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The results of calculations of the hyperfine interaction in the ground state of lithium, using well-correlated 
wave functions, are reported. An analysis of the wave functions is made in terms of operators which resolve 
the general doublet function into two components, one of which is characterized by a spatially symmetric 
core function. The calculations show that this component with the spatially symmetric core can give very 
good values for both the energy (—7.47630 a. u.) and the hyperfine interaction (98.8% of experiment). The 
inclusion of the second doublet component and some quartet component in the wave function has very little 
effect on either the energy or the hyperfine interaction. These results are discussed and compared with 
those obtained with the unrestricted Hartree-Fock (UHF) method. The conclusion is reached that the 
usual interpretation of the results obtained for lithium with the UHF method is not entirely acceptable. 

INTRODUCTION 

WE have calculated the hyperfine interaction (hfi) 
in the ground state of lithium with several dif

ferent wave functions obtained with the variational 
method. Each of these functions takes into account at 
least some of the correlation of the electrons other than 
that introduced by antisymmetrization. Our aim was 
to gain insight into the relation of the hfi with other 
properties of the wave function. 

Lithium has the advantage that it is manageable with 
a number of different methods, and that many calcula
tions1-4 and discussions5-7 have been reported in the 
literature. We were particularly interested in the com
parison of our results with those obtained for lithium 
from the unrestricted Hartree-Fock (UHF) method,2*4 

which has been used widely, and sometimes with re
markable success, for the calculation of the hfi in a 
number of different atoms.4,8*9 

CHOICE OF WAVE FUNCTIONS 

As the ground-state configuration, ls22s, of Li contains 
no angular momentum, the influence of the spin-orbit 
coupling terms in the Hamiltonian is very small. The 
ground state is, therefore, to a good approximation, a 
pure doublet state. We have restricted our variational 
functions correspondingly, by requiring them to be 
eigenfunctions of Sz and to be, exactly or approximately, 
eigenfunctions of S2 with eigenvalue §W. 

The general eigenfunction of Sz with eigenvalue \h 
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for a three-electron system is 

^(l,2,3) = Ep(-l)pPC^(l,2,3)a(l)^(2)a(3)]. (1) 

Here, p is the parity of the permutation, P. The doublet 
states for such a system are singled out by the require
ment that ^ contains no contributions from the quar
tet state. The condition that ensures this can be found 
by operating on ^ with the operator10 

S2= +L1V, 
4 i<3 

(2) 

where Pif merely permutes the spin variables and N is 
the number of electrons. One finds that 

Zp(- l )»iV(l ,2 ,3) = 0. (3) 

This condition follows even more directly, for the three-
electron case, by noting that the quartet state has a 
completely symmetric spin function and therefore, a 
completely antisymmetric space function. Hence, for 
the doublet state the antisymmetric part of the space 
function must vanish. 

We define the permutations PQ • • • P6 in terms of the 
cyclic notation by 

Po=(l)(2)(3), P4=(123), P6=(132), 
(4) 

P1=(l)(23), P2=(2)(13), P ,= (3)(12), 

and introduce the well-known projection operators 

*s=i(2P 0 -P4-P«) . (5) 
They satisfy the relations 

dej = ejd = e»5<y, £ % e% = PQ. (6) 

For a doublet state we have seen that 

e2(p=0 
and we can also require 

ei<p**0 

(7) 

(8) 
10 P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford 

University Press, New York, 1958), 4th ed., p. 222. 
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because the completely symmetric part of p does not 
contribute to ^ . From Eqs. (6), (7), and (8) it follows 
that <p can be chosen to satisfy the equation 

e3<p= (p. (9 ) 

For the purpose of constructing variational functions 
that satisfy this requirement, it is of interest to express 
<p in terms of a function x on which no conditions of sym
metry are imposed. Writing 

scribed by 

*(1 ,2 ,3 ) = £ P C P P X ( 1 , 2 , 3 ) , (10) 

we find that the general solution of Eq. (9) can be 
written in the form: 

(ID 

(12) 

(p=(qiQi+q2&2)x, 
where 

Oi=i(^o+P«)-ei , 
n2=il2(Po+Pi)+2(P0+P2)-(Po+P,)l-eh 

and qi and q2 are given in terms of the CP'S, i.e., 

qi= (2Co—2C2—C1+C5), g2=3(Ci—CB). 

