasma equal to kh. We then calculate the 
resonant magnetic fields from the characteristic equa
tions for the electric and magnetic modes of a dielectric 
sphere.1 This is Eq. (10) with ki=kh for the electric 
case. For the magnetic modes we have 

= [ftoRA»(1)(AoR)]7*n(1)(ft«»R). (13) 

Since koR<£l we expand the right-hand side of Eqs. (10) 
and (13) and the conditions for resonance become 

jn(khR) = 0, (14) 

for the electric modes and 

77(4*29 = 0, (15) 

for the magnetic modes. If coc»co we obtain 

kkR= (coA)[cL+cop
2/cocCo]1/2JR=/5ni or ani, (16) 

where fini and ani are the roots of Eqs. (14) and (15), 
respectively.16 The first few of these roots are au= 2.08, 

16 J. E. Mercereau, J. Appl. Phys. 30, 184S (1959). 
16 Tables of Spherical Bessel Functions, National Bureau of 

Standards Series (Columbia University Press, New York, 1941), 
Vol. I. 
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FIG. 1. Cross section of the proposed field distribution for the 
lowest size-dependent mode of a small plasma sphere in a magnetic 
field. The solid lines indicate the magnetic field and the dots and 
crosses the electric field. The applied field is perpendicular to the 
paper. 

5.94, 9.21; a2 ;=3.34, 7.29; 0 K = 4 . 4 9 , 7.72, 10.9; $2i 

= 5.76,9.10. 
The lowest mode is the first magnetic mode (TEn) 

corresponding to a n . Corresponding to our choice of a 
propagation constant for a circularly polarized wave we 
expect this mode to be circularly polarized, i.e., to con
sist of the excitation of two T E n modes at right angles 
to each other and 90° out of phase. This field configura
tion is shown in Fig. 1. The magnetic field is shown by 
the arrows and the electric field, which is in circles about 
the magnetic field and perpendicular to the paper in this 
cross section, is shown by the dots and crosses. The 
constant magnetic field is also perpendicular to the 
paper. The proposed mode is a magnetic dipole pre-
cessing about the constant magnetic field. 

EXPERIMENTAL 

The spheres of indium antimonide were prepared by 
cutting cubes of appropriate dimensions and placing 
them in a cylinder lined with a fine emery paper. A jet 
of air was used to rotate the cubes in the cylinder. Quite 
accurate spheres could readily be made in this manner. 
The spheres were mounted in a rectangular TE 0 i n 

microwave cavity or in a waveguide by suspending them 
on a 0.001-in.-thick Mylar sheet with a thin layer of GE 
No. 7031 lacquer. Most of the measurements were made 
at a temperature of about 60°K obtained by pumping on 
liquid nitrogen. At this temperature the carrier concen
tration is quite insensitive to temperature or magnetic 
field, and the scattering times are about as long as can 
be obtained in these samples. We did not operate at 
helium temperature since at this temperature the carrier 
concentration changes with magnetic field and the 
scattering time appeared to be somewhat shorter. Most 
of the measurements were taken at frequencies of about 
25 kMc/sec. The resonances were usually observed by 
recording the change in the cavity reflection coefficient 
and therefore in sample absorption as a function of 
magnetic field. 

We were not able to observe any of the electric modes 
other than the uniform mode. As was pointed out above, 
those with m=n would be very close to the uniform 
mode and, therefore, unresolvable under our experi

mental conditions. When the sample was moved to an 
electric field node this resonance disappeared. Thus, if 
other modes with n=m were present, but unresolved, 
their excitation at the node is very small (as would be 
expected). I t is shown in the Appendix that with one 
exception we would have to go to frequencies about one-
fifth of the plasma frequency to observe any of the 
modes with m^n, for n=2. The one exception is the 
m— 1 resonance near zero magnetic field. We did ob
serve in very small samples a broad maximum near zero 
magnetic field when the sample was at a node of electric 
field, but we do not feel that we can definitely assign it 
to this mode. 

In the usual derivation of the magnetic field for uni
form magnetoplasma resonance8,9,14 it is assumed that 
the electromagnetic field can penetrate the sample. The 
criterion stated is that the sample must be small com
pared to the ordinary skin depth. According to Eq. (12) 
if €L^>to the sample can be considerably larger than a 
skin depth and the resonant magnetic field is unchanged. 
To demonstrate this we took a sphere of indium anti
monide ( € L = 1 9 . 6 ) 1 7 with a carrier concentration of 
6.4X1013 and observed the field for the uniform mag
netoplasma resonance as the radius of the sphere was 
reduced in several steps from 0.050 to 0.015 in. The 
calculated skin depth for this material was 0.016 in. The 
resonant magnetic field changed less than 5%. There 
was a slight shift towards lower field, but our uncer
tainty as to the uniformity of the carrier concentration 
precludes our drawing any more quantitative con
clusions. 

