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A finite-temperature perturbation theory is presented for the Heisenberg model with the object of pro
viding a formalism in which contact can be made with the low-temperature treatment by Dyson, with the 
random phase approximation of Englert, and, above the Curie point, with high-density treatments of the 
Ising model. A linked cluster expansion is set up and a simple high-density classification, valid above the 
Curie point, is applied. The first two terms in the high-density series, tree graphs and ring graphs, yield, 
respectively, molecular field theory and a form reducing to spin-wave results at low temperatures. A low-
temperature classification is then developed which leads to an expansion of the free energy in powers of T 
in which the terms have the form of those describing bosons with an effective interaction similar to Dyson's 
rp)T

x. The first two terms are the low-temperature approximations of trees and rings, respectively, which 
justifies the use of the high-density expansion below the Curie point. The next term, including all the effects 
of spin-wave interactions up to T4 in the free energy, contains the Born approximation series presented by 
Dyson. In particular, the cancellation of T3 terms in the leading Born approximation is demonstrated. A 
renormalized version of the high-density expansion necessary to treat the region of the Curie point is then 
considered, and its approximation by an "excluded volume" sum is shown to yield the Curie point of the 
spherical model, in common with the random phase approximation and with high-density approximations 
to the Ising model. The extent to which the high-density theory misrepresents the effect of spin-wave inter
actions is then discussed. In an Appendix an equations-of-motion approach to the random phase approxi
mation and to the interactions between spin waves is presented. 

1. INTRODUCTION 

RECENTLY, there have been attempts1,2 to provide 
an approximate solution, valid throughout the 

whole range of temperatures, for the thermodynamic 
behavior of the Heisenberg ferromagnet. The methods 
of reference 1 were based upon the "random phase 
approximation" (RPA) in which the commutator of 
the spin operators is replaced by the average value 
of the true commutator. Similar results were obtained 
by Bogolyubov and Tyablikov2 using a Green's function 
approach in which the approximation is an assumed 
factorization of the two-particle Green's function. At 
low temperatures the results of the spin-wave theory3 

are recovered and at slightly increased temperatures 
the theory predicts deviations proportional to Tz in 
the spin-wave magnetization. As the temperature is 
raised still higher, the spontaneous magnetization 
decreases monotonically and in zero field becomes zero 
for all temperatures above a well-defined critical 
temperature. The critical temperature of the model 
turns out to be that of the spherical model of Berlin 
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and Kac,4 which Brout5 has shown to be a high-density 
approximation for the Ising model. 

It would, therefore, be desirable to know to what 
approximation the RPA corresponds. A second question 
exists: The results of RPA disagree with a low-temper
ature expansion for the free energy of the Heisenberg 
model worked out by Dyson.6 Dyson found that the 
first deviations of the magnetization from that of the 
Bloch theory occurred in the T4 terms in the low-
temperature expansion. 

The purpose of this paper is to investigate the cause 
of this disagreement, and to remove the discrepancy 
by going outside of the scope of RPA as we find to be 
necessary. We further attempt to investigate the 
relation between RPA and the high-density theories.7 

In order to carry out this program, we have developed 
a formal expansion which allows us to write down, at 
least in principle, all the contributions to any thermo
dynamic variable, for instance the energy or magnetiza
tion. The terms in the expansion may be classified 
according to their order with respect to a simple high-
density expansion7 at the Curie point, after the manner 
of reference 5, and we have also developed a method of 

4 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952). 
5 R. Brout, Phys. Rev. 118, 1009 (1960); 122, 469 (1961). 
6 F . J. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
7 We shall later find it necessary to differentiate between two 

types of high-density theory, one a simple high-density theory, 
the other a renormalized or self-consistent high-density theory. 
The first type is based on a classification, given in Sec. 3, of the 
terms in the free energy with respect to their explicit dependence 
on a high-density parameter. The second type is a modification 
of the first, necessary for the description of the Curie point. In 
the version of Horwitz and Callen (see reference 12), the simple 
high-density classification is used to select a class of irreducible 
graphs. The renormalized version of the high-density theory then 
involves the summation of all graphs formed from articulations 
of these irreducible elements, and is an approximation in which 
the variational principle is maintained. 
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classifying graphs with respect to an expansion in 
powers of the temperature. The classes of graphs which 
produce the leading and next order in the simple high-
density classification turn out to be those giving, 
respectively, all the terms of leading and next order 
in the low-temperature expansion. We, therefore, 
recover molecular field theory, exact in the limit of 
infinite density, or zero temperature, by summing the 
leading class of graphs. Summation of the second class 
of graphs, rings, produces spin-wave theory at low 
temperatures. In the next order, the two classifications 
select different sets of graphs; the first spin-wave 
scattering effects appear in this order in the temperature 
expansion. Thus, one cannot hope to get a uniform 
simple extrapolation based on the simple high-density 
notion that also gives the lowest order effects of spin-
wave scattering. 

We next consider the Curie point region. Here a 
renormalized version of the high-density theory is 
required.7 The formal expression for the sum of (re-
normalized) high density terms is difficult to evaluate. 
We have replaced it by an "excluded volume" sum 
which approximates it in a way to be discussed. The 
"excluded volume" summation is shown to lead to the 
same critical temperature as that obtained by the 
RPA and possesses other features in common with it. 
The analysis is for convenience carried out for spin 
5 = 1/2, but the results may be readily generalized to 
arbitrary spin. 

In Sec. 2 the linked cluster expansion is developed. 
In Sec. 3, we review the simple high-density classifica
tion and derive molecular field theory graphically. 
In Sec. 4 we present a graphical derivation of spin-wave 
theory in such a form that the contributing graphs may 
be easily extrapolated to arbitrary temperature. The 
low-temperature ordering is not presented until Sec. 5, 
since it depends on the results of the ring graph summa
tion. Section 6 contains the calculation of the simplest 
spin-wave-spin-wave scattering graphs, which give 
Dyson's first Born approximation to the scattering of 
spin waves. In Sec. 7, the renormalized high-density 
approximation to the Curie point region is developed 
and discussed. The conclusion is that for practical 
purposes the magnetization curve of RPA seems to be 
adequate and that the spin-wave interaction terms of 
Dyson are probably never important since the kinemat-
ical interactions set in before the dynamical ones achieve 
any importance. In Sec. 8, the content of the paper is 
reviewed and the application of the theory to the 
antiferromagnet is indicated. Finally, the first Appendix 
contains an equations of motion approach to RPA and 
to the problem of interactions between spin waves. 

2. THE LINKED CLUSTER EXPANSION 

In this section8 we derive a perturbation expansion 
for the statistical mechanical averages (Q)=Tr(pQ) of 

8 The development is similar to that used for the Ising problem 
by F. Englert, Phys. Rev. 129, 567 (1963). 

any dynamical variable Q in the canonical9 ensemble, 
where 

p = = e - ^ / ( T r e - ^ ) , (1) 

H being the Hamiltonian of the system. For the 
Heisenberg ferromagnet in the presence of an external 
magnetic field B, 

27= —A E* Sf-\ Y,u ^ySi-Sy, 
h=gfjiBB, v{j>0 (2) 

St is the spin operator of the ith. site and we have 
chosen the z axis along the direction of the magnetic 
field. We choose to write the x and y components of S 
in terms of the transverse operators 

S±=S*±iS", (3) 

which have the commutation relations 

ISf&^bijS?, (4a) 

[s/A-]=-a*sr, (4b) 
[s+isr]=ttoiiSf. (4c) 

The external magnetic field has been introduced for two 
reasons: First it removes degeneracy, and secondly, it 
provides a soluble unperturbed Hamiltonian 

Ho^-hZiSi*. (5) 

Corresponding to this unperturbed Hamiltonian there 
is a factorable density matrix 

p0==e-^o/(Tre-^o) = n^ Po(i\ (6) 
where 

p0w = e-e*om/(Tie-eB*in) (7) 
and 

H0
(i)=-hSi*. (8) 

Denoting by Hi the interaction 

H1=H-H0= ~h E.\y *</SrSy, (9) 

the average of Q becomes 

<0=Tr(p<2) (10) 

= =^o e-i3(Jffo+Hi)0o /^o e-/3(H(H-H1)^? ( U ) 

where 
<6>o=Tr (poQ) (12) 

is the unperturbed average of Q. The quantity exp(J$Ho) 
Xexp[-~/3(5'o+jffi)] can be expanded as a power series 
in Hi in the familiar way: 

exp03#o) exp[-j8(ff0+Hi)] 

- ( -1)* rP r$ 
= E • • • r[ffiGJ»)- • -ffiGWffiGSi)] 

»-o n\ Jo Jo 
Xdpidp2--dpn. (13) 

9 This is a canonical ensemble in the sense of there being a fixed 
number of spins. 
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Here, the operators i?i(/3i) are interaction picture Dyson,10 placing the operators in such a way that 
operators defined by #i(&) stands to the left of any 27i(&) with ft-<&. 

In the case when HQ and H\ commute, Eq. (13) can be 
reduced to the exponential series X^«(l/n!)(—#2Ji)n. 

and the symbol T is the time-ordering operator of In general, 

QC8/) = «pOS/Ho)Gexp(-/5/ffo), (14) 

<0=-

/ =o ( - 1 ) * /•* rP v 
< E / ••• / 2tHiG8«).--H103i)e(O)]dp1--.di3n) 
\ n-0 w! Jo JQ ' O 

/ - (-i)n /* /* \ 

<E / •••/ r^iW-ftWW!-^) 

(15) 

Any Q will be a product of the operators S* in some In the problem we are considering, the quantities x(v) 

definite order. It may always be written as f(iiah- • •, are the spin operators which do not commute. Here it is 
in<Xn)Siiai(Pi)m' 'Sin

an(Pn), where i labels the spin necessary to introduce time-ordered semi-invariants by 
index, a labels the component (+ , —, or 2) of the spin a simple generalization of these definitions: 
operator, and / is some c number. Further, 

Hi(fii)= -h Ei , ; Vi&fa) -Sjfa) 
: _ 1 Hi j Vi£Si+(Pi)Sr(Pi)+Sf(0i)Sf(Pi)l, (16) 

I I (d/d/<«>)**|««o HT exp(Ea<S^(pa%)t^))0 

= ^ > o ( r n [ ^ ( a i ) W ] ^ ) . (20) 

so that the numerator and denominator of Eq. (15) A1 A r ,u u • • „ . A^/o \ 
x . j j r ^ <• /JfT Also> w e define the "raising" operators A{ai)(Bai) so contain time-ordered averages of the form {T H n ihaf o r - »/ 

(Sin
an(&n)))o* Because po is factorable, this separates that 

A<«>(0aJMn(TII [S<«'>(&,)>') 
a/ 

= Jf ̂ .i(r II [5«-*> (/3a,.)]"«C^(a<) aW]"^1)- (21) 

into products of separate averages in each of which the 
operators have the same spin index. The spin operators 
from Q are now averaged together with spins with the 
same label coming from the interaction. If it were 
not for these terms, Q could be averaged independently 
from the interaction terms and the denominator would Then it follows (see Appendix B) that 
cancel the interaction term in the numerator of Eq. 
(15), leaving (Q)Q only. The correlation of the spins in v* ±1 IS a% (£a»)Jna7o 
Q with those of the same index in the interaction is, of a* — r r / i f (T<?(<*){R W4-A(a-){R \\n • (oi\ 
course, essential. Nevertheless, a partial simplification ~ *£ t M l ^ "* vPaJ)+A a* (/3a <)}"«*. (22) 
of the above type can be arrived at by using a semi-
invariant method.8'11'12 The classical semi-invariants This formula expresses the product on the left-hand 
Mn(x) are defined by side as a sum of products of semi-invariants where the 

sum runs over all subdivisions of the product in ques-
C17>) t*on* ^ *s a n e x P r e s s i ° n analogous to the expression of 

the W function in terms of products of U functions as 
ln(exp(to))o= E —Mn(%). 