The operators &,- satisfy the relations: 

Oi 2 =Oi , Q2
2=Q2 , 

OiO2=OA=0, (13) 

From Eqs. (13) and (9) it follows that one has 

<p=Qi<p-\-Q,2(py (14) 

which is the decomposition of a doublet function <p 
satisfying Eq. (9) into parts with symmetry character 
Qi and Q2. By applying PodzPz, one sees that these parts 
are symmetric and antisymmetric in 1 and 2, 
respectively. 

Equation (14) does not directly provide a decomposi
tion of a given doublet function ^ , because the function 
<p, while it satisfies Eq. (7), may not satisfy Eq. (8). 
After a projection <p—>(Po—ei)<p, which does not 
affect >£, the decomposition can, however, be performed, 
and the resulting decomposed form of ̂  is unique. In 
the following we define, quite generally, a doublet 
function of the first type, or of type one (of a three-
electron problem) to be a function for which Q2<p—0. 
A function with 2i<p= 0 will be called of the second type, 
or of type two. 

The appearance of two homogeneous parameters, 
qi and q2, corresponds to the fact that the doublet state 
belongs to the two-dimensional irreducible representa
tion of the permutation group 73. The ratio q\/q2 there
fore cannot be obtained from group-theoretical con
siderations. Fortunately, the present problem is simple 
enough to allow an assignment of this ratio for the 
ground state, which is valid to a high degree of approxi
mation. This can be seen from the approximation de-

^i®>«[a(l)i(2)+6(l)a(2)>(3). (15) 

This function can be obtained from Eq. (11) with 
X=a(l)b(2)c(3) and q2= 0. For ̂ , one has, from Eq. 
(1), in terms of Slater determinants 

( a b c \ / a b c \ 
) - ( )• 

a 3 a/ \B a a) 

(16) 
b 

j8 a/ \ 0 

This function was used in a variational calculation of 
the energy of the ground and several excited states by 
Ritter, Pauncz, and Appel11 for the special choice 

a oc e~ar, b oc e~Pr, (17) 

and c a linear combination of generalized Laguerre 
functions. The degree to which the ground state is 
described by this doublet function was also studied by 
them. They considered the more general variational 
function 

^r(0)==^1(0) + X^2(0)j ( l g ) 

where 

(19) ( a b c \ / a b c \ /a b c \ )+( r2( )• 
a & a/ \p a a) \ a a 0 1 

This function is obtained from %—a(l)b(2)c(3) with 
gi=0. Ritter, Pauncz, and Appel found that the 
generalization (18) gave only a very slight improvement 
of the energy and that X=g2/gi is very small. All of the 
calculations in reference 11 bear this out. This result 
can be interpreted to mean that the ground state is to a 
high degree of approximation of the type with ̂ 2=0. 

The above discussion indicates that the use of the 
operators Qi and &2 to construct trial functions is very 
suitable to the present problem. 

The components &np and Q,2<p are, in general, not 
orthogonal as vectors in Hilbert space. In the approxi
mation given by Eq. (18) one finds, e.g., 

(v^ivz^iciay-iciby, (20) 

Of course, this quantity is not zero but it has only a 
small numerical value in the Ritter et at. calculation. 
From these results one can expect that, more in general, 
the ground state is mainly of the type generated by Qh 

i.e., of the first type. 
Guided by this argument, we have chosen our varia

tional functions primarily among those with g2=0. As 
a special function of this kind, we define a shell function 
of the first type in the strict sense to be a state, ̂ , 
obtained from 

*.=M1,2)**(3), *A(1,2) = M 2 , 1 ) . (21) 

®A will be called the core function. A nonsymmetric $A 

would give a function with fi2^s^0. We have taken 

c^ZA^R^T> R* P a u n c z > a n d K. Appel, J. Chem. Phys. 35, 
571 (1961). This type of function has been used also by E A 
Burke and J. F. Mulligan, ibid. 28, 995 (1958) and by B ' H* 
Bngman and F. A. Matsen, ibid. 27, 829 (1957). 
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functions 3>A and #s in the form originally used by-
James and Coolidge,12 i.e., 

^A(lJ2) = lai+a2(ri+r2)+azrlr2+a4(ri2+r22) 
+a5ri2+«6^i22] exp[—5(fi+f2)], (22) 

$B(3) = birz exp(—yirz)+b2 exp(—72f»). (23) 
This allows for correlation of the core to a much 
greater extent than does the function of Ritter et al. 
It should be noted that the coefficients of rx and r2 

in the exponential are identical, whereas the work of 
Ritter et al. suggests a symmetrical form obtained with 
different exponentials. The polynomial in Eq. (22) 
more than makes up for this loss of generality as is indi
cated by the energy values; however, the extreme sim
plicity of the function of Ritter et al. is a very attractive 
feature. 