The calculations for the resonances we observe were 
made with the assumption that the sphere is in free 
space; actually, of course, it is in a cavity or a waveguide. 
To demonstrate that any polarization charges induced 
on the walls were unimportant the uniform mode was 
measured for an R=0.05 in. sphere in a waveguide 
whose smaller dimension was 0.170 in. The sphere was 
thus less than its radius from the wall. Nevertheless, the 
resonant magnetic field was the same within 3 % as the 
field measured for the same sphere in a larger waveguide. 
An estimate of the shift shows that it should be small 
for ez^eo. 

In addition to the size-independent uniform mode, 
resonances were observed which depend strongly on 
sample size. Different resonances were excited depending 
on the position of the sample in the microwave cavity, 
e.g., whether it was at a node or an antinode of the 
electric field. When the sample was gradually moved 
from a node to an antinode, the relative intensities of the 
resonances changed, but the magnetic fields for reso
nance did not. Different resonances were also excited 
depending on the orientation of B0 with respect to the 
microwave fields. 

In Fig. 2 we show two typical experimental curves of 

17 T. S. Moss, Optical Properties of Semiconductors (Butterworths 
Scientific Publications, Ltd., London, 1959), p. 235. 
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power absorption versus magnetic field. The sample had 
a 0.015-in. radius and an electron concentration of 
2.3X 1014/cc [The stronger resonance in the solid curve 
is the one we identify with the first magnetic mode 
(Fig. 1) and the root an of Eq. (15).] As the sphere size 
is reduced these resonances move to lower field, decrease 
in strength, and disappear. The absolute width of the 
resonances decreases as the sphere size is reduced. 

We expect the modes excited at a node of electric field 
to have electric fields of odd parity and magnetic fields 
of even parity. The reverse should be true of the modes 
excited at an electric antinode. Thus for odd n we expect 
magnetic modes to be excited at a node and electric 
modes at an antinode, and the opposite for even n. 
Using this rule and Eq. (16), we plot the expected reso
nant magnetic fields for the four field configurations in 
which resonances were observed for the first few values 
of n and /. It is a property of the spherical Bessel func
tions that each of the 0ni are approximately equal to an 
ani with n differing by unity. The one exception is 0 n . 
Therefore, we have not plotted any electric modes ex
cept the first. In this plot we have chosen cop= 7.3X 1012 

sec"1, «=1.6X10U sec"1, and €L=19.6. The circles are 
the experimentally observed resonances for a sample of 
indium antimonide under these conditions. The plasma 
frequency of the sample was determined by a measure
ment of the uniform magnetoplasma mode. The corre
sponding carrier concentration was in substantial agree
ment with a concentration determined by a Hall 
measurement on an adjacent piece of material. There 
are no adjustable parameters used in comparing the 
data with Eq. (16). 

The major discrepancies between the experiments and 
Eq. (16) is an extra resonance in Fig. 3(c) to which no 
electric or magnetic mode corresponds and the apparent 
absence of a resonance associated with f3u. As the radius 
is reduced the extra resonance appears to become a 
broad absorption maximum at low field which we have 
said might be due to the n= 2, m= 1 electrostatic mode. 
Since in this sample | kJR\ > 1, the large size dependence 
would not be surprising. 

Rs.015 INCH 

R (INCHES xlO ) 

FIG. 2. Experimental microwave absorption as a function of mag
netic field by a small sphere of indium antimonide. 

FIG. 3. Magnetic field for resonant absorption of 2.5-kMc/sec 
radiation vs radius for an indium antimonide sphere with N — 2.3 
Xl014/cc. The lines are calculated from Eq. (16). The points are 
experimental. 

The form of the absorption curves for the various field 
configurations of Fig. 3 was generally quite dissimilar. 
At an antinode with B0 perpendicular to the microwave 
electric field, and at a node with B0 parallel to the 
microwave electric field, the lines were generally well 
resolved, and the intensity of the resonances changed in 
a fairly simple manner as the sample radius was reduced. 
This was not the case for the other two configurations. 