By replacing tx by E^(")#(") °ne defines nth order 
semi-invariants of mixed arguments: 

m<exp(E^(p)*w)>o 

=nf"E -Vz^odl^^"'), (18) 
v Ln„=0 Uv\ J v 

so that 

n 0 / ^ w ) n ' | ««-o m<exp(Ev *<'>*<">)>0 
V 

=^»,>o(n*(*)n'). (19) 

10 F. J. Dyson, Phys. Rev. 75, 486 (1949). 
11 R. Brout and F. Englert, Phys. Rev. 120, 1519 (1960). 
12 G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961). 

FIG. 1. An example of the way in which the structure at a vertex 
determines the semi-invariant. 



158 S T I N C H C O M B E , H O R W I T Z , E N G L E R T , A N D B R O U T 

given in Kahn and Uhlenbeck's classical work on the 
theory of condensation.13 To illustrate both the applica
tion of (22) and the form of the time-ordered semi-
invariant, we give the first few members of Eq. (22) 
remembering that (5 4

± ) 0 =(6 ' /5 t
± )o=0 and <S*(ft))0 is 

independent of /5t-: 

<S*(fr)S*(fr))o=M2+M1M1, (23) 

= M*(TSi+(Pi)Srto)) (24) 

=e-(Pi-{*i)hXr (25) 

l<5r5*+>o, Pi<h 

+M1(S*(0k))M2(TS+(pj)S-(pi)). (26) 

We now use the semi-invariant development of each of 
the products that appear in the numerator and denom
inator of Eq. (15). 

We represent by graphs each term which arises from 
expressing the numerator of Eq. (15) in terms of the 
semi-invariants. Each interaction is represented by a 
bond carrying the temperature label and the indices of 
the spins which interact. In order to distinguish between 
the longitudinal and the transverse parts of the inter
action, the bonds representing the transverse part 
— I S i i VijSi+(j3i)Sf~(Pi) also carry an arrow directed 
from the index corresponding to the S+ to that corre
sponding to the S~. The semi-invariants are made up of 
the averages of the spin operators. The spin operators 
appear either from Hi or from Q. If we represent a vertex 
containing operators S+, S~, or Sz from Q by a circle O 
with the appropriate symbols ( + , —, or z) written 
inside, the semi-invariants are then given completely 
by the structure at the vertices: The order of the 
semi-invariant associated with a given vertex is the 
number of bonds jointed at that vertex plus the number 
of operators from Q associated with the vertex, and 
the numbers of S+'s and S~'$ in the semi-invariant are 
given by the number of bonds carrying arrows directed 
out from, and into the vertex, respectively, together 
with the transverse operators from Q. For instance, in 
the graph shown in Fig. 1, the vertex labeled i corre
sponds to the time-ordered semi-invariant 

M7(r5r(/52)5 i
+(^i)5/( iSo)5/( i33)5/(/54)5 i+( /S5)5r^6)). 

The building blocks from which the graphs are con
structed are the operators from Q and the individual 
interaction terms %VijSiaiSja> from Hi. The nth order 
term in the expansion of the numerator of Eq. (15) 

13 B. Kahn, thesis, Amsterdam, 1938 (N. V. Noord-Hollandsche 
Uitgeversmaatschappij), Chap. I l l ; B. Kahn and G. E. Uhlenbeck, 
Physica 6, 399 (1938); H. D. Ursell, Proc. Cambridge Phil. Soc. 
23, 685 (1927). 

is a sum of terms each containing a product of n 
individual interactions. In many of the terms more than 
one interaction involves a given spin index. Further, a 
spin index occurring in Q may occur in one or more of 
the interaction terms. In these cases, the average 
(• • -)o is of a product of spins, and using Eq. (22) to 
write this in terms of the semi-invariants the graphs so 
constructed are all those that can be made by starting 
with the isolated bonds, and operators from Q, and 
joining the indices labeled with the same letter together 
in all possible ways. Thus, the expansion of the numera
tor of Eq. (15) into the semi-invariant diagrams 
produces all possible diagrams that can be drawn from 
the bonds and vertices O . The next step is to sum all 
indices and integrate over all temperatures. Then the 
same graph appears n\2nl/g times, where n% is the 
number of longitudinal bonds and g is the number of 
symmetry operations which transform the graph into 
itself. This statement follows from the fact that each 
of the n factors f A*/ appears in any one of the n factors 
of Hi giving a factor n !. For longitudinal graphs, a bond 
is undirected and, therefore, can have either of its 
orientations. Transverse bonds are all oriented. Hence, 
the factor 2nl. The factor 2nln 1 is clearly redundant if 
there are g operations which turn a graph into itself, and 
one must divide by g. g includes rotations, reflections, 
interchange among the bonds connecting two given 
vertices, and interchange of identical unlinked parts 
(the definition of linked is given below). 

Clearly, the n! in this factor cancels the \/n! appear
ing in the numerator of Eq. (15). We now define an 
unlinked graph as one which separates into two or 
more parts which are not connected by any bonds 
(the vertices of Q are to be considered as a linked unit). 
Because of the cancellation of the (w!)'s, the unlinked 
graph is composed of a product of linked parts each of 
which contributes independent factors, multiplied by 
an additional g factor due to the symmetry between 
identical unlinked parts. Clearly, the total g factor is a 
product of a g for the part linked to Q multiplied by a g 
for all the parts unlinked to it. Similar statements 
apply to a diagram expansion of the denominator. The 
expansion of numerator and denominator differs only 
in that the operators of Q provide extra vertices to 
which we can join bonds. The numerator expansion is, 
therefore, equivalent to all graphs linked to the opera
tors of Q, multiplied by all graphs unlinked to these 
graphs. However, this second factor is just the expan
sion of the denominator. Hence, we arrive at the linked 
cluster expansion: (Q) is given by summing all graphs 

\ ™A ^ % FIG. 2. A typical 
fti\ &$/ \ graph in the linked 

\ / p \ cluster expansion. 
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linked to one or more of the operators of Q according to 
the following rules: 

(a) Each bond carries labels i, j , Pi, and the contribu
tion %Vij. 

(b) Each vertex specifies a time-ordered semi-
invariant whose order is the number of operators of Q 
involved plus the number of bonds joined to that vertex. 
The argument of the semi-invariant depends on the 

The extra \ arises from the symmetry of the graph 
under interchange of the bonds Pi and P%. The dummy 
variables p*, Pb, PQ, 07, Ps, I, m, n are superfluous and 
will in future be omitted from graphs. Finally, it should 
be noted that because the unperturbed average of a 
product of spin operators containing unequal numbers of 
S+'s and S~fs vanishes, in a nonvanishing graph the 
bonds carrying arrows form continuous paths which 
can only begin or end on a vertex containing transverse 
operators from Q. I t will be convenient in a subsequent 
section to use the perturbation theory to calculate the 
free energy F. F is related to the average energy by 

(~PF) = (H). 
dp 

I t follows that F is, as usual, given by calculating the 
graphs obtained by closing all energy graphs, with the 
symmetry factors appropriate to the closed graph. 

3. MOLECULAR FIELD THEORY 

The most important qualitative features of ferro-
magnetism are given by the Weiss molecular field theory 
(or self-consistent field theory). This theory also gives 
a successful semiquantitative account of the Curie 
point phenomena apart from critical fluctuations. As 
has been pointed out repeatedly, this success is due to 
the fact that the theory is the leading term in a high-
density treatment of the ferromagnet. Molecular field 
theory also gives correctly the first two terms in an 
expansion in powers of exp(—\$v) for the Ising model, 
but for the Heisenberg model it must be modified at low 
temperatures since it fails to give spin waves. 

In this section we first present the simple high-density 
classification of the terms in the linked cluster expansion 
in the Curie point region. We then isolate terms of 
leading order in the expansion and show that these 

FIG. 3. Coupling of spin i 
with spin k. 

type of bonds, and their temperature labeling in the 
way given above. 

(c) Each graph carries a factor 2nl/g. 
(d) The final step consists of free summation over 

all spin indices, and integration of all temperatures 
from 0 to P, with due regard to the time ordering. 

For example, the graph of Fig. 2 contributes the 
following expression to (TSi+(Pi)Sj~(p2)Skz(Pz))-

terms sum to the molecular field theory. The summa
tion, which proceeds in the manner presented by 
Horwitz and Callen,12 is included here for completeness, 
as well as an introduction to the vertex renormalization 
procedure which will be used throughout this paper. 

Each bond of a graph carries a factor |z;t-y and a label 
Pi which is eventually integrated from 0 to p. Each 
vertex is associated with a semi-invariant and a spin 
index i. Any free spin index (i.e., one labeling a vertex 
including no spin operators from Q) is summed. For 
instance, the index k of Fig. 3 will be summed, but only 
over values labeling spins with which spin Sf is coupled 
through Hi. We shall call the number of such spins z. 
Then the explicit dependence on (l/z)n is to be isolated 
for the simple high-density expansion. 

A graph containing x bonds and y free vertices and 
yf vertices associated with Q carries a factor which is 
approximately Px(v)xzvMv+y' where we have replaced 
the interactions and the semi-invariants by some 
average values v, M. However, for the molecular field 
model, the critical temperature is given by 

pczvS2=l. (27) 

This enables us to write Pv in terms of 1/z and we 
obtain for the contribution of the graph: 

{p/pc)
xzy-xMy+yf. 

Thus, for temperatures near the critical temperature 
or higher, P/pc<l, the order of the graph in the high-
density expansion is the number of bonds minus the 
number of free vertices. The number of bonds is always 
greater than or equal to the number of free vertices in 
a linked graph hence the leading term in the high-
density expansion comes from the "tree" graphs for 
which x=y. A typical example is shown in Fig. 4. 

FIG. 4. An example of a tree graph. 

rP r$ r& rfi rP 

H E i . . ^ . ) ^ ^ ^ , dfij dp J dpj dp7 dpaM1(S'(0t))M,{TS+(0l)S-(pt)S'fa)) 
Jo Jo JO JO JO 

XM2(r5K^)52038))M4(r5^08i)^O8)5+(^6)5-035))M2(r5+086)5-032))JWi(^033)). 



160 S T I N C H C O M B E , H O R W I T Z , E N G L E R T , A N D B R O U T 

FIG. 5. (a) A 
simple transverse 
ring graph, (b) A 
simple longitudinal 
ring, (c) A ring with 
tree renormalization. 

Because transverse bonds form closed paths, the 
graphs of zero order in \/z are made up of only longi
tudinal bonds. The graphs of order 1/z have one more 
bond than free vertex and simple examples (ring graphs) 
are given in Figs. 5 (a) and 5 (b). Addition of tree graphs 
to any vertex will not change the order in the \/z 
expansion so that the graph of Fig. 5 (c) is also of first 
order. 

We shall now sum the tree graphs to find the magnet
ization in zero order, which will prove to be that given 
by Weiss molecular field theory. 

The magnetization is (Sz) so that we need to sum all 
tree graphs rooted to Q=SZ. These are the graphs of 
Fig. 4, which contain only the longitudinal part 
— ̂ HijVijSf'S]'* of the interaction. Since all the 
operators involved commute, the time-ordered formal
ism is unnecessary here, and we may omit the 0* labels 
and perform the time integrations trivially. For the 
graph with n bonds shown in Fig. 6, the g factor is n!, 
since the same graph is obtained by interchanging 
bonds in all possible ways. The vectices at the extreme 
ends are all first-order semi-invariants (5Z)0, independent 
of the spin index. The sum over free indices is immediate, 
each producing a factor \ £y %=|^(0). Here we define 
the Fourier components of the potential by 

Hg) = Eiy%^"3(n'"ry). (28) 

Thus, the contribution of the graph of Fig. 6 is 

(2V^0D3(KO)/2)^)o]nMM.1(^- • •£*). 