Going further, but still following James and Coolidge 
exactly, we have introduced correlation with the "outer" 
electron by taking 

^(1,2,3) = <p.+Iiq(c9fq+c9%), (24) 
where 

fq=r2Z
p^i(nmk), hq=Pzfq, 

p>ly *=1,2, q=(t)m»"*k), (25) 

U(nmk) = rx
nr2

wr3* exp[—y<rz— d (f i+ra)]. 

When one imposes the restriction cq—cq in all terms, 
<p is symmetric in 1 and 2 and one has 122^=0. When 
Cqj^Cq is allowed, then the doublet state of the second 
type and the quartet state is mixed in. On the basis of 
the above discussion, one should not expect to gain much 
by relaxing the restriction cq—cq. 

The functions thus obtained from (24) with the re
striction cq=cq will be called generalized shell functions 
of the first type. This class embraces all functions with 
<72=0 and none other, and contains the strict shell-type 
functions as a good approximation for the ground state. 

THE HYPERFINE INTERACTION 

We have calculated the hfi from the contact term 

3CC= (87r/3)7iv7eI-E s<«(r<). (26) 
The dipole term in 3C, which gives zero for a pure doublet 
state, has been neglected. 

With ^ of the form in Eq. (1) where p satisfies Eq. 
(3), we find from Eq. (26) 

AE= (87r/3)7i^e[(2/+l)//]C, 

Q=N~ j j'[y (1,2,3)+ ^(3,1,2) 

-^(1,3,2)+^(2,3,1)^(1,3,2) 

- 2 ^ ( 3 , 1 , 2 ) ^ ( 2 , 1 , 3 ) > W 

N* •III 

(27) 

r,-0 

C^(l,2,3)-~^(l,2,3)^(3,2,l)3^r1
sJr2

3Jr3
8. 

When <p is symmetric in its first two arguments, as is 
the case when cq—cq for all terms in Eq. (24), the 
second term of Eq. (27) cancels against the third. This 
means that with a function of the first type there will 
be no contribution to Q from pure core terms. The con
tributions from the last two terms in Eq. (27) may or 
may not be small, depending on the extent to which the 
functions involved are orthogonal. 

From Eq. (27) one obtains, for the function ^i ( 0 ) of 
Eq. (16), 

ei(o) = iVo-1{c2(0)[l+(a|6)]2+|[a(0)<c|6} 
+b(0){c\a)J-a(0)c(0)l(c\a)+(c\b)(a\b)-] 

-b(0)c(0)l(c\b)+(c\a)(b\a)^}, (28) 

N0=l+{a\by-K(c\ay+(c\by]-(a\b)(a\c)(b\c). 

We note here that for the UHF-type function, which is 
of the form 

( a b c \ 
)> (29) 

a 0 a) 
one has 
CiTHF={c2(0)+a2(0)-^(0)[l-(a|C)2] 

-2a(0)c(0)(c|a)}[l-(a|c)2]-1 , (30) 

and it is customary to force (a\ c)=0 so that the expres
sion reduces further. Comparing Eq. (28) with Eq. (30), 
one sees that in Qii0) those contributions from the core 
orbitals which are proportional to a2(0) and 62(0) are 
multiplied with the squares of the orthogonality inte
grals, (c\b)2 and (c\a)2, respectively, which are very 
small, whereas in QUHF their difference appears with the 
coefficient unity. This allows for an entirely different 
interpretation of the results obtained with the two 
methods and we shall discuss this later. 

RESULTS 

The James and Coolidge wave functions were used 
with fixed values of the nonlinear parameters, viz., with 
5=3, 7i=0.65, and 72=1.5. The secular equation for 
the linear parameters was obtained with the use of the 
matrix elements which were kindly supplied to us by 
Professor James. The wave function corresponding to 
its lowest eigenvalue was scaled in the usual manner 
by replacing r» by rjrit in order to correct for slight 
deviations from the virial theorem. 

