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TABLE VI. Dipole sums e(y,k,kf) for the zincblende structure where e(yfk,k,) = C(y,kik
f)/lekek'/v2^^TryY/\y\2-vQ(y}kfk'). 

Along A (yflfi), e(y,k,k') has the forms: 

/2A 0 0 \ (2B 0 0 \ 
k**k', 0 -A 0 ] ; k^k\ 0 -B -iC) 

\ 0 0 -A J \ 0 -iC ~BJ 

2 ya 

o.o (r) 
0.2 
0.4 
0.6 
0.8 

4.189 
4.006 
3.517 
2.893 
2.370 

4.189 
3.979 
3.374 
2.444 
1.281 

0.0 
3.123 
6.022 
8.424 

10.046 
1.0 (X) 2.166 0.0 10.624 

Along A (yy^), <B(y,k,kr) has the forms: 

/ 0 A A\ / 0 
*-* ' , [A 0 A); k^k', [B+iC 

\A A 0/ \B+iC 

B+iC B+iC\ 
0 B+iC) 

B-j-iC 0 / 

2ya B 

0.0 0.0 (r) 4.189 4.189 
0.1 4.131 4.266 -1.547 
0.2 3.986 4.471 -2.920 
0.3 3.812 4.706 -4.011 
0.4 3.668 4.928 -4.657 
0.5 (L) 3.615 4.948 -4.948 

Along 2 (y,y,0), e(y,k,kf) has the forms: 

fAB 0 \ IC D iE \ 
k = k'y IB A 0 J; k*k't [DC iE ) 

\ 0 0 -2A/ \iE iE -2C1 

2ya B D 

o.o (r) 
o.i 
0.25 
0.4 
0.5 

2.095 6.283 
2.048 
1.780 5.874 
1.224 
0.669 4.262 

2.095 6.283 0.0 

1.770 6.769 -3.668 

1.018 8.117 -5.694 
0.6 -0.015 
0.75 (K) -1.132 1.546 0.173 9.683 -4.524 

Along 2 (l/2a,y,y), Q(y,k,kf) has the forms: 

-2A (-2A 0 0 \ 
k = k', ( 0 A B); 

\ 0 B AJ 
k9*k', 

2ya B 

/ 2iC -E 
[ -E -iC 
\-E -iD 

D 

-E\ 
-iD) 
-iC/ 

E 

0.25 (JT) -1.132 
0.125 -1.878 
0.0 (X) -2.167 

1.546 0.173 
0.430 0.078 
0.0 0.0 

9.683 -4.524 
10.389 -2.544 
10.624 0.0 

Along Z (l/2a,yfi), e(y,k,k') has the forms: 

[A 0 0 \ / 0 C 0 \ 
k=*k', ( 0 -A-B 0 ) ; k*k', [C 0 -iD] 

\ 0 0 B) \ 0 -iD 0 / 

2 ya B D 

0.0 (X) 4.333 -2.166 0.0 10.624 
0.25 3.224 -1.355 4.808 10.138 
0.5 (W) 0.788 0.788 8.364 8.364 

We find that our numbers are accurate to about ±0.002 near y=0. The accuracy improves by a factor of ten 
as we approach the zone boundary. 
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The problem of the prediction of the effective electric or thermal conductivity of a polycrystal in terms 
of the conductivities of the constituting single crystals is treated by a variational method. It is assumed that 
the crystals are all of the same kind and randomly oriented. Consequently, the polycrystal is assumed to be 
homogeneous and isotropic in the large. However, no assumptions about the shape of the crystals have to be 
introduced. 

Lower and upper bounds for the effective conductivity are derived on the basis of a new variational 
formulation of the conductivity problem in anisotropic and nonhomogeneous media. For reasons of mathe
matical analogy the results are also valid for the effective dielectric constant and magnetic permeability of 
polycrystals. The bounds obtained are close when the anisotropy of the single crystals is not too large. 
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I. INTRODUCTION 

THE present paper is concerned with the problem 
of the determination of the gross isotropic con

ductivity a of a polycrystal in terms of the principal 

* On leave of absence from the Weizmann Institute of Science, 
Rehovoth, Israel. 

conductivities <j\ <<T2 <O-3, of the constituting anisotropic 
crystals.1 This problem may be considered as one of the 
determination of effective properties of a heterogeneous 

1 For reference to previous work on this subject, see J. K. Alstad, 
R. V. Colvin, and S. Legvold, Phys. Rev. 123, 418 (1961). Volume 
and page in reference 2 should read A138, 348 (1932). 
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material, since a polycrystal can be regarded as a 
material that consists of an infinite number of ani
sotropic phases. 