Using the raising operator d/dffh derived in Appendix C, 
we obtain for the sum of graphs in which all bonds are 
joined to a common vertex labeled z, 

l r d T 

n=*0 fl | L d0A-

-exp\pv(0){S% I M L (29) 
L dBhJ 

FIG. 6. Articulation of 
bonds at a vertex. 

single 

FIG. 7. Renormalization of a 
second-order semi-invariant by 
trees. 

These are not all the tree graphs; we obtain more by 
adding to each vertex of Fig. 6 extra bonds just as in 
Fig. 6 bonds have been added to vertex i. If we continue 
this process indefinitely, the semi-invariant of each 
vertex will be changed to the value Mi, say. This 
process is called vertex renormalization. But Mi will be 
the value obtained for (Sz) from the summation of all 
tree graphs. Hence, 

M i = exp 0v(O)M: 
* d 1 
k f i — M i . dfihJ 

(30) 

So far, it has not been necessary to specify the magni
tude S of the spin. From now on, however, we shall find 
it convenient to specialize to 6"=|. Then Mi=\ 
Xtanh(£0A), so that 

Mi=\ tanhd/K/z+KO)^!)]. (31) 

The magnetization Mi given by (31) is the Weiss 
molecular field magnetization. For zero h> the magnet
ization disappears at the temperature Tc given by 
1=£CZJ(0)/4, which we used in setting up this high-
density classification. 

4. TERMS OF FIRST ORDER IN THE HIGH DENSITY 
EXPANSION—SPIN WAVES 

In this section we calculate the terms of 0(1/2) 
according to the simple high-density classification 
presented in the previous chapter. These are the rings 
with all vertices renormalized by trees. As presented in 
Sec. 3, except for the case of infinite z, the classification 
is only valid provided /3//3c<l, so that we would not 
expect to obtain results valid below the Curie point. 
It will, however, be shown in Sec. 5 that the classes of 
graphs corresponding to the low-order terms in the 
simple high-density expansion are the same as those 
corresponding to the low-order terms in an expansion in 
powers of the temperature, so that the results are also 
correct at low temperature. 

The result of the ring summation carried out in this 
section will, at low temperatures, reduce to spin-wave 
theory. 

We sum first the unrenormalized ring 5 (a) to obtain 
the simplest terms in the ring approximation to the 
transverse propagator (TSi+(pi)Sf(fij)}. The result 
will be modified later in this section by including the 
tree renormalization shown in Fig. 5(c). 
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The unperturbed propagator is 

<WO3i)Sr(02)>o 

(32) 

period (3 and, hence, may be Fourier analyzed: 

* tanhJ/SA 
(TSi+(fii)Sr(Pi))*= E *-***-*>, (33) 

k—«>i3(h—i\k) 
eehi2+e-eh/2ie-(ihi2f px<p2, 

where \k—2Trk/$. The unperturbed propagator (33) 
As a function of O î— 2̂), this function is periodic with occurs as follows in the sum over rings14,15: 

00 r& r& 

(r6 ,*+(^i)5r03i))unrenormalizedrings= E (4)" E *'ui*W ' ' Vin-V / * ' * / dPi'"dpn 
n==0 ii •• • t"n-l J o JO 

x<r5<+tf.-)SrC8i)>0<r5,-1+OJ,)5<rOSi)>o-• • (TSi+tfjsrto))* (34) 
Fourier decomposition of both D*,- and the propagator (33) then leads to 

<r5i+0S<)SrC8y)>u»«normaii«drta«.=E £ L e i9(r '-r ')e-'Xt(" i-ft)C0t'(?)/2]ltanh^V/3(^-*X t)]"+1 

« n=0 *==—oo 

tanh|0/? 
= E E e^-"-^-****-*/) . (35) 

« * $[h-i\k—\v(q) tanhi0A] 

The sum over all integers k may be replaced by a contour integral with respect to z by using the function 
±j3[exp(d=/3z) — l ] " 1 which has poles with unit residue at the points z= (2iri/$)j. The function which makes the 
integrand converge for all large z is chosen.14 The result is 

f«~(?)> &>ft, 
(TSi+(Pi)Sr(Ps))uMenormdM dngs=Eg e ^ - ^ t a n h ^ A e x p [ - (ft-fr)(A-|Kg)tanhii8A)]X (36) 

where 
«±(^) = ±{exp[±j8(A-iK?) tanhJjSA)]-!}-1. (37) 

In order to complete the summation of terms of order 1/z, it is now necessary to include tree renormalization, 
replacing the unperturbed propagators (second-order semi-invariants M2) by the sum of all multiple vertices of 
the type shown in Fig. 7. 

The effect of this tree renormalization of each M2 is given as a special case of the following general theorem: 

For a semi-invariant of arbitrary order, tree renormalization causes a displacement of A to h+v(0)Mh every
where that A occurs in the unrenormalized semi-invariant. [This result has already been obtained, Eq. (30), for 
the semi-invariant of first order.] The proof proceeds as follows: As in the treatment of Mi(Sz), we first obtain the 
modification of the general semi-invariant M2n+i(S+(fii)- • •S+03n).5'~(jSn+i)- • 'S-(p2n)S

z(p2n+1)- • -Sz(l32n+i)) which 
results from articulating all single bonds. The semi-invariant associated with the articulation of /' bonds is M2n+i+i> 
(TS+(fii)" '$~(fi2n)S

z(fi2n+i)' • -Sz(J$2n+i+i'))- Using the generating function formalism, we have upon integration 
over p2n+i+v - -fon+J+r: 

n+l+V ' 'd@2n+l+l> 

-c dyJ 7=o dai!ai=o da< 2jt-M'«2H 

l n / r e x p k f iff S*(ff)+aiS+(ff) + • • • +a J M . ,S 'GW,)"] \ (38) 

The sum over the index j labeling the end of each longitudinal bond has the form § £ i Vij(S^0=^(0) Mi. Further, 
for V such bonds the symmetry factor due to interchange of the bonds is /'!. Thus, the modified propagator is 

E (2I7//!)CiV(0)Jlf1]''(d/d7)l'U-o — 
Z'=0 doti «1=0 da2n -M 

in(r- . . ) 0 
«2»+I=0 

= exp[v(0)ilf1d/d7]|7-o — 
«i=0 ^a2n+i'«2W+Z=0 

ln<r-.->o. (39) 

14 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 
15 D. J. Thouless, Ann. Phys. (N. Y.) 10, 553 (I960), 
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We now show that the differentiation with respect to 7 at 7 = 0 may be replaced by differentiation with respect to 
h at its correct value. This is a consequence of the fact that the unperturbed Hamiltonian is —h J^i Sf. Consider 
the expression 

l n / r exp|~7 f dp>S*(pf)+<*iS+(Pi)+ • • • +a2n+lS*(p2n+i)}\ = ]n/exp[y f Sz(ft)dpf\xplOi(ph)] 

Xtxplyf S*(ft)dft\xpi02(h)y • - e x p E O ^ f e ^ e x p U f ' +* S*(ft)dftl\ , (40) 

where {Oi(fiia)} is the sequence of operators aiS+(fii), at-5~(j34), a^ifid labeled in order of decreasing fit The 
right-hand side of Eq. (40) is 

f Tr[exp (phS')exp (pySz)exp ( - phyS2)exp ( - p{lhSz)exp (Oi) ] 

I XexpG^AS*)• • • exp(02n+l)exp(pi2n+lhSz)exp(pi2n+lySz)] j, 

[ _ TrCexpOSW)] J 

because the average is performed with the weighting factor p0, and because 

exp[0(J3)'] = exp[exp(fiH0)O exp(-pHo)l = exp(pH0)exp(O)exp(-/3#0). (41) 

The logarithm above is, therefore, 
[Tr[expC8(A+7)50]] 

exp(7a/dA)ln<r exp[a1S+(/31) + • • • +a2n+*S*0W0]>o+ln , 
I Tr[exp(0AS*)] J 

where the shifting operator exp(yd/dh) has the effect of replacing h everywhere that it occurs by h-\-y. The 
renormalized semi-invariant (39), therefore, becomes 

d 
exp[i>(0)Mid/d7]U-(r 

dai'ai=o da2n+i 
exp(yd/dh)\n(T txplaiS

+(p1)+ • • • +a2n+*S2(/W*)]>o 

= exp[r(0)Mid/d 7]U-o exp( 7aM)ikr 2 n + i ( r5+05i)- • - S * ( / W ) 

= exp[v(0)Jf id/d*]Jf 8fH.i(r5+(j5i) • • -S*0W*)). (42) 

To carry out the complete tree renormalization, it is necessary to add further single bonds to the end of each bond, 
which converts the bonds into trees. This has the effect of changing Mi to Mi as we saw in the previous section. 
Mi(Sz(ft)) determined self-consistently by Eq. (31) is not a function of the temperature label ft', so that the 
analysis presented above goes through with Mi replaced by Mi and the complete renormalization of a vertex by 
longitudinal trees is given by Eq. (42) with Mi replaced by Mi, the molecular field value of Eq. (31). This completes 
the proof of the theorem. 

We now insert this renormalization correction into (36) and (37). Each of the factors in (36) which contains h 
arises from an unrenormalized semi-invariant. Thus, the renormalization with longitudinal trees causes everywhere 
a translation of h to the value h+v(0)Mi. Our result is then 

{TSi+(fii)Sr(Pj))riTM with tree renormalization = E g 6»«(ri-ry) timh&l3(h+v(0)Mi)] 
\2~(q), Pi>P, 

X e x p { - (fti-^)lh+v(0)Mi-^(q)t2inhZmh+v(0)Mi)J]} X (43) 

ir-fa), Pi<Pi 
where 

I±(g) = ± { e x p [ ± / 3 { A + K 0 ) M i - ^ ^ (44) 
For Mi5^0, this expression may be simplified by using Eq. (31) to give 

<rs<+(fc)sr(ft)W 
fg~, Pi>pj 

= £ « €*'*-*» e x p [ - (pi-pi){h+MJ[v(0)'-v(q)2}l2MiX (45) 

where 
g ± = ± [ e x p { z t i S [ A + M 1 ( H 0 ) - . ( 9 ) ) ] } - l ] - 1 . (46) 
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At low temperatures, J^i—> \. Defining the frequency 

"(q) = h+K<0)~v(qn (47) 
we have 

lim(r5i+(/3i)5r(ft-))ring3 
r-»o 

= E 9 e*«(r*-r'> e x p [ - (fli-h)u(qX\ 

where 
| ± = ± { e x p [ ± ^ ( 9 ) ] - l } - 1 , (49) 

which is, in fact, the Fourier transform of the usual 
spin wave propagator. Equation (48) then gives for 
the spin-wave populations 

n (q) = (SqS-+)Tings = [exp0a> (q) - 1 ] - * . (50) 

At low temperatures, the magnetization curve can then 
be determined from the rule 

lim <Sz)rings=4 L i ( l - 2 ( 5 r 5 i + ) r i n g s ) 

=* E,(i-2(5r^+)rings)=|-o(r/rc)3/2. (si) 

This result may also be obtained by direct calculation 
of (Sz) in the same approximation. 

Thus, we have recovered spin-wave results3 by ring 
summation. The interpretation of these results as a 
valid low-temperature approximation are given in the 
next section. 

5. LOW-TEMPERATURE ORDERING 

In the previous sections we considered the application 
of a simple high-density ordering whose derivation 
was valid in the region of, and above, the Curie temper
ature. In this section we shall complement this high-
density ordering by a low-temperature ordering which 
classifies the graphs according to a power of T or to 
exp[— J|Sz;(0)], which is negligible compared to any 
power of T at low temperatures. This classification will 
enable us to select the graphs of lowTest orders in the 
temperature expansion, for comparison with results of 
Dyson.6 We shall also see that the low-temperature 
and the high-density classifications select in low orders 
the same classes of graphs, so that the results of the 
high-density summations of Sees. 3 and 4 may be 
employed below the Curie point. 