Results were obtained with the symmetric shell-type 
function of Eq. (21) and by cumulative addition, ac
cording to Eq. (24), of various terms as indicated by 
the following scheme: 

9 
10 
11 

1 
1 
1 

1 
2 
1 

0 
0 
0 

0 
0 
0 

0 
0 
1 

a H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936). 
The coefficients cq and cq

f were first restricted by 
cq—cq. The results of this calculation are given in 
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Table I. Next, we allowed cq?*cq', and the results of 
this calculation are given in Table II. 

TABLE I. The hyperfine interaction with James and Coolidge 
wave functions. cq—cq'. f and h terms describe the interaction 
between the inner and outer electrons. 

Number 
of terms 

8 

9 
10 
11 

-£ (a .u . ) 

7.47476 

7.47606 
7.47621 
7.47630 

4TQ 

2.648 

2.828 
2.813 
2.872 

% of ex
perimental 

value 

91.1 

97.3 
96.8 
98.8 

Terms added to each 
preceding function 

separate shell-type wave 
function of Eq. (21)a 

^(/o+W 
Cia(fiQ-^-hio) 
Cn( J"n-fhn) 

a In the calculations, following James and Coolidge, we omitted certain of 
the terms arising from the product of the right-hand sides of EQS. (22) and 
(23). Reference 12 should be consulted for an explanation of this. 

TABLE II. The hyperfine interaction with James and 
Coolidge wave functions. Q ^ Q ' 

Number 
of terms -£(a.u.) 4TTQ 

% of ex- Terms added 
perimental to <p, in 

value Eq. (24) 

9 
10 
11 
12 
13 
14 

7.47526 
7.47608 
7.47618 
7.47622 
7.47631 
7.47631 

2.552 
2.867a 

2.778 
2.840 
2.871 
2.883 

87.8 
98.7 
95.6 
97.7 
98.8 
99.2 

£9/9 
c%h$ 
Ciofio 
Cio'hu 
£11/11 
cn'hi] 

a This quantity has also been calculated by Bartlett et al. See reference 1. 

TABLE III. Summary of the results in various approximations. 

Wave function -£(a .u . ) 

% of ex
perimental 

JTQ spin density 

Restricted Hartree-Focka 

Unrestricted Hartree-Focka 

Ritter et al.b 

Configuration interaction 
(Nesbet)c 

Separate shells 
* . ( 1 2 3 ) - * A ( 1 2 ) * H ( 3 ) 

Best wave function, present 
calculation 

Experimental value 

7.432727 
7.432751 
7.4450 
7.43169 

7.47476 

7.47631 

7.47906d 

2.095 
2.825 
2.802 
2.872 

2.648 

2.883 

2.906c 

72.1 
97.2 
96.4 
98.8 

91.1 

99.2 

a From reference 2. 
b From reference 11. 
0 From reference 3. 
d Relativistically corrected value. See, e.g., A. Frdman, Preprint No. 63, 

Uppsala Quantum Chemistry Group (unpublished). 

Finally, in Table III we give various results reported 
in the literature, as indicated, and also those we ob
tained with the Ritter et al. function and the best 
James and Coolidge function. 

DISCUSSION 

The quality of the wave function of Li can be judged 
from the following properties: 

(1) the energy, which is fundamental in the varia
tional method; 

(2) the value of Q, which can be compared to 
experiment; 

(3) the absence of quartet state admixture, which 
should be complete when the spin-orbit coupling is 
neglected. 

As a further criterion one has that the ground state is, 
to a good approximation, of the first type. This follows 
from the work of James and Coolidge, that of Ritter 
et al., and from the foregoing analysis, which shows that 
this type can be characterized generally, irrespective 
of the approximation, by the condition Q2(p—0. 

Looking first at the energy, one sees from Table III 
that the improvement of UHF over RHF is very small. 
This we attribute to the inflexible way in which the 
quartet state, with its high energy, is mixed in by this 
method. The doublet part of the UHF function is not 
of the first type, i.e., it is a mixture of states of type 
*i<°> and ^2

(0) of Eqs. (16) and (19), but without the 
benefit of a mixing parameter like that in Eq. (18). This 
circumstance will also have an adverse effect on the 
energy. The very simple variational function of Ritter 
et al. gives a good improvement of the energy. It also 
gives a reasonable value of Q. These characteristics 
suggest that it is of the "right" general type. 

