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one obtains 

J"S2(S+l)2Nz 
A3=-

A4— 

12 

J*S2(S+l)2Nz 

-c 

15 

-1+85(5+1)^] 

= X3 ( 2 )+X3
( 3 ) , 

[1~J5(5+1)+ |5 2 (5+1) 2 ] 

(79) 

5 5 
—tqz+S(S+l)(z-l)2+-qiS2(S+iy 

3 3 

= X4
(2)+X4

(3)+X4
(4). (80) 

The individual terms inside the curly brackets 
correspond to increasing numbers of particles. For the 
simple cubic lattice s=6, q$—0, g4=12, for the face-
centered cubic lattice 2=12, ^3=0, and q±=6. Inspec
tion of Eqs. (80) and (79) shows that there is no particu
lar predominance of any one sort of diagram over 

another as was observed in the longer range dipole-
dipole potential problem. 

The Curie point has been inferred by Rushbrooke 
and Wood17 to be proportional to 5(5+1). A sufficient 
condition for this is that the ring diagrams predominate 
in their contributions, for the ring diagram with n 
vertices has a factor [ 5 ( 5 + l ) ] n . The results on X3 

and X4, however, confirm one's intuitive feeling that for 
a very short range potential the cycle diagrams do not 
predominate. In contrast to the situation with the 
dipolar lattice, it is, therefore, not possible to obtain 
a natural explanation for the S(S+1) dependence of the 
Curie temperature for an exchange-coupled lattice. 
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We use the method of Part I of this series of papers to study the influence of s-d interactions, thus extend
ing the work by Potapkov and Tyablikov to higher spin values and that of Vonsovskii and Izyumov to 
higher temperatures. Expressions are given for the energy shift and damping caused by the s-d interaction, 
using the first nontrivial approximation to the Green-functions equations of motion. 

1. INTRODUCTION 

IN the first two papers of this series1 (we use through
out the same notations as in I and II and refer to 

these papers for the definition of the various symbols) 
we discussed an ideal ferromagnet with a Heisenberg 
Hamiltonian, that is, the interaction between the spins 
was assumed to be an isotropic exchange interaction. It 

* Permanent address: Pakistan Atomic Energy Centre, Fero-
zepur Road, Lahore, Pakistan; Address for 1962/3: Department 
of Physics, University of Pennsylvania, Philadelphia 4, Penn
sylvania. 

1 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 and 
95 (1962). These papers are referred to as I and II and their 
equations are quoted as (13, 5), (112.11), and so on. We should 
like to use this opportunity to rectify an incorrect statement in 
Appendix B of I and to apologize to Dr. Kawasaki and Dr. Mori 
for incorrectly criticizing their work. We have now found that their 
theory gives, indeed, the correct high-temperature expansion, at 
least up to terms of order 1/T2; our misinterpretation was caused 
by a misprint in their paper. 

is, however, well known2"6 that, on the one hand, in 
crystals of metals and alloys of the iron group as well as 
direct-exchange interaction there is also an indirect 
interaction produced through s-d exchange while, on the 
other hand, this s-d exchange mechanism may well be 
the dominant one in crystals of rare-earth elements and 
for the case of solutions of paramagnetic ions in diamag-
netic crystals where the direct exchange is small. 
Potapkov and Tyablikov7 have used a Green-function 
method to discuss this problem for the case where 5 = 

2 S. V. Vonsovskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 16, 981 
(1946). 

(u l s^^^^a953 ) E ' A' TUr°V' J' EXPtL T h e ° r e t * PhyS' 
4 J. Owen, M. Browne, W. D. Knight, and C. Kittel, Phys. Rev. 

102, 1501 (1956). 
5 K. Yosida, Phys. Rev. 106, 893 (1957). 
6 K. Yosida, Phys. Rev. 107, 396 (1957). 
7 N. A. Potapkov and S. V. Tyablikov, Fiz. Tverd. Tela 2, 2733 

(1960) [translation: Soviet Phys.—Solid State 2, 2433 (1961)] 
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using a Hamiltonian involving the so-called Pauli 
operators8 (also see I) . On the other hand, Vonsovskii 
and Izyumov9 discussed the case of a general spin value 
at low temperatures, using spin-wave variables (com
pare I I ) . In the present paper we shall extend Potapkov 
and Tyablikov's work to higher spin values (or, 
alternatively, Vonsovskii and Izyumov's work to higher 
temperatures). 