We shall first arrive at a simplification of the longi
tudinal elements of a graph, by examining the low-
temperature values of the longitudinal semi-invariants. 
The unrenormalized longitudinal semi-invariant of 
order n can be obtained by operating n—\ times with 
the raising operator d/d(fih) on M\=\ tanh^0A. We may 

write Mi as follows: 

A T ! = 4 [ l - 2 e x p ( - 0 * ) + O ( e x p ( - # * ) ) ] , (52) 

so that Af»>i«exp(—0A), and for finite field, at low 
temperatures Mn>i becomes "exponentially small" 
compared to M\. If the treejenormalization of each M 
is carried out, h —> h+v(0)$i and Mn>i/Mi is propor
tional to exp{—/3[Jp(0)+A]} and the ratio is negligible 
even in zero field. 

Thus, any graph containing a tree renormalized 
longitudinal semi-invariant Af» with n> 1 is exponen
tially small and can be discarded for the purposes of an 
expansion in powers of T. I t also follows that the low-
temperature limit of the magnetization, for example, 
of the Ising model is completely included in those 
graphs whose vertices are just first-order semi-invariants 
with tree renormalization, that is, the molecular field 
trees. Furthermore, this class of graphs contains also 
all the graphs in which one renormalized semi-invariant 
is allowed to be of order higher than one, so that we 
recover from this temperature ordering the well-known 
result that the molecular-field description of the 
Ising model is correct at low temperatures apart from 
corrections of order {exp[—§0p(O)]}2. 

Now we examine the transverse parts of graphs. We 
found in our examination of the ring summation that 
it was convenient to Fourier analyze the propagators 
M2(TS+(l3i)S~(l32)), because of the convolution nature 
of the sum with respect to time and space. The Fourier 
analysis with respect to time has for the low-tempera
ture ordering a further advantage which we shall now 
develop. I t is simply that having placed all the depend
ence on 0i, 02 into factors like eiXfcC/3l_/32), the integrals 
over 0i, 02 which have to be completed to evaluate the 
ring are of the form fo^1e

i^l0<^Xk) = P8(\j+\k) since 
ei^i—\ for all j . That is, the temperature dependence 
associated with each of the integrals fd$i is simply a 
factor 0. The only other place in which a temperature 
dependence arises is in the Fourier coefficients M~2(X) 
= tanh{i0[/?+^(O)ilf1]}{0[A+^(O)ilfi-iXj}-1 , where 
we have again included tree renormalization. Here it is 
possible to make a low-temperature approximation by 
replacing 2il3ri=tanh{|-0[A+z;(O)iyri]} by one. Because 
of the X, q-conservation around the ring, any ring 
element is then of the form 

h- * n [{3(h+±v(0)-~i\3)~]n+l 

= E Z {CA+Kf (0)-K«))-2^]}"1 . (53) 
7 Q 

Since Ytt^Sfflq and v(0) — v(q)^q2
y in the limit of 

zero field this ring element is proportional to T3/2. 
We now generalize this procedure to the discussion 

of the temperature dependence of graphs containing 
more complicated vertices. The general semi-invariant 
M2n+i(TS+(l31)--S*(pi)) is a function of 2n+l time 
labels 0 r • -02*, 0 V • -0'z. The following argument shows 
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that it is periodic in each of these variables and can, 
therefore, be Fourier analyzed.16 

X5-(j8j.)5*O'i)---5*08',)) 
-Zki-iy-Hk-mn), (54) 

where { vk) means the sum of all divisions into k separate 
averages of the set of operators S+(pi)- • -Sz(pfi). 
Consider any spin operator S(ai)(Pi) of the semi-
invariant. Keeping all other times fixed we put Pi in 
turn equal to 0 and to p: In any part of the semi-
invariant, the average in which S{ai)(Pi) appears then 
changes from having, in the first case Siai)(0) to the 
left of all the other operators, to in the second case 
having S(ai)(P) to the right of the other operators, 

that is, 
Tr[exp(-j8ffo)r(S- • -5- • 0 ^ ( 0 ) ] , 

Tr[exp(-]8Ho)5^>(j3)r(5- • -5- • 0 1 

respectively. However, 

exp(-pH0)S^(p) 
= lexp(-pHo)S^(P) exp(/3#0)] exp(-pH0) 

= S<«>(O)exp(-0ffo), (55) 

so that the second case, j8»=j8, is identical with the first, 
Pi=0, using the cyclic invariance of the trace. Thus, 

M2n+l(Pi=P) = M2n+l(£i=0)y (56) 

with all other time variables arbitrarily fixed. 
Thus, we may write Min+x as a multiple Fourier 

series: 

M2n+l(Pv ' 'PnPn+V ' 'p2nP'V ' 'P'l)= E M2n+lfrv ' *X2n, X V ' 'X ' l ) 

where 

M2n+l 

X e x p [ - i ( j 8 i X l + * * ' +Pnkn-Pn+Ihn+1 p2n*2n+P'1^ 1+ ' ' ' + | 8 ' i X \ ) ] , ( 57 ) 

( \ V ' \ 2 n , \ ' v \ ' l ) = p-i2n+l) [ d P v f dpf
lM2n+l(Pv -P'l)expLi(j3l\l p2n\2n+'-+p,lk,in ( 5 8 ) 

Jo Jo 

The time translational invariance of M2n+i{Pv • * 
p2nPfv • -P'i) implies that Mtn+iQ^v • -X'O vanishes unless 

Xl+ ' ' '+Xn —X„+i* • • —X2n+X l' * *+X 1=0. 

Thus, in computing Af2n+j(Xr • -X'O according to Eq. 
(58) we may discard any parts of the integration which 
will not lead to a factor $Xl+...+xn-xn+r..-x2n+...-fX'j,o since 
these parts will cancel among themselves. We may 
extract the explicit time dependence of M2n+i(Pi- • -Pfi): 

M2n+l(Pl' ' -Pfl)=m2n+l eXp[-h(Pi~\ 
+Pn-Pn+1 ft»)l (59) 

where m is constant within a given time ordering. Then 
the time integrations of Eq. (58) are integrations of 
factors like exp[J?t(- • • h \-- - - ihv - -)~] within a given 

time ordering. Only the final integration has limits 
(0, P), and this integration only may give rise to the 
8 function. It can only do so if the integrand has a 
term whose only pi dependence is expQt&XXi hXn 

—Xn+i hX'O], that is, containing all the X's. Such a 
term will result from doing the preceding integrations 
and evaluating them at their upper limit only. This 
provides us with a simple procedure for evaluating 
Eq. (58). Evidently, the result of the integrations over 
a given time order can give rise to no additional h 
dependence beyond that already in rtl2n+z. Thus, a 
further simplification appears: For the purposes of a 
low-temperature expansion, we may evaluate Eq. (58) 
by the method outlined above, neglecting all time 
orderings which have m2n+i exponentially small. 

Thus, for example, of the six possible time orderings of 

itf^iCr^tfO^Gfc^ (60) 

only pi>P'i>p2> for which ttl2+i= —1, leads to results for TT12-M which are not exponentially small. Then 

M2+i(XiX2X'i)==r3/ dpj dp'J dp2(-l)exp{~\Jl(h--i\l)-p2(h-i\2)-ip'i\'il} 

= -5x1_x2+v1,oDS(^-^X2)^(^-iX2+^X/i)]-1. (61) 

We now make the assumption that m2n-M is exponentially small [at least of order exp(—ph)~] except when 

alltfi- • -Pn}>2l\{P'v • 'P'l}>2ill{Pn+V ' -ft»}. (62) 

This is the case for low-order semi-invariants examined in detail (M2, M4, M2+1, M2+2) but a general proof has not 

16 A similar result has been obtained for the propagators for systems of fermions or bosons by P. C. Martin and T. Schwinger, 
Phys. Rev. 115, 1342 (1959). 



T H E R M O D Y N A M I C B E H A V I O R O F H E I S E N B E R G F E R R O M A G N E T 165 

yet been found. From the assumption, using the argument above it follows that 

M2n+l(Xi' ' 'AnXrH-r ' ' t a n A V ' 'X'j) 

fP ffon-1 fhn fP'h-1 [P'n fPhn-l 

=m2^maxr (2n+0 Z E / # . v / dfiin dph--- &Vn\ ^ . + r - - / <&<*» 
{ik) Vk)Jo J J J J J 

n I 

X I I e x p [ - f t ( A - * X O + / W * - * W i ) ] I I exppftX',], (63) 

where {ik} are all distinct sequences formed from the set of numbers 1 to 2», to {jk} are all possible sequences 
formed from 1 to /, so that the integral is over all time orderings satisfying Eq. (62), and m2«-Mmax is the value of 
rr\2n+i corresponding to any of these orderings, a constant of order 1. The result of the integrations is 

M2n+l(Xv • •Vz)=m2n+imaxir(2n+z-1)5xl+...+x»-xn+1...-x2n+vr..+x'^o E E Kh-iXiJiUi-iXi^-iXi^J • • • 
{ik} {Jk} 

X (nh-i\i2n i\in+1) (Di+ik'h) (Di+iX'n+iX'j^) • • • (Dl+iXf
Jl+ • • • + i \ ' y i ) 

X (D2-h+iXin) (D2- 2h+iXin+iXin_x) • • • (D2- ( » - l)h+iXin+ • • • +*X*)], (64) 
where 

Di=nh—iXi2n *Xtn+i> ( 6 5 ) 

Di^Di+ik'jrf HXr
h=nh-iXh iXin. (66) 

Recombination of the terms in the sum E Uk) leads to 

M2r+i{Xv ' 'X2nX'v • •X^)=m2«+im a xW..-4An-xn + 1 .^ • 'f$(h-iXn)${h-iXn+i)- • 

X^(A-iX 2n)]" 1 E DS^i+iX ' i^CZJi+fX^+iX'y^)• • •0(Z>i+&VNV i l _ 1 + • • • +iX'y2)]-1. (67) 

w 
When / = 0 , the last sum goes over to fiD2, and the semi-invariant is 

m2nmax5x1...+Xn-xn+1...-x2n,o^[(A-iX1)+- • • + ( * - & » ) ] 
A^2n(Xl* * -XnXn+1* ' 'X2n) = -

p(h~-iXi)p(h-iX2)- -fSQi-iXn)- • 'P(h-iX2n) 
(68) 

Under tree renormalization, A—» /H-z;(0)Mi in the 
above equations. From now on we assume that tree 
renormalization of all vertices has already been carried 
out. Having derived the form of the general semi-
invariants, we may deduce the temperature dependence 
of any graph by the same method as was applied above 
to the simple transverse ring. 

Consider first purely transverse graphs. The most 
general graph of this type is a set of m transverse semi-
invariants of order greater than two joined by n ring 
elements (with tree renormalization everywhere). 
Along the ring elements, and at the vertices, there is 
momentum and frequency conservation, and the 
value of the graph is then obtained by summing over 
all ^-independent q and X variables. The contribution 
from a tree-renormalized ring element without its 
final vertices is [P(h+%v(0)-iX)¥{t3[h+%(v(0)-v(q)) 
—iX]}"1 where the momentum and frequency of the 
ring are <?, X, respectively. The values of the vertices 
are given by inserting into Eq. (68) the appropriate n's 
and X's, and replacing h by h+^v(0). In a free-energy 
graph the denominators from the vertices cancel 
exactly the factors [P(h+%v(0)-iX)22 in the contribu
tion from the ring elements and the final sum over the 

^-independent X's and ^'s is of a product of n factors 
like {P[.h+?(v(0)—v(q))—iXj}"1, one for each ring 
element, multiplied by a product of m sums of single 
terms [fi(h-\r%v(Q)—iXi)2 from the numerators of the 
semi-invariants with « > 1 . Each of the Q sums over X 
is replaced by a contour integration as in the treatment 
of the simple ring. The values of the sums are deter
mined by the poles from the product of denominators, 
as a function of the (^-independent X's, so that the total 
sum is a product of Q spin-wave distribution functions 
n(qi), multiplied by a product of (n—Q) denominators 
each of the form E * 0w(#t).17 The product of m sums of 
terms C/3(/?+|^(0)—iXt)] becomes a product of m sums 
of terms \$v{qt) so that the final contribution to — $F 
has the form Y,qv>-qQ(h$v)m($u)Q-n{n)Q, which is 
proportional to r(*^~m). 