A widely studied problem in heterogeneous material 
behavior is that of the conductivity of two-phase ma
terials.2 This has been treated by the authors by a 
variational method which has proved to be quite 
powerful.3 The present problem will be analyzed by an 
extension of this method. For this purpose, the previous 
variational theorems, which have been formulated3 for 
isotropic materials only, have to be extended to cover 
anisotropic materials as well. This will be done in 
Part I I . In Part I I I , upper and lower bounds for cr, in 
terms of <rh a2j and 0-3, will be derived using the varia
tional principles given in I I . The results will be dis
cussed in Part IV. 

Let J and E denote4 the current density and electric 
field intensity vectors, respectively, obeying 

d i v J = 0 (2.1a) 
and 

cur lE=0, (2.1b) 

where the last equation may also be written as 

E = - g r a d ^ . (2.1c) 

Consider a homogeneous body of volume V and surface 
5, of isotropic material of conductivity a0. Let the cur
rent density and electric field vectors in this body, for 
prescribed surface potential 

*= *%?) , (2.2) 

be denoted by J° and E°, respectively. These vectors 
must satisfy relations (2.1a) and (2.1b) and also 
Ohm's law, 

J°=(70E°. (2.3) 

Equation (2.3) may also be written in indicial notation 
as follows: 

Ji^aodijEf. (2.4) 

Here the range of the subscripts is 1, 2, 3 ; a repeated 
subscript denotes summation and 5,7 is the Kronecker 
delta. 

Let the body now be changed to a material of ani
sotropic and space variable conductivity 07/ without, 
however, changing the surface potential \l/°(S). 

Let the current polarization vector C be defined by 

C=J-<7 0 E. (2.5) 
Define also 

* ' = * - * ° , (2.6) 

2 See, for example, G. A. Reynolds and G. M. Hough, Proc. 
Phys. Soc. (London) B70, 769 (1957). 

3 Z. Hashin and S. Shtrikman, J. Franklin Inst. 271, 423 (1961). 
4 In the following, vector notation will be used wherever 

possible. In other cases, indicial notation will be used. 

E ' = E - E ° , (2.7) 

and the second rank tensor kij by 

kir (<Trj— CTodrj) = d{j. (2.8) 

Then the volume integral is 

Uc=UQ- f (kijClCj-2CiEio~CiEi')dV, (2.9a) 
J (V) 

where 

U0= f v*E%»E»dV, (2.9b) 

subject to the subsidiary condition 

o-odivE'+divC=0, (2.10) 

*'(S) = 0, (2.H) 
is stationary5 for 

Ci= ((Tij--<T<£ij)Ej. (2.12) 

I t should be noted that because of (2.5), (2.12) is 
equivalent to 

which is the relation between the current density and 
electric field intensity vectors for the anisotropic and 
nonhomogeneous medium, and is thus a result of the 
variational principle. Thus, the variational principle is 
equivalent to a formulation of the conduction boundary 
value problem, with prescribed surface potential, for 
such media. 

The stationary value Ucs of Uc is an absolute maxi
mum when 

cr0<or1, (2.13a) 

and an absolute minimum when 

(7o>cf3. (2.13b) 

Here 07 and #3 are the smallest and the largest principal 
values, respectively, of the 077. I t follows that when 
(2.13a) holds, then, in general, 

Uc<Uc% (2.13c) 

and when (2.13b) holds, 

Uc>Uc9. (2.13d) 

To prove these theorems the variation AUc of Uc with 
respect to a variation 5C of C is computed. The variation 
of Uc is composed of only first-and second-order terms in 
C, which will be treated separately in the following, i.e., 

AUc=8Uc+d2Uc. (2.14) 