In the next section we shall introduce the Hamiltonian 
for our system. In Sec. 3 we find an expression for the 
magnetization of the system, and for the energy shift 
and damping of the spin-wave-like boson excitations. 
In Sec. 4 we discuss the Green functions involving the 
conduction-electron creation and annihilation operators 
and the damping of the fermion excitations. Finally, in 
Sec. 5 we discuss our results. 

2. THE HAMILTONIAN 

The Hamiltonian we shall use in the following consists 
of three parts, 

H=H8-\-Hd-\-H8d. (2.1) 

In (2.1) Hs is the unperturbed Hamiltonian for the 
conduction electrons which we take to be of the form 

— g*MB#Ek[>k,-+Ck,- - C k . + W l (2.2) 

where e* is the unperturbed single-electron energy of an 
electron with wave vector k (we assume ek to be inde
pendent of the electron spin), the c^J{c^^) a n d 
Ck^Ck.i) are the creation and annihilation operators for 
electrons with wave vector k and spin a (cr= + ^ or — | , 
according to whether the orientation of the electron 
spin is parallel or antiparallel to the z axis; in indices we 
drop the § and <r stands for + or —), and \i is the 
chemical potential. 

For the Hamiltonian, Hd, of the localized spins we 
use (13.1), and for the interaction Hamiltonian H8d we 
use Vonsovskii and Izyumov's expression9*10 

^ d = - E i Z c J 0 , ( W ( S r S c ) , (2.3) 

where the summation is over all lattice sites of the 
localized spins and over all conduction electrons (c). 
Introducing in (2.3) the ck,<r+ and ck>(T and combining 

8 V. L. Bonch-Bruevich and S. V. Tyablikov, Green Function 
Methods in Statistical Mechanics (Moscow, 1961) [English transla
tion : North-Holland Publishing Company, Amsterdam, 1962]. 

9 S. V. Vonsovskii and Ya. A. Izyumov, Fiz. Metal. Metalloved. 
Akad. Nauk S.S.S.R. Ural. Filial. 10, 321 (1960). 

10 See also T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 
(1956); A. H. Mitchell, Phys. Rev. 105, 1439 (1957). 

where 

Eqs. (2.1) to (2.3), we find for the total Hamiltonian10 

H= - £ i . » / ( l ,m)(Sr S m ) - ( g W V ^ E i Sx* 

+ Ek,<r(ek — M)Ck,<rtpCk,<7 

— g&BB £ k [Ck,J"Ck,-— Ck,4-+Ck,-f] 

-(ft/N) L e x p [ - i f - ( k 1 - k 2 ) p ( k 1 , k 2 ) 

ki ,k 2 , f 

XECkL-^ka.-pST+^ki.+^ka.^f"1" 

+ Ckl,Jck2,Sfz- Cki^Ckj.+Sf*], (2.4) 
J9(k1?k2) = D*(k2jk1) (2.5) 

is the Fourier transform of the s-d exchange integral. 
When we introduce our Green functions we must bear 

in mind that we are now no longer dealing with boson-
type excitations only, and we shall distinguish—as we 
did not do in I and II—between two possible types of 
Green functions8,11 which differ in the value of Zubarev's 
parameter rj. The equations of motion for the Green 
functions are instead of (12.9) of the form 

£ « 4 ; B » - ' = ( 1 / 2 T ) < [ ^ , 5 ] _ , > 

+ «U ,#]_;!?»-', (2.6) 

where [A,2?]+ denotes the anticommutator. In I and I I 
we only consider the case 17=+ 1, but now it is con
venient to consider both 17= + 1 and rj= — 1 at the same 
time. 

3. THE MAGNETIZATION; THE BOSON-LIKE 
EXCITATIONS 

We saw in I that, in order to evaluate the mag
netization, we had to study the Green functions 
«S«+5 ( S i - ) ^ ! * ) " - 1 ) ) - From (2.4) and (2.6) we find 
for them the equation of motion 

«S f+M«»-[£-S^B3] 

= —Qin)-2f>?:i(&-i)((Sg*Si+-Sf*S+',An))-
2w t 

2fi2 

EL^«-(kl-k2)
JD(k1,k2) 

N ki k2 

X((ckl,Jck2,+Sg
z;An))-

+ - L E e ~ i g - ( k l - k 2 ) £ > ( k i , k 2 ) 
N ki k2 

X«Cck1,-+Ck2,--Ck1,++Ck2,+]^g+; An))~, (3.1) 

where the first term on the right-hand side of (3.1) is the 
same as the first term on the right-hand side of (13.4) 
and where 

A n = (5 r )» (5 i+ ) - 1 . (3.2) 
11 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [translation-

Soviet Phys.—Usp. 3, 320 (I960)]. 