This rule needs modification in two exceptional 
cases. The first is when a (a > 2) of the ring elements 
have the same momentum (and, therefore, the same fre
quency), as for instance in the example (a = 2 ) given in 

17 Compare J. M. Luttinger, Phys. Rev. 121, 942 (1961). 
18 Henceforth, tree renormalization, which is everwhere implied, 

is not shown explicitly in our diagrams. We further simplify the 
diagrams by omitting the structure (bonds and M2's) of the 
ring elements. 
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FIG. 8. A trans
verse graph in which 
two of the ring ele
ments have the same 
frequency and mo
mentum. 

q \ * 

Fig. 8.18Then the product of n denominators [fi(h+oo(qi) 
—ihif\ contains [fi(h+u(qf) — i\f)~}x- On carrying out 
the sum over X', the multiple pole from this factor does 
not give rise to a factor [j&o(g')]_1 but it removes (a— 1) 
factors [j3(A+M0)-iX'H )] -» L h$v from the 
numerator. Then the contribution to — $F is of form 

E {^v)n~a-l^)Q-n+^l{n)^^T^^m^^~l)K (69) 
5 1 - • -QQ 

The second exceptional case is when, because of fre
quency conservation, the frequency of one ring element 
appears with opposite sign in the frequency of another 
(as for instance X^ does in Fig. 9). Then two poles 
contribute to the sum over this frequency, one yielding 
n(q), the other (1—n). The (1 — n) term then fails to 
produce the usual Tm factor. However, the factor in 
the denominator is still of the form /fo, so that the final 
contribution, instead of being Tm, is T. 

Thus, in general, a transverse graph with (^-independ
ent g's, of which Qf appear with both positive and 
negative sign in the labeling of the ring elements, m 
semi-invariants of order greater than 2, and pa groups 

q-M^-q" 

of a ring elements with the same q, contributes to 
—/3F a term 

*=B(Q-Qf)+Q'-™+ £ p«(a-in (70) 

For example, the graph of Fig. 9 gives a term <* T5. 
In order to carry out a similar analysis for the general 

case with mixed semi-invariants, we use Eq. (67) to 
replace the longitudinal bonds in a (tree renormalized) 
diagram by equivalent vertices V in an otherwise 
completely transverse diagram. This is represented 
pictorially for a section with I bonds in Fig. 10, and 

•V J A8 "10 
FIG. 10. Replacement of longitudinal bonds by an equivalent 

transverse vertex V. 

FIG. 9. An example of a graph with Q—S, Q' — 1, w=4, p2~2, and, 
therefore, a contribution to — (3F proportional to T6. 

corresponds to summing over the / X\'s, and inserting 
I factors of %{lv. 

Consider the general vertex of this type with / 
longitudinal bonds and d different parts which it joins, 
with altogether N incoming and N outgoing transverse 
arrows. From Eq. (67) it is evident that the first 2n 
denominators of each M2n+i contribute to the final 
vertex a factor which is exactly the 2N denominators of 
M2jv(Xi- • -X2isr). The d 5 functions from the mixed 
semi-invariants produce X conservation for the final 
vertex, and also give d— 1 restrictions on the I sums 
over X'. There then remain the extra [sums of products 
of (21—d) denominators] from all the mixed semi-
invariants, and the / factors \$v from the bonds. Hence, 
the final vertex is 

V« 
«Xi.-*...oGW 

$(h+^v(Q) — i\i)- ' -fi(k+%v(0)-~iX2N) l-d+l of the X"s and <z's 
[Sums of products of (21— d) denominators]. (71) 

Each of the products of (21—d) denominators consists of d factors, each of the form of the last summand of 
equation (67) with the appropriate Di(i), and h replaced by h+%v(0). The sum over all independent X''s will then 
produce a product of /— 1 denominators, each of which is just a function of the Di(i). Furthermore, the denominators 
must be sums of jfrZV0 simply because of X'-conservation cross the longitudinal bond. Thus, the complete vertex is 

5x1..-x2nio^/2)z 

0(A+MO)-«Xi)- • -Kh+b(0)~i\2N) 
[Sums of products of l- 1 denominators, 

each of form £]£{»} #i ( f ) ] . (72) 

When such a vertex occurs in a general graph, it behaves 
like a transverse semi-invariant of order 2N, except 
that it possesses the factor (fiv/2)1 and /—1 extra 
denominators of form fi £ Z>i(i), and lacks the sum of from the denominators p £ Di(i) can be neglected, 

single terms [J3(h+%v(0)—iki)~]. [Compare Eq. (72) 
with Eq. (68).] When computing the complete graph 
by summing over all X;, the extra poles that can occur 
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since these lead to distribution functions of the type 
{exp[)3£ iv(q)2 — l } - 1 . When the values of Xr • -X2JV 
determined by the poles of the ring denominators are 
inserted into 0 £ # i ( i \ a s u m oi flv(q) terms is obtained 
{as was found in the transverse case for the numerators 
\J3(h+%v(Q)—ikl)']}. The effect of the equivalent vertex 
is, therefore, the same as that of the 2nth order semi-
invariant except for a factor (fiv/2)l/LW2)(fiv/2)l-1']9 

proportional to T°, independent of /, d, and T. 
Thus, the temperature dependence of the contribution 

to — fiF from a graph with m vertices of order greater 
than 2, of which w! are equivalent vertices is again 
given by Eq. (70). 

Since Q^m+1, the lowest order graphs are those 
with m and pa small. All graphs with pa>0 are at least 
of order (T3*) and any semi-invariant or effective 
vertex of order greater than 4 requires at least Q= 3 and 
is, therefore, also negligible to 0(TS). The only graphs 
whose contributions to — jftF are 0(7*) or less are those 
drawn in Fig. 11. There, the vertex is the sum of Mi 
and all equivalent vertices of this order. 

This completes the low-temperature ordering. One 
final important point should be noticed, namely, that 

H3 Foci' 

Q O + ft L.+i $ | + ... 

+ + +. 
FIG. 11. All graphs contributing to — $F a term of order P 

or less. The vertex is the sum of Mi and all equivalent vertices 
of fourth order. 

OOCDOO 
(a) (b) (c) 

FIG. 12. Graphs yielding the first Born approximation to the 
scattering of spin waves. 

the classification of graphs with respect to powers of 
the temperature is the same in the first two orders as 
the simple classification of graphs with respect to powers 
of iX/z) [the leading term in each expansion, 0(1), is 
the single longitudinal bond]. This explains why the 
ring summation becomes valid again below the Curie 
point to 0(T3/2), as was noted in Sec. 4. 

6. SPIN-WAVE INTERACTIONS AT 
LOW TEMPERATURE 

Dyson6 has very carefully developed a theory which 
gives the power law deviations from spin-wave theory 
at low T due to spin-wave interactions. His theory 
neglects exponential effects and hence becomes in
adequate once exp[—Jj8v(0)] becomes of 0(1). In the 
preceding section it was seen that the first corrections 
to spin-wave theory at low temperatures are given by 
the free-energy diagrams of Fig. 11 which contain 
more than one ring element. These are all the contribu
tions to powers less than T^ in the low-temperature 
expansion of F, In this section the formalism we have 
developed is used to examine the effect of these graphs, 
for comparison with the results of Dyson. 

We shall calculate in detail the simplest of these 
graphs, Figs. 12(a), (b), and (c), obtained by taking 
once the simplest part of the vertex of Fig. (11), to 
show how the Tz part cancels between these graphs 
leaving a contribution to F of 0(T4). We then show the 
equivalence of this set to the first Born approximation 
to spin-wave scattering calculated by Dyson. 

The graph of Fig. 12(a) is composed of transverse 
semi-invariants of second and fourth order. Examina
tion of the detailed expressions for these, Sec. 2, shows 
that m2

m a x=l, m 4
m a x = - 2 so that using Eq. (68), 

apart from terms of 0(exp[—§{lv(0)~]), 

M2(XiX2) = «Wj8(*+i»(0) - &1)]-1, 

-25xl4Atix^|j8(*+iKO)-*Xi)+i8(A+4f(0)-»X2)] 
M 4 (X1X2X3X4) = 

^(A+^(0)-iXi)/3(A+^(0)-iX2)/3(A+^(0)-^3)^(A+^(0)-zX4) 

Thus, the contribution to the free energy is given by 

(73) 

(74) 

-|8F«> = - i E E E E2[}8(A+J»(O)-»X)+0(A+MO)-*X')] 
711=2 n2"="2 X,X' q,qf 

[-Ms)/2> 
x- [-/M<z')/2]"2 

DS(A+MO)-;X)>+ 1 [>(A+MO)-;X') :K 1 , (75) 
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apart from terms of 0(exp[—|jfo(0)]). Here, nx is the number of bonds in its first ring, m is the number in the 
second ring, and we have used the q—, X— conservation to reduce the X and q sums to two sums. The result of 
summing over all m and m is 

- ^ " = - 2 : E • (76) 
xv „ ' D8Cw(9)—*X)i»(a>(gO—*X0D Lj8(A+i»(0)-»X)J Li8(A+Jv(0)—*X0J 

The sums over X, X' can be converted to contour integrals with respect to z, zf, by inserting into the integrand 
factors /±(2) == ±^8(e±/3z— l)"1 and /^(z'), which have poles with unit residue at z, z' = (2wi/f$)j. Since there are at 
least two denominators containing z and at least two containing z\ both integrals converge at infinity for either 
choice of f±. In either case we find 

-0FW= - E n(q)n(q')^lv(q)+v(q')3+O(expl-^v(0)D- (77) 
qq' 

The low-temperature values of the graphs of Figs. 12(b) and 12(c) may be calculated in a similar way. As outlined 
in the previous section, the effect of the longitudinal bond of momentum q" can be replaced by an equivalent 
vertex, Ml=*l4 equivalent, which is arrived at by summing [2fiv{q")/2] times the two third-order mixed semi-invariants 
over the frequency X' carried by the longitudinal bond: 

M14eQuivalent(XlX3X2X4) = ^(5' ,) £ X ' M ^ X ^ X ' ^ i ^ - X ' ) . (78) 

M .̂i(XiX2X
/) is given by Eq. (61) or by Eq. (67) with the appropriate value (— 1) of rrt2+imax and h —» h+v(0)Mi. 