6 Here Uc is computed using any C and E' satisfying (2.10) 
and (2.11) but not (2.12). 

II. VARIATIONAL PRINCIPLES and the boundary condition 
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From (2.9) one finds ing result, which can be proved, using (2.17) and (2.23), 
will be needed: 

J(V) / (5C-8C)dV= / ((7o25E'.5E'+$T-$T)JF. (2.25) 
-Ei'dd+dE/CildV. (2.15) Jm JiV) 

The expression in the parentheses multiplying dd Using (2.25) in (2.22) it is found that 
vanishes when (2.12) holds, as can be seen from sub
stitution of (2.7) and (2.8) into (2.15). Expression f r . . 
(2.15). then reduces to dUc=J [ ~ (**+ ( J o 8^dC^ 

(V) +a<r15TtSTi~]dV, (2.26) 

SUc= f {-Ei
fbCi+bEi

,Cx)dV. (2.16) s o t h a t 

*<r> 82UC>0 for - (kij+ao^Bii) positive definite. (2.27) 
Putt ing 

T = c r 0 E / + C, (2.17) Transforming k^ to its diagonal form, using (2.8) and 
remembering that 8Uc=0, (2.14b) is obtained as mini-

and substituting for C and 5C into (2.16) from (2.17), m u m condition. 
the following result is obtained: The variational principles formulated above apply in 

the case when the surface potential is prescribed. Two 
dUn= I (—E'dT+TidEAdV. (2.18) analogous principles hold for a prescribed normal com-

J (V)
 % * ponent Jn(S) of J on the surface of the body. 

Taking account of (2.10) in (2.17) it is found that 

divT=0. (2.19) 

Using the divergence theorem and (2.19), (2.18) reduces 
to 

dUc= [ ( ^ 'ST-TVyS , (2.20) 
J (S) 

which vanishes because of (2.11). This proves the ™u ,, . , , ,. . v J r Then the integral extremum condition. ° 

To formulate these, define the electric field polariza
tion F by 

where 

Also define 

F=E—p0J, 

p 0 = l/<r0. 

J '=J - J° , 

fik(pkj—po$kj) = 5»y, 

pikPkj^Bij* 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

Consider now the second-order term d2Uc in AUc, 
UF= f Q>oJtJ%»-fijFiFj+2FiIl>+FJi

t)dV9 (2.33) 
J (V) 

PUC= f (-kifiddCj+bCidEi'W. (2.21) 
J <F> subject to the subsidiary condition 

Using (2.17), (2.21) assumes the form Po curlJ+curlF=0 (2.34) 

r and the boundary condition 
d*Uc= / (-kifiC$Cj-<r$Ei&Ei')dV. (2.22) 

7(F) . . /» /(5) = 0, (2.35) 
is stationary for 

Here use was made of the relation Fi= (pf i_po$„)/^ (2.36) 

/ , 

Because of (2.28), (2.36) is equivalent to 
3T-8E'<*7=0, (2.23) 

(V) Ei—pijJj, 

the proof of which is analogous to that of the vanishing which is the relation between electric field intensity and 
of (2.18). current density for the nonhomogeneous and anisotropic 

Since a0 is positive, it follows from (2.22) that medium. (Compare with analogous result for the pre
vious variational formulation, above). 

52UC<0 for kij positive definite. (2.24) Also 

Transforming the kij to diagonal form, using (2.8), and UF is an absolute maximum for po<pi, (2.37a) 
remembering that 8UC=0, (2.13a) is obtained as maxi- Tr . , , , . . , ^ frk „„. N 

mum condition. lF 1S a n a b s o l u t e minimum for p 0 > p3, (2.37b) 
To prove the minimum condition (2.13b), the follow- where inequalities analogous to (2.13c) and (2.13d) 
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follow. The proof of the last two principles is analogous 
to that of the first two. 

Lastly, it should be noted that the stationary value 
of Uc is equal to the total power dissipated in V. 