110 R . A . T A H I R - K H E L I A N D D . T E R H A A R 

We now introduce the following decoupling. First of To find the mixed Green functions we must write 
all, we use (13.5), and secondly, for the mixed Green down their equations of motion which are 
functions we write 

((ckl,Jck2,+Sg';An))~=r (S')((cklrJc*t,+ ;AH))-, (3.3) 

\\Ckltai Ck2,<r$Og > A n)) 

4= <CkiI»l
tCk,fa,)«5'g+; An))" 

^h^dh^Ai^dSg^; An))-, (3.4) 

where fkl(<ri) is the average occupation number of 
conduction electrons with wave vector ki and spin au 

We now get from (3.1) to (3.4) 

i(S^;An))-

X £ - M * B B L 0 ( k , k ) [ ? k ( - ) - f k ( + ) ] [ 

« ^ o o _ 2 f t £ / ( g - f ) « 5 f ' 5 f + - 5 , ' 5 , + M » » -
2x f 

I E e~^^-^(Sz)D{KU) 
N ki k2 

X((CkiJ-
tCk2,+ >^n » - (3.5) 

If we neglect the remaining mixed Green functions 
{(ckl,Jck2,+ ; An))~, (3.5) differs from (13.4) only in a 
shift in the energies of the boson-like (spin-wave) 

(<Ck1._
+ck2,+ ;4B)>-[-E-ek 2+ek,-2 | ,MB.B] 

ti 
= - Z {D(k,ki)e-iflk-kl) 

X((c*.+1ckl,+St++Ck,Jcki,+St';An))-

+£>(k2,k)e-"tk^k> 

X((ckl,Jc*,+St*-c*l,Jc*,^St+; An))~. (3.7) 

Using the decoupling (3.3) and (3.4) this equation 
reduces to the form 

«Ck,,-tCk2,+ ;^n))~C-E-«k2.++«k1,-] 

h 
= - £ e r i f ' ( k I - k , ) £ , ( M i ) 

N t 

XEf*,(+)-fk,(-)]«5f+Mn»- (3.8) 
where 

ek,.= (e k -n)+2t i^BB+*<S«>Z)(k ,k)> 
( * = ± * ) . (3.9) 

We now have a set of coupled equations for our Green 
excitations, m that Ek

{ } of (13.11) is replaced by Ek , . . . , . r , . /* , u 

cAuwuuiw, k v J * J functions which can be solved m the usual way by using 
given y a n m v e r s e 4 a ^ t i c e Fourier transformation. If Gk

in)(E±) 
£ k =Ek ( < S ) +— E ^ ( k , k ) [ f k ( - ) - ? k ( + ) ] . (3.6) is the Fourier transform of «5 g +; An))~ for E=E±u in 

iV k the limit as e tends to zero, we find 

Gk<»>(£±) = 
Q{n)/2ir 

with 
E-Ek-Rk(E)±wiyk(E) 

2*« _ <^>/>(k//,kO^(k',k'OCfk»(--)-rk»(+)]*k+k-tk' 
JRk(£) = (P— E 

iV k'.k" £—ek',++ek",_ 

2hz 

yk(E)=—r Z <S'>Z)(k^kOWk'0^^ 
N k'.k" 

(3.10) 

(3.11) 

(3.12) 

((P indicates the principal value). As ,£k depends on (5**) we have, as in I, an implicit 
From our discussion in I I it follows that Rk and 7k equation for (Sg) which we can solve in the same way as 

can be considered to give the energy shift and damping was done in I. However, Ek also contains the fk, and 
of the boson-like excitations. we need to know these before we can discuss the final 

If we now compare (3.10) with (13.10), we see that results. To find the fk we shall study the Green functions 
we can apply the same reasoning as in I, and the result ((ck,ff; ck>,<,>*))+. The equation of motion for these 
is that we can use Eqs. (13.16), (13.21) to (13.25), but functions is 
with €>(S) replaced by $(S) given by 

{{cky, ck>,c*)rlE--ek+ii-2<Tgs»,BB] 
* ( S ) = ( l / iV)£k [expOlEk) - ! ] - 1 , (3.13) 

where Ek is the root of the equation 

E~Ek-Rk(E) = 0, (3.14) 