Hence, the vertex is 

Mh equivalent (X1X3X2X4) = &V (<7")5Xi+Xa,XH-X4 
XD8(A+MO)-&i)0(A+MO^ (79) 

where tree renormalization has been included. The contributions of the graphs of Figs. 12(b) and 12(c) are, 
respectively, 

- - C-/M<z)/2> [-M«')/2> 
w'd" xx' m-i »«-i []s(A+^(0)--fX)]»i+i [j3(A+£v(0)--iX')]n*+1 

00 00 [-/fo(?)/2]ni [-M«')/2]nl 

-18FW-J L L l>(«")]8(8") £ E r /7 , , /AX . ^ ^ ^ , , /AN . „ n M- (»i) 
w v xx' m-i «2-i 03(A+|^(0)-iX)]ni+1 [j3(A+£t>(O)-*X0]ni+1 

Again the sums over X, X' are carried out by contour nators ft?(fl(0) —iX»)] multiplied by the following func-
integration with the results tion of the incoming momenta: 

-0F<« = X;OT' n(q)n(qf)^v(q-q% (82) ^(gig^gO^SCgi+^-ft-gOCvCgi-^-ffes) 

- ^ ^ = L g 9 ^ ( ? ) ^ (gO^(0 ) . (83) -*(«4)+i(?«-ffi)} (85) 

Summing the results so far obtained, CWe h a v e reP^ced the frequencies which occur in the 
numerator of MA by the spin-wave frequencies co(g,-) 

—0(F(1)+F(2)+F(3)) associated with the ring elements to which the vertex 
~hPllm'*(q)nW)\j>(Q)--v(<l) ls Jomed.] The interaction of Eq. (85) is the effective 

_T,(^)+t,(g—g')]? (84) interaction rfllffl
(«r-««) obtained by Dyson, and used by 

him to obtain the Born approximations. 
which is the result of Dyson's first Born approximation The remaining factors in the calculation of the graphs 
to the scattering of spin waves. As was pointed out by of Fig. 11 result from carrying out the sums with 
Dyson, the free energy in this approximation is of 0(T4) respect to X of the product of spin-wave denominators 
though the constitutent graphs each give a contribution («(g») —ihi). There is always at least one more denom-
ofO(7*). inator than there are independent X* Thus, after 

We shall not carry out in this paper a complete completing the sums there remain one or more denom-
calculation of the remaining contributions from Fig. 11. inators D which are linear combinations of the «(#»•). 
But as an indication of the general trend we make the Such a factor D appears in Dyson's second Born 
following points. approximation and will appear in all higher ones. 

The first terms in the vertex of Fig. 11, namely, The spin-wave distribution functions n(q%) which 
M4+M4 equivalent, combine to a product of four denomi- also result from the sums over X* cannot be treated so 
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simply, but the above discussion does show that there 
is a close correspondence between the successive graphs 
of Fig. 11 and the successive Born approximations to 
the spin-wave scattering. 

Finally, an alternative method of arriving at the 
corrections due to spin-wave interactions is given in 
Appendix A. 

7. APPROACH TO THE CURIE POINT IN 
HIGH-DENSITY APPROXIMATION 

In reference 5, simple summation of longitudinal 
rings was discussed as a possible approximation to the 
Ising model. This approximation, which has the same 
critical temperature as the molecular field model, was 
shown to be inconsistent to 0(1/2) and, hence, is not an 
adequate approximation. Nevertheless, it is a theory 
that has some of the features of ferromagnetism which 
go beyond the molecular field theory. We, therefore, 
first present the corresponding simple theory for the 
Heisenberg model and then give the modifications 
required to make it a satisfactory approximation. 

The sum of transverse rings with tree renormalization 
was performed in Sec. 4 with the result [cf. Eq. (43)] 
that 

(S-CSq+) 
tarihllP(k+v(Q)&1)l 

exptfih+vW&i-Mq) tanhJj9(A+f»(0)Afi)}]-1 

(86) 

To complete the theory one must add the sum of 
longitudinal rings with tree renormalization [Appendix 

D © ] : 
(S-t-SS)=\:i-(>v(q)(l-&1*)T\ (87) 

For/to(0))£>l, where M\^\, Eq. (86) leads to spin-wave 
theory. Further, it contains only exponential deviations 
from spin-wave theory at low temperatures and in the 
same limit, Eq. (87) is exponentially small. For jfiv(Q) 
= 0(1) and A-»0 , when Afi-O, Eqs. (86) and (87) 
can be expanded and lead, respectively, to 

(S„qS+)^ - » i Q - i M ? ) ] - 1 , (88) 
Afi-K),A-K) 

<S-«tf«'>. - * P - I M ? ) ] - 1 . (89) 
Ml-K)tA-»0 

Thus, as pointed out in reference 5, for M i = 0 the 
quantum and classical theories merge for the class of 
simple ring graphs. Equations (88) and (89) present a 
Curie point at i0cfl(O) = l. The difficulty of the above 

theory is that at the Curie point it leads to infinite 
fluctuations. Thus, if (86) is used to determine the 
magnetization from the sum rule, whereas at low T, 
there is perfectly normal descent of the magnetization 
curve with temperature increase, when the Curie point 
region is reached the curve turns up and the magnetiza
tion becomes infinite at Tc. 

As mentioned in reference 5, this type of inconsistency 
can be eliminated in the Ising model calculation by 
passing to the spherical model which keeps the fluctua
tions finite. A more systematic approach was taken in 
reference 12 where it was shown that a variational 
principle based on consistent vertex renormalization 
eliminates the difficulty. Each of these methods 
represents a renormalized version of the high-density 
theory.7 The difference in these two theories is negligible 
even for near-neighbor interactions. By consistent 
vertex renormalization, we mean that if a subset of 
graphs (rings and trees in this instance) is taken as a 
basic approximation, then each vertex of a skeleton 
structure (a ring or a tree) must have articulated to it 
any number of times the same skeleton structures. In 
this way it is possible to get a reasonable approach to 
the Curie point. 

In the high-density case, the skeleton graphs are 
rings and trees, which is fortunate since these are just 
the graphs which dominate the low-temperature spin-
wave region. We now proceed with the formalism 
required to renormalize vertices with these fundamental 
elements. Some of this renormalization has already 
been carried out in Sec. 4. Equations (38) and those 
that follow give the complete tree renormalization. 

Consider now the combined effects of articulating 
single bonds and longitudinal rings at a vertex. In 
Appendix D the contribution of an unrenormalized 
longitudinal ring to (TSz(pf)Sz(fi")) is computed. We 
denote by GiL its value excluding the semi-invariants of 
the final vertices. The self-energy G%L

y which is a 
functional of the semi-invariants M2(Sz($\)Sz{$%j) is 
found to be independent of 0', 0", so that we may use 
the same techniques as were used in calculating the 
renormalization due to single bonds alone. If we 
articulate v longitudinal loops and \x longitudinal bonds 
to the vertex whose unrenormalized semi-invariant is 
M<tk+h e a c n bond contributes a factor \v($))M\ and 
raises the order of the semi-invariant by one by intro
ducing an extra factor J^dft Sz{$() into its argument, 
and each longitudinal loop contributes a factor G^L 

and raises the order of the semi-invariant by 2. The 
g factor associated with ju bonds and v loops is JJL\ 2vv\ 
so that the value of the vertex now becomes 

(MO)ilf 0* (G2
L)7 d y * 2 ' 

2M — J 

X l n / T e x p y I d(3'Sz((3')+*iS+(Pi) + • • • + a 2 H - ^ 0 W ) ] \ . 
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The renormalization of the vertex produced by all single bonds and longitudinal loops is, therefore, 

exptvtyMxd/dy+XhW/dy*] 17_o — 

X l n / j expl"? f dp'S*(j3')+cxiS+(i31)+''' +a2k+lS*(j32W)TS 

= exVlv(0)M1d/dh+iG2
Ld'/dh^M2W(TS^(l31)- • - S * ( / W ) , (90) 

following the same reasoning that was used in Sec. 4 starting from Eq. (38). 
Full renormalization with this class of diagrams, bonds and longitudinal rings will involve the articulation of 

extra bonds and rings onto the vertices of each bond and ring already articulated. This is equivalent to performing 
the first renormalization with renormalized rings and bonds. The completely renormalized vertex is, therefore, 
given by the self-consistent set of equations 

M2k+l= txplv^Mid/dh+iG^d'/dh'lMn^ (91) 
where 

G2
L=G2

L{M2(S*,S*)}. (92) 

This is an extension of one of the results of Horwitz and Callen.12 

The renormalization produced by transverse loops is much more difficult to treat. The main reason for this is 
that the factor G2

T{$ffi") obtained by attaching a transverse ring to a vertex is dependent on the temperature 
labels £', /3" of its extreme bonds (see Appendix D). It also depends on the value of the semi-invariants M2(TS+S~). 
The articulation of v transverse loops, therefore, changes the vertex Mu+i to 

MwT=—I[([ dp'if r < f t r t f O T W J r 5 + W ' • S'faw) I I {S+tf'dS-W'i))}. (93) 

Summing this over all v and using the generating function for the semi-invariants we, therefore, arrive at a re
normalized semi-invariant 

oo 1 d 

M2k+l
T= L 

a 1=0 da 2k+l «2fc+Z=0 0"* r 0 d 

Wi dp"tW(p'i,p"i)— 
o Jo dyi 

d 

7t=o dT{ rt=o 

XHTexptZ{yiS+(Pfi)+TiS-(j3'fi)}+alS+(j31)+- • -+a2k+lS*(p2k+l)l)0. (94) 

Clearly, this is further renormalized by articulating 
single bonds and longitudinal rings at the same vertex 
which adds an extra factor RL=exp\j)(0)Mid/dh 
+%G2

Ld2/dh2^\ in the same way as before. We have not 
been able to reduce the effects of the articulated 
transverse rings to as simple an operator as in Eq. (91).19 

However, let us suppose that they may be represented 
in this way by an operator RT, SO that the expression 
(94) is RTM2k+i. Obviously, RT is a functional of G2

T. 
The complete renormalization within the class of rings 
and chains will then be 

WL2k+i=RTRLM2k^h (95) 
19 The renormalization can be performed at low temperatures, 

using the methods of Sec. 5. Also the renormalization caused by 
unrenormalized transverse rings can be evaluated for temperatures 
above the Curie point, where GzT is independent of £', $". We 
there find that RT is the operator that puts Xi5++\zS~ in place of 
hSz wherever it occurs in the semi-invariant and then operates on 
the resulting function with exp[G2r(d/dXi) {d/ffk^)"] |xi-.x2=-o-
However, further renormalization will introduce a time depend
ence into G%T so that the method is not adequate to give the 
self-consistent renormalization. 

where 
RT=RT(Q2T), g2

r=G2
r(9Tr2(r5+5-)), (96) 

and 
RL=RL&Kh&

L), &L=G2
L(VK2(TS*S*)). (97) 

This provides a formal solution to the problem in 
zeroth and first order in the renormalized version of the 
high-density expansion. 

The main problem in the investigation of the high-
density terms is the evaluation of the operator RT. The 
complications appear when one tries to perform the 
integrations ff 0iy f^ dp"i of Eq. (94), for the 
variables £',-, 0"t- label the position of the operators 
S+(fi'i), S~(fi"i) in the time-ordered semi-invariant, as 
well as appearing explicitly in G2

T. We are interested in 
evaluating the renormalization of M2(TS+(Pi)S~(l32)) 
and here we remove the complication by means of the 
following approximation: We replace the (2^+2)th 
order semi-invariant of Eq. (93) (&=1, /=0 ) by (— 1)" 
times the sum of all products of second-order semi-
invariants which do not result in unlinked graphs. Thus, 
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*P •CL. \ +1V + 'TO + 

FIG. 13. Articulation of transverse rings at a vertex. 

we have replaced the renormalization of the vertex i 
shown in Fig. 13 by the approximation obtained by 
taking just the linked graphs from Fig. 14. In the figures, 
each of the vertices has the same spin index i. The 
subdiagrams obtained from approximating v articulated 
graphs have to be divided by the g factor v! associated 
with the original diagram. If we introduce the dotted 
line notation of Brout5 in which a dotted line connecting 
two vertices i, j denotes the spatial function •—5#, the 
approximation sums the diagrams of Fig. 15. The corre
sponding longitudinal diagrams are the "excluded 
volume" diagrams summed by Brout.5 Our approxima
tion is, therefore, the quantum-mechanical analog of 
Brout's approximation, and the errors made are analo
gous to the difference between Brout's result and the re
sult of Horwitz and Callen, who summed the classical 
analog of the series drawn in Fig. 13. The two treat
ments of the classical model are in close agreement. 