To show this, (2.12) is introduced into (2.9), taking 
into account (2.5), (2.7), and (2.8), to obtain 

U< 

The relation 
- / 

(E°-J-E'-J°)rfK. (2.38) 

E ' - J W = / W-UV=Q (2.39) 
(V) J(V) 

is easily derived [compare proof that (2.18) vanishes]. 
Introducing (2.7) and (2.39) into (2.38), one obtains 

Jo 
UC'= I E-JdV. (2.40) 

By an analogous procedure it is found that the same 
holds for UF\ 

III. THE EFFECTIVE CONDUCTIVITY 
OF A POLYCRYSTAL 

Consider a polycrystalline body of volume V and 
surface 5. The polycrystal is assumed to be quasi-
homogeneous and quasi-isotropic. This is a valid 
assumption when the crystal sizes are very small com
pared to the body and the directions of the crystallo-
graphic axes in the different crystals are completely 
uncorrelated. Also, it is assumed that there are no size 
effects and that grain boundaries have no surface 
resistance. 

The effective conductivity a of the polycrystal is now 
denned as follows. Apply a potential ^°(S), which is 
associated with a homogeneous field E°, to the surface 
of the polycrystalline body, and calculate the power U 
dissipated. Then a is given by6 

a=U/VE°< (3.1) 

To calculate <r accurately one would have to solve 
(2.1) subject to the boundary conditions on \f/ for 

J i (JijUij) (3.2) 

where the <r#, referred to a coordinate system common 
to all the crystals, change erratically in space. This is 
certainly not easy to carry out, if at all possible. 

A simpler approach, which will be followed here, con
sists of the establishment of bounds for <r. This can be 
done by aid of the variational theorems given in Part II. 
For this purpose, a trial polarization C has to be intro
duced into (2.9). The C chosen here will be a function 
of the orientation of the crystal, denoted symbolically 

6 Note that, as follows from reference 7, this is also equivalent 
to defining <r as the ratio of the average current density to the 
average field intensity. 

by 0, only. As a result of this choice, the integration 
with respect to V can be replaced, in the first three terms 
of (2.9) by integration with respect to 0, i.e., 

U0/V= [ [(7o£»0£i0-*iA(0)C;(0)+2Ci(0)£*0]^0 

CiE/dV. (3.3) +- (TO 

Here and in the following it is assumed that 0 is nor
malized so that 

/ d£l=l. (3.4) 

Using a technique due to Neel7 to calculate magneto-
static energies in porous media, which has been de
scribed in detail elsewhere,8-9 the last term in (3.3) can 
be transformed into 

VJn 
— I C - E W = f C2(Q)dtt 

(V) 3<ro J (Q) 

l r +— 
3(Ti 

/ C(Q)dQ 
! (0) 

(3.5) 

In order to approach the actual value of U as closely 
as possible, with the present choice of the polarization 
field, (3.3) subject to (3.5) is maximized, with respect 
to C(0), when (2.13a) applies, and minimized with re
spect to C(O), when (2.13b) applies, yielding 

C<(3erofc<i+«tf) = 3a0Ej°+Cj. (3.6) 

Here d is the average of d, i.e., 

C 'i= J d(Q)dU. 
J (Q) 

(3.7) 

Solving for C* in (3.6) and integrating with respect to 
Qj one finds 

Ci=(3aoEf+Cj)Qij. 
Here 

where 
Pir(3<Tokrj-\-8rj) = &ij, 

from which it follows that 

Qij=Q8ij. 

Equating the traces of (3.9) and (3.10) it is found that 

<Ji— CTQ 

(3.8) 

(3.9a) 

(3.9b) 

(3.10) 

ew=n 
i <7t-+ 2(To 

(3.11) 

7 L. N&l, J. Phys. Radium 9, 184 (1948). 
8 Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids (to be 

published). For treatment of the problem of elastic behavior of 
polycrystals, see: J. Mech. Phys. Solids, 10, 335, 343 (1962). 

9 Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962). 
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The average polarization can now be determined from 
(3.8), (3.10), and (3.11), and is found to be 

G(»o) 
Ci(<ro) = 3cro £/>. (3.12) 

It follows from (2.13), (2.40), and (3.1) that a can be 
estimated from 

a>Uc/VW for ff0Oi, ( 3 1 3 ) 

<x<Uc/VW> for cr0><73. 