= («k.k'a,..'/2T) £ <r"'<k-k">£>(k,k") 
.V k",f 

Xl((ck» r*St9;ck> .,>*))+ 

- 2 e r « 5 f V k - , , ; ^ f ^ » + ] . (4.1) 

results of I to obtain expressions for the magnetization. WTe use the decoupling 

4. THE FERMION-LIKE EXCITATIONS 

In the previous section we saw how we can use the 
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«Sf*k.,; Cv,S))+=(S')((ckt9; ck>^))\ (4.2) 

and get from (4.1) 

i n 
= —«k>k'«...' Z «r-*-<**">Z>(k,k") 

2?T XV k".f 

X«Ck» i-A';^ t^
t»+ (4.3) 

We discuss the influence of the last sum in the 
Appendix; it produces both an energy shift and damping 
of the fermion-like excitations. For the moment we shall 
neglect it. We then get (compare the discussion in 
reference 11) for the fk the Fermi distribution 

fkW = [exp(|8eki,)+l]-1. (4.4) 

If there were no s-d-coupling, i.e., Z>=0, ek,+=tkf-
and fk(+) = ?k(—)• However, if D^O the system of 
conduction electrons is magnetized, and the total mag
netization M(0) is now given by the relation 

Mifi) = (NgwB/mS')+Ng.vBA?, (4.5) 
where 

A?=(WLk[fk(-)-fk(+)]. 

5. DISCUSSION 

(4.6) 

We saw that the magnetization will contain the 
energies JSk for which we have the equation [cf. Eqs. 
(3.14) and (3.6)] 

jEk=£k<*> 

+ - £ * Z>(k',kO[?k'(-)-fk'(+)]+*k(JEk). (5.1) 
N 

The difference fk'( —) — fk ' (+) will be nonzero only if 
k' lies sufficiently close to the Fermi surface. If k / and 
h.2f are defined by the equations 

fckl',-=€k2',-{-=0, (5.2) 

we have, first of all, 

lk/1 —|ka'|<C*F, (5.3) 

where &F is the wave number on the Fermi surface. This 
follows from the fact that 

2g,mB+2h(S*)D 
| k l ' | - | k 2 ' | = -~\kF\, (5.4) 

where the chemical potential ji follows from the usual 
equation 

Ek[fk( + ) + fk(-)]=.Ve. (5.5) 

(A7
e: total number of conduction electrons.) 

Secondly, we may assume that fk>( —) — fk ' (+) 
vanishes unless 

| k / | < | k ' | < | k 2 ' | . (5.6) 

As this restricts k' to a rather narrow range, we 
shall replace in (5.1) D(k',k') by its average value Dy 

say, and we get 

(*V-V)Ek' Z>(k',k')[fk<(-)-fk<(+)]=ft2Z>Af. (5.7) 

As long as the normal condition &B7"«M is satisfied, we 
have12 

A?=UNJl*)lDMS')+g4tBB]. (5.8) 

From (3.11), (3.9), and (5.1), (5.7) we now get for 
5 k for the case k = 0 

2h3(S')D2A{ 

Ea-2ganBB-z{S')hD 
. (5.9) 

If we assume gd=2gs=g0 we get from (5.9) two 
solutions: 

EQ=goHBB, (5.10a) 

EQ=gwBB+2(S')hD+iPDAf. (5.10b) 

The situation is more complicated if k^O and we 
refer to the paper by Vonsovskii and Izyumov9 who solve 
a similar equation. 

It is interesting to note that we get two boson-excita
tion branches: one, corresponding to (5.10a) without, 
and the other, corresponding to (5.10b) with, an energy 
gap.13 Potapkov and Tyablikov did not find the first 
branch, and it is clear from (5.9) how this happens: 
At first sight the term arising from R*(£) looks like 
being second order in D, but it turns out to be only of 
first order for 5 0 = 2gs/xB# which is just the case for the 
gapless branch. From this it follows that the magnetiza
tion will at sufficiently low temperatures again show a 
spin-wave behavior, that is, 

M(i3) = M(ao)[l-aTV2+' • • ] , (5.11) 
and not 

M(p) = M(*>)[l--ae-eAT*i2+> > -2, (5.12) 

as found by Potapkov and Tyablikov. 
From (4.5) and (5.8) we get for the magnetization 

the expression 
3 iVe <S'> 

M(0)= gofiBB+N M*, (5.13) 
4 fJL % 

12 See, for instance, A. J. Dekker, Solid State Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1957), p. 219. 

13 The presence of the second branch is connected with the 
possibility of the conduction electron gas supporting spin-density 
(fluctuation) waves. These spin-density waves are through the s-d 
coupling coupled with the usual ferromagnetic spin waves; this 
renormalizes both the energies of the spin waves and those of the 
spin-density waves. The renormalization of the spin waves is seen 
in the second branch. It is clear from the physical nature of the 
spin-density waves that the case with k^O differs from that with 
k = 0 : In the former case, the spontaneous magnetization of the 
system as a whole will not be changed, as regions with a higher 
spin-polarization density will be balanced by those with a smaller 
density. However, in the k = 0 case the spin-polarization density 
will uniformly be lowered or increased. 