The summation of the diagrams of Fig. 15 is similar 
to the ring summation, and is carried out in Appendix E. 
There it is shown that if we make this approximation 

• \ 

+ 

'V + 

V ! \ o + 2 $o+2¥, + 
FIG. 14. Approximation of the vertices of Fig. 13 by products 

of second-order semi-invariants. 

to the renormalization with transverse rings self-
consistent by renormalizing in a similar fashion the 
semi-invariants of the added "rings," we obtain the 
following equation for the renormalized semi-invariant. 
Writing 

M 2 (A)M(A) = L * t ^ i f o f o X ) , (98) 

where M2(g,X) is the transform of &£TSi+(p')Sr(P")), 
we have 

v(q)M2(\) 
ilf,(X)M(X) = E . (99) 

• l - i / € ^ ) ~ M ( X ) ] M 2 ( X ) 

In the limit of vanishing long-range order, JLI (X) becomes 
zero for all X^O, and the equation satisfied by M = M ( 0 ) 
is then 

v(q) 
M = Z •• (100) 

« i-lfl>(«)-M] 

\ 
+ + +. 

FIG 15. Excluded volume approximation to renormalization 
with transverse rings. 

The energy of the excluded volume ring is 

e^v(q)M2(\) 
EE.v = lim E , (101) 

*'-*>+*.x l-4j8[»(g)-/*(X)]M2(X) 

which in the limit of zero long-range order becomes 

-EE.V. = 2Z 
« 1 - M > ( < ? ) - M ] 

(102) 

After renormalization with all single bonds, which 
are themselves renormalized with renormalized bonds 
and excluded volume rings, Eq. (101) gives for 
{Sq~S-q~

h) the value 

<5V-S_g+>= lim £ 
eW tanh[40(ft+t>(O)2O] 

' '-** * M*-iX*+t>(0)i?-i[»(4)-M(XA)]taQh[ii3(*+i»(0)ie)]} 
(103) 

where R is the magnetization determined self-con-
sistently from (103). Except for the term ju(Xfc) in the 
denominator this is our previous ring graph summation 
and hence spin-wave theory at low T. From Eq. (98), 
it is seen that /*(X) is 0(Y,qv(q)n(q)) = OCP/2). The 
presence of M(X) in the denominator, therefore, rep
resents an approximation to spin-wave-spin-wave inter
actions due to a diagram of the type shown in Figs. 
12(a) or 12(c) but now with arbitrarily many transverse 
loops articulated on to each vertex of the skeleton 
graph. At the Curie point this theory extrapolates to 
the spherical model from Eq. (103). In the "excluded 

volume" approximation, the longitudinal and transverse 
loops do not mix. Thus, the energy of the Heisenberg 
model in the "excluded volume" approximation is the 
sum of longitudinal and transverse energies, the 
longitudinal part being given by the spherical model 
approximation of Brout. At Tc, the sum, therefore, 
reduces to the spherical model approximation to the 
Heisenberg model and for low T to spin-wave theory 
again with incorrect Tz corrections. The magnetization 
is given by substituting Eq. (103) into the sum rule 
(51). 

This approximation includes two [Figs. 12(a) and 
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12(c)] of the three graphs corresponding to Dyson's 
first Born approximation corrections to spin-wave 
theory but omits the third graph [Fig. 12(b)]. An 
exact calculation of this third graph shows that it 
goes to zero at the Curie point. In an intermediate 
region, this graph together with those corresponding to 
higher Born approximations to the scattering of two 
spin waves may be important. For reasonable z, this 
intermediate region will not be very extensive. We will 
present the argument for this at the end of this section. 

Since the theory sketched above is extremely similar 
in its behavior to RPA, derived in Appendix A, the 
latter theory is probably preferable because of its 
simplicity. In common with the above theory, RPA 
gives spin-wave theory correctly to Thl%, the spherical 
model at TCl and it does not possess the disadvantage of 
presenting infinite fluctuations at Te. On the contrary, 
at Tc it presents the normal infinite slope magnetization 
curve and has most of the allure of a molecular field 
theory. For T>TC this theory gives Ornstein-Zernicke 
type critical fluctuations which leads to a correlation 
distance <x (T-Tc)~

1/2. All in all, RPA represents the 
qualitative facts of the Heisenberg ferromagnet very 
well and probably gives many features with considerable 
accuracy even for near-neighbor interactions. 

We now study the temperature range where spin-
wave-spin-wave interactions are most important, since 
these are misrepresented by theories of the above 
type. The interactions become most important just 
below the temperature at which spin-wave theory 
breaks down and gives way to molecular-field-type 
theory. One may use as a tool for this study either 
Eq. (103) or RPA. We shall use RPA. In the form of 
Eq. (A7), this gives for h=0 

(SqS-+)= 2Ml{exV[p(v(0)~v(q))M11-l}"1. (104) 

The first thing to notice is that for z —» oo [i.e., v(q) 
—» 5og^(0)] this theory goes over correctly to the Weiss 
theory. In fact, (A7) becomes 

The magnetization is then [using (104) and (A7)] 

M 

or 

1=~["l-4M1L = 1 
2L < expjfo(0)Mi-lJ 

2Mi 

2 e x p ^ ( 0 ) M i - l 

M i = £ t e n h [ £ M 0 ) M i ] . (105) 

Now for finite z, v(q) will cut off at q^z~m. Hence, in 
the sum of q in (A7) there will be «1/z terms of the 
"spin-wave" type and <* (1 — 1/z) of the molecular-field 
type. At low T, only the first type gives a contribution; 
the remaining terms will be exponentially small. Hence, 
at low T, one will have a pure spin-wave-type behavior. 
To see this more clearly, let us approximate the 
potential by 

v(0)-v(q)~v(0)zmq2 for q<z~ll\ 
~v(Q) for q>zrl/z. 

Mi=~ 
4Afi 

2ir2zJo <j*0*<o)<r*_i 

4 M 1 [ 1 - ( 1 / 2 T T 2 2 ) ] -
(106) 

In the second term of the bracket we have changed 
variables to zllzq. This term is the spin-wave contribu
tion and the third term is the molecular-field term. 
These two become equal at a temperature which we 
denote by Te. Te is given approximately by 

/2kTe\V* / l \ 
f } =<r[*(o>/2*7.]( 1 ]. (107) 

\v(0)J \ 2w2zJ 

1 /2&7> 3 / 2 

2TT2AZ;(0) 

For T<Te, the spin-wave contributions dominate, 
and Dyson's corrections will have a role in this region. 
For T>Tey the principal effects are a result of the 
kinematic interaction. 

In the limit of infinite z, (107) gives T e = 0 . For finite 
0, representative solutions of the transcendental 
equation are: for z=10 , Te/Tc—0.2; for 2=100, 
Te/Tc~0.15. [We have put kTe=lv(0).] Thus, we 
find that spin-wave effects dominate the behavior of 
the model up to about 20% of the Curie point. In this 
range, Dyson's correction which is of 0((T/Tc)

bl2) of 
the usual spin-wave theory is quite negligible. Therefore, 
for the calculation of equilibrium properties it is 
probably no great error to forsake spin-wave corrections 
in order to use interpolation formulas either of the 
RPA type or of the "excluded volume" type, Eq. (103). 
This will introduce an error of O (5%) at Te and will 
extrapolate to a Curie point which is accurate to 5 % 
if Ising-model calculations are to be believed. 

I t should be emphasized that our arguments are 
valid for macroscopic properties only. In low-tempera
ture spin-wave resonance or neutron-scattering experi
ments it should be possible to pick up energy renormal-
ization effects. Such experiments would, indeed, be 
most valuable. 

8. CONCLUSION 

In this paper, a finite temperature perturbation 
theory for the Heisenberg model ferromagnet has been 
presented. Summation of subsets of graphs has been 
accomplished by the use of vertex renormalizations. 
The selection of graphs is determined by high-density 
and low-temperature classifications. At low tempera
tures, molecular-field theory, spin-wave theory, and the 
leading effects of spin-wave interactions are found by 
summation of graphs. In particular, we have arrived at 
the Born approximations to the scattering of spin waves 
and have demonstrated the cancellation of the Tz terms 
in the free energy in the first Born approximation. 

The simple rings corresponding to spin-wave theory 
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do not extrapolate in an adequate way to a Curie point 
since they lead to a divergence in magnetization. 
Complete vertex renormalization by rings, which 
would lead to a consistent theory without this diver
gence,12 is extremely difficult to carry out in the 
Heisenberg model, so the "excluded volume" approxi
mation to these articulations is formulated. The en
suing approximation leads to spin-wave theory at low 
temperatures (with spurious Tz interaction terms) and 
extrapolates to the spherical model at Tc. The same 
behavior is characteristic of RPA which is a simpler 
theory but without graphical justification in the pres
ent approach. For reasonable z, once kT>0.2kTc the 
qualitative features of the magnetization are those char
acteristic of the Weiss field. 

Since the first two terms in the simple high-density 
and low-temperature classifications are the same, one 
has in low orders the possibility of constructing an 
extrapolation approximately valid for all T. (The 
molecular field is the leading approximation of this 
type.) As remarked above, self-consistency has also to 
be imposed in order to obtain nondivergent results at 
the Curie point. The third terms in the low-temperature 
expansion, which represent the leading effects of spin-
wave scattering, are not completely included to any 
finite order in the high-density expansion, so that an 
extrapolation to high temperature containing also the 
spin-wave scattering effects could not be constructed 
on the basis of a high-density theory. 

It should be remarked that a similar analysis can 
be carried out for the antiferromagnet. Here, of course, 
the ground state is unknown. However, the graphical 
approach immediately shows Anderson's spin-wave 
theory20 to be valid to 0(l /z) . If one chooses the zero-
order Hamiltonian in this case as a molecular field of 
value zv, then the energy denominators in the perturba
tion expansion are l/(zv). An nth order ring graph then 
carries a factor zn~~lvn/{zv)n~l=v. The "unperturbed 
energy" is zv; hence, the ring graphs yield a contribution 
of 0(l/z). The nonring graphs are of still higher order 
in 1/s. Summation of rings again yields for the anti
ferromagnet spin-wave theory. The thermodynamics 
and approach to the Neel point are now being worked 
out. 

APPENDIX A. EQUATIONS OF MOTION 
APPROACH TO THE PROBLEM 

Here a formalism is presented which allows a simple 
derivation of random phase approximation (RPA) and 
of the effects of spin-wave-spin-wave interactions at 
low temperature.21 Its limitations will be discussed at 
the end of this Appendix. 

The Hamiltonian, Eq. (2), may be rewritten in 
Fourier space by defining the operators 

Sq=£< e^S , . (Al) 
20 P. W. Anderson, Phys. Rev. 86, 694 (1952). 
21 R. Brout and F. Englert, Bull. Am. Phys. Soc. 6, 55 (1961). 