The dependence of the resonant magnetic field on 
microwave frequency has also been observed to be ap
proximately in accord with Eq. (16). Data were also 
taken on samples with carrier concentrations several 
times lower than that of the sample of Fig. 3. In these 
cases only the resonances corresponding to the lowest 
roots could be observed, but these occurred at ap
proximately the fields predicted by Eq. (16). 

We now consider the lowest and most prominent of 
the size-dependent modes, the one we assigned to the 
root an, in somewhat more detail. In the previous sec
tion we speculated that this mode has a field configura
tion very similar to that of a magnetic dipole precessing 
about the applied magnetic field. We would thus expect 
the microwave magnetic field to excite this resonance. 
This appears indeed to be the case. The resonance is 
excited whenever the applied field is perpendicular to 
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the microwave magnetic field, whether or not it is per
pendicular to the microwave electric field, as is the case 
for a magnetic dipole in an applied field (e.g., electron 
spin resonance). We would, furthermore, expect a mag
netic dipole resonance to be excited by only one circular 
polarization. To check this, a sample was mounted in a 
waveguide halfway between the broad walls and one 
quarter of the long dimension away from a narrow wall. 
At such a point in a waveguide in its TEoi mode with a 
wave traveling in only one direction, the magnetic field 
is approximately circularly polarized, but the electric 
field is not. I t was found that the resonance identified 
with an was considerably stronger for one direction of 
the applied magnetic field than for the other. This 
demonstrates that this resonance is excited by a circu
larly polarized microwave magnetic field. 

The a n resonance is associated with a stronger ab
sorption than any of the other size-dependent resonances 
we have studied. On a sample with R=0.008 in. and 
A r=6X101 3 /cc the a n resonance with the sample at an 
electric field node had one eighth the peak intensity of 
the uniform electrostatic resonance at an antinode of the 
electric field. In several samples of different radii and 
electron concentration the ratio was not very different 
from this. 

DISCUSSION 

In the above treatment we assumed that the reso
nances of the actual plasma would occur at the same 
magnetic field as for a plasma with a very small collision 
frequency; Eq. (1) gives the dielectric constant of a 
lossless plasma. We would, generally, expect the position 
of resonances to be largely independent of the loss, 
which would determine their width. If loss is included in 
the dielectric constant, an imaginary part is added to 
the diagonal terms and a real part is added to the off-
diagonal terms. The ratio of imaginary to real parts for 
the magnetic field dependent part of diagonal terms is 
approximately OJT while the ratio of real to imaginary 
parts for the off-diagonal terms is approximately 
JWT(COC/OJ)2, where r is the scattering time. The material 
used in the present experiments had cur«0.5,18 and since 
o)c^>o) the magnetic dependence of the diagonal terms 
was loss dominated, while for the off-diagonal terms the 
effect of loss was small. The loss tangent of the material 
would be « (WCT) -1 . 

I t was observed that the resonances at high magnetic 
field were quite broad and got considerably narrower 
when they moved to low field as the sample size was 
reduced. This seems to contradict what we said above, 
since the loss tangent decreases with increasing mag
netic field. Actually, in going from Eq. (13) to Eq. (15) 

we have assumed koR<£l, which is no longer true for 
large sphere radius. While Eq. (15) has real roots, as we 
increase the sphere radius this equation is not valid, and 
the resonance frequency, obtained as a solution of Eq. 
(13), becomes complex, the sphere radiates at resonance, 
and the resonance line is broadened. 

For a gaseous plasma the relaxation time is usually 
much longer than for a solid and € L ~ 1. In such a case 
one should be able to resolve the electrostatic modes. 

We would like to thank Harold Hanson for taking 
most of the experimental data, and Dr. Maurice 
Glicksman for stimulating discussions. We would also 
like to thank Dr. A. C. Beer and Dr. M. Glicksman for 
supplying the indium antimonide used in this work. 

APPENDIX 

The permeability tensor of a ferrite with a steady 
magnetic field H applied in the z direction is 

18 This 03T is calculated from the measured dc Hall mobility on 
several adjacent samples. The linewidth of the uniform plasma 
mode was consistently found to be larger than predicted from the 
Hall mobility. The additional broadening may be due to the exci
tation of higher electrostatic modes. This excitation could be 
caused by microscopic fluctuations in the carrier concentration 
which have been reported for InSb. 