This problem is at the moment studied by Dr. H. B. Callen and 
one of us (R.A.T.-K.) and we should like to express our thanks to 
Dr. H. B. Callen for pointing out that this point needs further 
discussion. 
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with JU*, the effective magnetic moment of the ((cki^c^aC^aS^; ck>t<JJ))+ 

^-electrons, given by 4= (l-Bktt^\Jkl(a)Bkltkt((cktl9S^; Ck<,,'+»+ 

M*«MB[l+f(^iV/i)5*a]. (5.14) - f^Wa^.k^Ck, .^*; ^ . ^ » + ] , (A5) 

With / i~ l to 10 eV, Ar
ejD*2/iV'~l(H4—10-M erg, we neglecting terms of relative order N~l (compare the 

find that ju* is a few percent larger than MB, in order of discussion in II), using the approximation 
magnitude agreement with experiment. (5 ±\=o CA6) 

A discussion of the behavior of yk(E), especially near a n ( j w r j t m g 
e, has been given by one of us.14 the Curie temperature, has been given by 

ACKNOWLEDGMENTS 
(SfS+)=N-11> F(k")eik"-(P~f), (A7) 

Tk^,^(p) = N~l £ k - rk;k ' , f f '
±(k , ,)^ (p-k" ), (A8) 

We should like to express our gratitude to the 
Colombo Plan Authorities, the Government of Pakistan, we cannot solve these equations. We find a relation 
the British Council, Oriel College, Oxford, and AERE between I * and the inverse lattice sum 2 given by the 
(Harwell) for grants to one of us (R.A.T.-K.). equation 

APPENDIX 2 = .¥~1 E ^(k,k1)rk l ;k^,^±(k-k1+k'0. (A9) 
ki(^k) 

In this Appendix we study the solution of Eq. (4.3) 
taking the terms involving the mixed Green functions T h e t e r m s involving this particular sum were dropped 

by Potapkov and Tyablikov and as a result their 
energy shifts and damping coefficients are different from 
ours. (Al) 

into account. We use the notation 

«Ck.±5f : F ;^ I ^
t » + =rk;k ' . < r ' ± ( f ) . 

If we look at the equations of motion for these functions, 
we find that even after making the following de
couplings, 

Although we cannot solve for the T*, it is possible to 
solve for the double sums A± given by the relation 

A±=iV-1 £ k " Ef « i(k"-k)-f^(k,k / /)rk»;k'..'±(f). (A10) 

These are actually the sums occurring in Eq. (4.3) ((St'S,±ck..;ck:S))+ 

^ ( ^ ( ( S p ^ k . o £k',*'+))+, f^P, (A2) after a few transformations. We can then finally solve 

((SrS,+ck,ff; ck..S))+* « * . , ; 6k,i^»+<5f-5,+>, (A3) f o r t h e &*.*'> C k ' - ' f » + a n d ^ 

((cklJck2,ffckz,-aSv
z; ck>t<rJ))+ «6klff; ck>,S))+tE±-WkHa)~]==dk>k,5^/2T, (All) 

: (cki.^kj.irX^'X^k,,-^; ck>,„>*))+, (A4) where 

her 
WkH<r) = ek^2— E E 

| i )(k,k /0|25k^k-k' '{2^(^)[fk^-^)-J-cT]-2<7^(--kO} 
(A12) 

From (A10) to (A 12) we find that the excitation-
energies are "renormalized" and are found from (A 12) 
by putting W±=E±—ekt(Ty and taking the principal 
part of the double sum. The damping is obtained by 
taking the modulus of the double sum in (A12) and 
replacing the denominator by a delta function and E± 
by the value ekr<T found for the excitation energies. 

14 R. A. Tahir-Kheli, Phys. Letters (to be published). 

As long as the damping is small compared to the 
energy shift, we may regard the averages of the conduc
tion-electron occupation number as being given by a 
Fermi distribution, smeared out over a region of the 
order of the damping, and we can put [compare 
Eq. (4.4)] 

fkOO^l+exptfik,,]"-1. (A13) 