Then 

where we have used *£,qv(q) = Q. The commutation 
relations are 

[V,S_V-]=2S,_v*, (A2a) 

[S^SLy ±] = ± 5 M ' ± (A2b) 

A simple way to find the spin-wave excitations from 
the ground state is to operate with the Heisenberg 
equation of motion for S~ on the ground state, since 
the spin waves are elementary excitations with (Sz)=%N 
— 1 and, therefore, linear combinations of 5 r | 0 ) . The 
equations of motion are 

-*S,-Kff,V]=AS,--E.'[»te')-»fo-«/)] 
/\t$q—q' Oq' . ( A o j 

In arriving at (A3) we have used v(q) = v(—q) and 
£ v (q) = 0. Since SQ-q'

z | 0)=8qq>\ | 0), operating with 
Eq. (A3) on the ground state produces an equation of 
the normal mode type Sg~\0)=io}(q)Sq~\0), where 
o)(q) = h+^\j)(0)—v(q)'2. These are the spin-wave 
solutions. This simplicity stops when more than one 
spin wave is present. However, the following generaliza
tion allows an approximate extension to higher tempera
tures. In order to obtain the excitations from the ground 
state we replaced Sq* by its "vacuum expectation" 
value, i.e., 8^/2. It would then seem reasonable to 
adopt this idea at all temperatures and replace Sq* by 
its thermal average: 

(Sq*)=80qMh (A4) 

and then determine Mi self-consistently from (51). 
This is the random phase approximation. The fre
quencies are then obtained by replacing Sq-q'

z in (A3) 
by its mean value (A4). This gives rise to 

co -> a>(q) = Zv(0)-v(q)liBi+h. (A5) 

The magnetic equation of state is obtained from (51) 
in the form __ 

Mi=f [1 - 2 £ f f (SfS-f)l. (A6) 

Taking the expectation value of the commutator in 
(A2a) shows that in this approximation the boson 
operators are Sq

±(2Mi)"lf2 since these operators would 
have the property of giving unit commutator. Thus, we 
write (A6) in the form [with n(q) the number of 
excited bosons of type g] 

# i = l [ l - 4 f f i E « * ( ? ) ] 
= | [ l - 4 M x £ , [exp{/3[(<0)_-*(<?)) 

XMi+A]}- l ] -*] . (A7) 

Equation (A7) is the RPA equation of state. At the 
Curie point, it reduces to the spherical model with 
kTc=lv(0)-O(l/z). At low T, it gives deviations from 
spin-wave theory proportional to Tz in disagreement 
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with Dyson's theory which shows that the correction 
starts in T4. 

The advantage of this method is that spin-interaction 
terms are handled in a self-consistent manner through 
renormalized frequencies. It turns out that this idea 
is still useful and Dyson's lowest order results can 
be interpreted in these terms, as first shown by 
Keffer and Loudon.22 We pursue the reasoning of Brout 
and Englert21 as it gives the form which is most useful 
for the present paper. 

We adopt the point of view of Dyson and invent 
boson operators Sq

± (the aq of Dyson) which obey 
boson commutation relations with Sq~ the creation 
operator: 

[S,+ S_ a ' - ]=5^. (A8) 

This is of the form that Dyson obtained by double 
commutation. 

From the Landau theory of Fermi liquids23 we know 
that the low-temperature properties of a quantum 
liquid are describable in terms of noninteracting quasi-
particles whose energy is 

*(q) = t*(q)+Kq), (A13) 

where t{q) is the forward-scattering amplitude of the 
particle of momentum q in matter. The lowest order 
corrections calculated by Dyson may be given a physical 
interpretation of this kind. Dyson showed that Born 
approximation is a good approximation to t(q): In 
the worst case, spin 1/2, first Born approximation 
accounts for 50% of the corrections. Born approxima
tion in a medium possessing translational invariance 
is the same as Hartree-Fock theory. This is obtainable 
either by evaluating (î Dyson) in one of the eigenstates 
of #°Dyson ° r by contracting two of the operators in the 
second term of the right-hand side of (A10) into the c 
numbers fi(q) = (S-q~Sq~h), the number of spin waves of 
type q. We do the latter. The first contraction is 
obtained by letting q=q". This term recovers RPA in 
the unsymmetrized form (A 10). We now see that the 
inadequacy of RPA at low T comes from taking expecta-

22 F. Keffer and R. Loudon, Suppl. J. Appl. Phys. 32, 2 (1961). 
23 L. D. Landau, Zh. Eksperim. i. Teor. Fiz. 30, 1058 (1956) 

[translation: Soviet Phys —JETP 3, 920 (1957)]. 

We must then find an operator Sq
z which is formed from 

Sq
+, Sq~ such that the commutation relation (A2b) 

is given correctly in terms of the new operators. This 
will insure that the equations of motion (A3) describe 
the evolution of these new operators. The procedure is 
clearly equivalent to Dyson's invention of an interaction 
Hamiltonian in terms of the aq which has the same 
matrix elements between the boson states as does the 
original Hamiltonian. The operator in question is then 

Sq
z= - E « ' Sq„q>-Sq>

++h50q. (A9) 

With the term %80qi the magnetization is correctly 
given according to the sum rule (51) in terms of the Sq. 
Substituting Eq. JA9) into (A3) gives the equations 
of motion of the Sq operators: 

tion values in the equation of motion too soon. The 
other contraction is obtained from q"= —qf and corre
sponds to an exchange term. The result of grouping 
both terms is 

-iSq-=u(q)Sq-+ZAv(0)-v(q)-v(q') 
+v(q+q')lHq')Sq-, (A14) 

where 

it(q) = ( 5 _ r 4 + ) = [exp/M<?) ~ I]"1 , 

at temperature T. We then find that in Hartree-Fock 
approximation 

e(q)=a>(q)+j:q>lv(0)-v(q)-v(q') 

+v(q+q')yi(q'). (A1S) 

Assuming an isotropic crystal, we write v(0) — v(q) 
= aq2+yq4-i , so that 

6(^) = | ag 2 [ l -12( T / a )E e ' tf'W)]- (A16) 

Since £ *>(q)6(q)~\a L q2^(q) is the excitation energy 
at temperature T, the fractional decrease in «>(q) is 
proportional to this energy, which is the result of 
Keffer and Loudon. For near-neighbor interactions it 
turns out that the relationship is more precise. Here 
the fractional decrease in a>(q) is exactly equal to the 
energy divided by the ground state energy. In general, 
this decrease is proportional to T5/2. As the number of 

-i5r=«(ff)V-E^»CK« ,0-K?-g'0]5M^-V^-. (AIO) 
This equation may be written more symmetrically to resemble Dyson's form 

-iSq-=u(q)Sq--iZ«>«>>lv(0^^ (All) 

Equation (All) is the equation of motion that would be derived from the following Hamiltonian involving only 
operators Sq obeying commutation relations (A8): 

H = HQUyson+H^yson = Z^(q)Sq-S.q^-iZ [>($") + *(?-<Z'~YO-ffo'+ff")"^?-<?")] 

x4-«'-«'-4'+£z'~S_<,+ (A12) 
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spin waves at low T is « J3 /2 , the total correction to 
the magnetization is then T4. The correction to the 
total energy is 

£ - £ o = Z «(?)*(«)+* Hqa>b(Q)-v(q)-v(q') 
+v(q+q')yi(q)AW. (A17) 

I t should be stressed that in this treatment we have 
ignored the "kinematical interaction" of Dyson. The 
above treatment is not complete enough to justify this, 
though from the work of Dyson, or the temperature 
ordering of Sec. 5 it is known to give exponentially small 
effects at low temperatures. 

APPENDIX C. RAISING OPERATOR FOR S2 

IN THE CLASSICAL FORMALISM 

In this case the semi-invariants are defined by Eq. 
(17), so that 

Mn(S') = (B/dtY I f - 0 ln<**V (CI) 
However, 

Finally, because of the interest in the derivation of 
Dyson's results by Green's function methods, we 
remark that the above equations of motion [Eq. (A3) 
or Eq. (A 10)] can be immediately cast into Green's 
function form.24 However, in order to solve the equa
tions by a simple uncoupling [corresponding to the 
contraction of (A10) into c numbers n(q)2 valid at low 
temperatures to T4 it is necessary to work with the 
operators S so that the inhomogeneous term 5(t—t') 
X ( [ 5 + W , ^ ~ ( 0 ] ) m the Green's function equations 
gives a factor proportional to 1, and not a factor 
$(t-t')([S+(t),S-(t')~]) proportional to the average 
magnetization, which would produce Tz deviations. 

l n < e ' % = l n { T r [ e ^ s V 5 ' ] } - l n { T r [ e ^ z ] } , (C2) 

so that after the first derivative, d/dt is equivalent to 
d/d(ph). Hence, 

Mn(S') = (a/a0A)"^Af i(S'). (C3) 
24 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962). 

APPENDIX B. PROOF OF EQUATION (22) 

From the definition of the semi-invariants it follows that 

<rn(5<«')(is«<))-'>o= II (d/dt^y«<\ti«^0QWai)), (Bi) 
where 

Q(t^)=txJ Jl( £ —^W^ofrnCs^OM)"-)! (B2) 
L «* \na$=o nai\ / \ oa / J 

This is most clearly seen by exponentiating the time-ordered form of Eq. (18). Hence, 

n E JMSnai>0(rE(5(-')0J«i))-')Q(^)) (B3) 
[ ai^aj \na<==0 UaA I \ «i / 

3 0 oo t^)naf~l / oo t{ai)na*\ 

— = E ~ 

=Q(&<4M1(S^ $„,))+ n (£ - ^ W„ l + i>/r n os™ (^)r<s^ (ft,,))**4-1)! (B4) 
L oti \na<=0 nai\ I \ OLij**i / J 

But 

A^OS«y)G= n E )MS n a i + 1 > 1 T I I ( S ^ O S a , ) ) " - ^ ^ ^ , ) ) " - ^ W < > ) . (B5) 
at \na<=0 nai\ I \ octroi / 

Therefore, 

- — = IM1(S^ (&,))+A<«'> (&,) ]& (B6) 

so that 
e=exp{[J f 1 (5^>( |8«p)+A^(0 t t i ) ] / ^ )}e (^« /> = O). (B7) 

We use the same method to extract the explicit dependence on each t{a?: 

(2= Ilexp{lM1(S^Wai))+A^(0ai)-]t^}, (B8) 

since Q(0,0,- • -0)= 1. Hence, 

(TII <S(«" 09«i))"-«>.= I I [ J f !(5<»" (&,,))+A<«'> (ft, ()>«. (B9) 
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APPENDIX D. RING CONTRIBUTIONS 

(i) Longitudinal Rings 

Here it is not necessary to use the time-ordered 
formalism.5 The product of interactions, each now with 
a factor /S, is again of convolution form in Fourier space, 
and the series is again a geometrical series. The result is 

\SfSf/ring — Z*Q 
eiq(ri—rj) 

\-pv(q)Mt{S*S*) 
(Dl) 

Tree renormalization of each vertex takes i f 2 into 
(£ - i$V0 , with Mi given by Eq. (31). 

(ii) Self-Energy Parts 

These are obtained from the results of Eqs. (36) and 
(Dl) for the propagators by removing the final vertices. 
The results are 

G 2
r ( £ i - f t ) = i : g v(q) tanhj0A e x p [ - ( f t - f t ) * ] 

i r ( ? ) , 0 i > & , 

have the same time dependence as a ring with no 
dotted line insertions. Hence, the sum M O A ) of all 
dotted-line insertions made between two vertices of a 
ring depends on 0i, 02 in the same way as the ring 
"self-energy" G2

r (0i—02). I t can, therefore, be 
Fourier analyzed as follows: 

M ( 0 i , f t ) = E ^ ( ^ 2 ) M ( X i ) . (El) 

Then the effective interaction between the two vertices 
is modified to v^—M(X)5# for frequency X. Calculating 
ju(X) self-consistently, this gives for each X 

Afi(X)/»(X) = E 
0 ( < Z ) - M ( A ) ] M 2 ( X ) 

« I-M>(<Z)-M(A)]^2(X) 

M(X)Jfi(X) 
+E , (E2) 

X 
i r(?), /8i<ft. 

»(?) 

« l-j8i>(g)Jf2 

(D2) 

(D3) 

« l - *C ' (« ) -M(X) ] i f i (X) 

and the energy associated with such an excluded volume 
ring is 

eW'v{q)M2{\) 
l i m i S (E3) 

*'-*+ *.x l - 4C(« ) -M(X) lJ f i (X) 

= l i m i £ * i X M X ) M 2 ( X ) . (E4) 

APPENDIX E. EXCLUDED VOLUME DIAGRAMS 

The effect of a dotted line in a ring is to put the 
connected indices equal without affecting the time 
ordering. Thus, all dotted-line insertions in a ring will 

Equation (E2) for p(\) simplifies at the Curie point, 
where M2(X) —> 5x,0. We there obtain /x(X) = ju§\,o, where 

M = L 
v(q) 

« I-M>(<?)-M] 
(E5) 
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