Substituting (3.3) in (3.13), using (3.5), (3.6), and 
(3.12), and integrating, one finds 

l + 2 O > 0 ) 
o->(jQ for (To<au 

3.14 
l+2G(<r0) 

a<GQ f o r CTQ>(TZ, 

To obtain the best bounds for a from (3.14), note that 
the right-hand side of (3.14) is a monotonously in
creasing function of o-0. Therefore, the best bounds for 
<J are obtained by substituting v\ and o-3 for <r0 obtaining 

0-3 >a>ai , (3.15) 

i-ew i-ofri) 
which can also, by use of (3.11), be written in the form 

4or3
2+8o'3cr2+8(ri(r3-f-7a20"i 

0"3— 
16<r3

2+5(730"2+S(riO-3+0'20-l 

4(712+8(T 1(72+ 8o"iCT3+ 7<T2<7Z 
>a>ai . (3.16) 

16(7-12+5(7 i(T2+5(T 1^3+0-20-3 

Here o-3>o-2>o-i are the principal conductivities of the 
crystal considered. 

IV. DISCUSSION 

The most widely used formulas for the conductivity 
of polycrystals are the average expressions 

<r= ^ 1 + 0 - 2 + 0 - 3 ) , (4.1) 
and 

1/(7=1(1/0-!+l/o-,+1/0-3). (4.2) 

Substituting o-0=0 and o-0= °° in (3.14) one finds10 

3 0-i+0-2+0"3 

<o-< , (4.3) 
1/(7!+I/0-2+1/(73 3 

10 It is interesting to note here, that in the special cases <r0 —* 0 
and <r0 —• 00, the variational theorems given in Part I I also simplify 
considerably. See also references 8 and 9. 

TABLE I. Calculated and measured resistivities (in 10~612 cm) 
of yttrium, at 300°K, with residual subtracted. 

Sample Sample Sample 
Y-I Y-II Y-III Eq. (4.1) Eq. (3.16) Eq. (4.2) Eq. (3)» 

60.0 59.5 59.6 59.3 54.5; 55.5 52.8 55.2 

*See reference 1. 

which shows that (4.1) and (4.2) are actually upper and 
lower bounds for a. Since the right-hand side of (3.14) 
increases monotonously with <TQ, the bounds given by 
(3.16) are more restrictive and, therefore, superior to 
those given by (4.3). This also shows that (4.1) and 
(4.2) cannot be correct. 

A question that arises is the following: Is the effective 
conductivity uniquely determined for the model of the 
poly crystal described above? In the case of a two-phase 
material it was shown9,11 that the effective conductivity 
is not uniquely determined in terms of volume fractions 
and phase conductivities. Whether or not a similar 
situation arises here is not known at present. The 
present treatment avoids the problem of the existence 
of a unique solution by establishing bounds for the 
effective conductivity of the polycrystal. In the deriva
tion of the various formulas given in reference 1, the 
problem is not mentioned. Unique results are found by 
introducing additional arbitrary restrictions which are 
not consistent with the actual conditions in the poly
crystal. Thus, for example, (4.1) and (4.2) are derived 
assuming that E and J, respectively, are uniform in the 
material, which certainly is not true. I t is, on the other 
hand, assumed in BruggemanV2 approach that the 
crystals can be considered as spheres in an isotropic 
environment. This is certainly a good approximation, 
but not an exact treatment. 

I t is of interest to compare the present and previously 
found theoretical results with experimental values. 
However, here one encounters the difficulty that in most 
crystals o-i~o-2~o-3 for which case all the different 
formulas give practically indistinguishable results. The 
case of yttrium is, as shown in Table I, somewhat 
different. 

In this example, the resistivity is significantly larger 
than the upper limit derived here. Further experimental 
studies will be needed in order to find the cause of this 
discrepancy. 

Lastly, it should be pointed out that the problem of 
the conductivity of polycrystals which has been studied 
here is mathematically analogous to the problem of the 
dielectric constant, heat conductivity, and magnetic 
permeability of polycrystals. 

The results found here thus apply directly to these 
cases. 

11 W. F. Brown, Jr., J. Chem. Phys. 23, 1514 (1955). 
12 D. A. Bruggeman, Ann. Physik 25, 645 (1936). 