1-
&H 0 

W-QH
2 W-W 

0 QE 
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0 
tt*-QH

2 W-SIH2 

0 0 1 

(17) 

where tt=w/4twyMo, Q#= (H/4wMo) — %, where y is the 
gyromagnetic ratio, and Mo is the steady magnetization 
in the z direction. The symmetry of Maxwell's equations 
with respect to E and H enables us to draw a close 
analogy between plasma resonance and ferromagnetic 
resonance. The electrostatic plasma resonance has its 
analog in the magnetostatic ferromagnetic resonance. 
The magnetostatic potential ^ inside the sphere will 
satisfy V-t*-V^=0 and outside ^ = 0 . ^ and the 
normal component of the magnetic induction must be 
continuous at the surface of the sphere. In order to 
establish the formal analogy between magnetostatic 
ferromagnetic resonance and electrostatic plasma reso
nance, it is convenient to write Eq. (1) as 

£ €zz& €z 

1 — 
0)pOic 

U>2(o)2—a)c
2)€zz Ct)(o>2— C0 c

2)c 2 

0 

oip
2o)c

2 

){u>2—u2)ezz co2(co2—coc
2)e3 

0 0 

(18) 

The zz component of t! is 1 as is the corresponding com
ponent of \i. The electric potential <f> must satisfy 
V- z'- V $ = 0 and the boundary conditions, <£ continuous 
at the surface of the sphere and the normal component 
of £'-V$ inside the sphere equal to the normal com
ponent of (eo/ezz)V$ outside. The electrostatic reso-
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nances are obtained by equating tf to v a n d the 
permeability ju0 of the medium around the sphere to 
eo/ezz in the equations for the magnetostatic resonances. 
By using this analogy and the characteristic equat en 
for magnetostatic resonance,5 we obtain the charac
teristic equation for electrostatic plasma resonance: 

(»+1 W « „ + £DP»ma )J/Pnm(& = =fclflF, 

where 

?=1— 
ezzo>2(c*)2—coc

2) 

o)P
2o)c

2 

(a)2 —Wc
2) 0)€zz 

This characteristic equation reduces to Eq. (6) for 
n=m. For w=2 and eo=l the characteristic equations 
are 

y (y±a)= l , ( |w |=2) 

y*:=Faf-y±%a=0, (|f»| =1) 

2 € L / - / [ 2 ( l + a 2 ) € L + 3 + 2 6 L ] 
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where y= (a>/"p) ( !+^) 1 / 2 and a = (COC/O>P)(§+€L)1/2. 
Figure 4 shows the solutions of Eqs. (19) as a function 

of a. These solutions for | m | = 2 and | m | = 1 are inde
pendent of €L. For m=0, ex, appears explicitly in the 
characteristic equation. These solutions have been 
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FIG. 4. Reduced frequency ;y vs reduced magnetic field a. 
[defined by Eq. (19)] for the electrostatic modes of a plasma 
sphere for » = 2 . 

plotted for ez,—> °°. In the experiments reported here 
o)<$Ca?p and only m= 1 and m= 2 resonances could appear. 
The tn= 1 resonance, however, would appear at a very 
low magnetic field. Because of collision broadening it 
looks like a smooth decrease in the conductivity rather 
than like a resonance. The | m | = 2 resonance is very 
close to the uniform magnetoplasma mode. 
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The plasma oscillations of a high-temperature and a degenerate plasma, both with and without an applied 
magnetic field, are discussed using a Green function technique. For the high-temperature plasma in lowest 
order the results reduce to those obtained via the linearized Boltzmann-Vlasov equation in the classical 
limit. The quantum-mechanical effects are important for strong fields where the quantization of the orbits of 
the electrons in the field must be taken into account. The dispersion relation of a degenerate plasma in a 
magnetic field is obtained within the random phase approximation. This dispersion relation is discussed for 
various special cases. The fluctuation spectrum of the plasma is obtained by making use of the fluctuation 
dissipation theorem. 

1. INTRODUCTION 

IN this paper the small oscillations of an electron gas 
in thermodynamic equilibrium are discussed. The 

two cases of a plasma in zero external magnetic field and 
a plasma situated in a strong uniform magnetic field are 
considered. The presence of the ions is neglected and we 
use the simple model where the ions are smeared out into 
a compensating positive background. The usual treat

ments of the oscillations of a high-temperature plasma 
are based on the collisionless Boltzmann-Vlasov (B.V.) 
equation or on the hydrodynamic equations of motion. 
Reviews of recent work in this field have been written 
by Thompson1 and Oster.2 Here we use a different ap-

1 W. B. Thompson, Reports on Progress in Physics (The Physical 
Society, London, 1961), Vol. 24, p. 363. 

2 L. Oster, Rev. Mod. Phys. 32, 141 (1960). 