The Ritter et al. wave function, as well as those of 
James and Coolidge, shows that a substantial improve
ment of the energy is obtained by allowing for correla
tion, as was to be expected. The fact that the functions 
of James and Coolidge give a better result for the 
energy than does the Ritter et al. function we interpret 
to mean that the correlation is more complete in the 
former functions than in the latter. This might be 
expected since the James and Coolidge functions are 
rather complex and allow for angular as well as radial 
correlation, whereas the Ritter et al. function is quite 
simple and allows only radial correlation. Correlation 
of the outer electron with the core gives a further im
provement but, as the table shows, little is gained by 
allowing, to some extent, states of the second type or 
quartet states to be mixed in. This was already observed 
by James and Coolidge. 

The table shows that the energy obtained by Nesbet 
with configuration interaction is actually worse than 
the RHF energy. Nesbet was not interested in improv
ing the energy so he selected those configurations which 
he knew would affect the hfi. Unfortunately, it is not 
possible to determine the contribution of any one con
figuration to the exact wave function until one has in
cluded all configurations. We feel, therefore, that 
Nesbet's approach is not entirely justified, especially 
since he is working so far away from the correct energy. 

The improvement in Q does not go parallel with the 
improvement of E, as is to be expected. However, in 
those cases where the energy is already good, the fluctua
tions in Q are generally small. We consider first our 
results with the James and Coolidge wave functions. 
The first line in Table I shows the results using a strict 
shell type of function as given by Eq. (21), i.e., with a 
symmetric core. This value of Q, like the energy, is al-
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ready considerably better than that given by the RHF 
method. The succeeding lines in Table I show the results 
obtained with wave functions of the type given by Eq. 
(24) with cq=Cq which we have called modified shell 
functions of the first type. These functions are all 
eigenfunctions of S2 and we see that the values of Q 
are quite good. 

In Table I I , we show the results of introducing func
tions with 122^7^0 and with quartet character, as ex
plained in the preceding section. Comparison of the 
second line of this table with the second line of Table I 
shows a lowering of the energy by a very small amount 
and a change in the hyperfine interaction by 1.4%. 
Comparison of line 4 of Table I I with line 3 of Table I 
shows a similar result, and, finally, the comparison of 
line 6 of Table I I with line 4 of Table I shows that the 
effect of destroying the symmetry of the core in our 
best function is to change the hfi by only 0.4%. Thus, 
relaxing the condition 122^=0, or adding some quartet 
state, gives no appreciable improvement in the hfi. 

We want to draw attention here to the first two rows of 
Table I I because they illustrate clearly one of the prob
lems encountered in calculating the hfi. In going from 
the first to the second row, the energy has been im
proved very little and yet the value of Q has changed 
rather significantly. I t should be noted, however, that 
in going from the first to the second line, we have 
balanced our treatment of up and down spins. The / 
terms take into account the interaction of the outer 
electron with one of the core electrons and the h terms 
treat the interaction with the other core electron of 
opposite spin orientation. Thus, if an / term of a given 
form is added, it is apparently quite important to add 
an h term of the same form. 

We feel that these results, along with that obtained 
with the Ritter et al. function, show that, as far as Q 
is concerned, the improvement of the wave function by 
adding correlation is very important because it assures 
a proper behavior of the outer electron with respect to 
the core. Furthermore, they show that by adding cor
relation a very satisfactory value of the energy and of Q 
can be obtained with a doublet state of the first type 
which will always have a symmetrical core. We note 
here that the R H F lithium function is also of the first 
type, but, of course, it does not allow for correlation. 

In much of the literature, however, values of the hfi 
(for lithium and other atoms) are calculated with the 
UHF functions. The reasons are in part of a practical 
nature, based on the fact that the method is manageable 
for a many-electron system and does not require an 
elaborate group theoretical analysis, and in part em
pirical, based on the fact that in a number of atoms the 
resulting values of Q come close to the experimental 
values. However, there are many other cases in which 
the method fails to be quantitatively reliable, e.g., 
N(2pz,4$), neutral iron series atoms, etc. (see reference 
8). As reasons of a more fundamental nature for choosing 
this particular class of functions are not available, one 

has appealed to physical intuition to argue that the 
flexibility of the wave function in the UHF method 
allows it to develop a tendency in the "right direction." 
From the above discussion it appears that, for Li, the 
development of the wave function is not in the right 
direction, notwithstanding the excellent result for Q. 

I t is of interest to consider the difference in the 
mathematical structure of QUHF, as found in Eq. (30) 
and of QRHF. The former, with the additional choice 
(a |c) = 0 which is usually imposed on the orbitals, 
takes the form 

euHF=a 2 (0) -6 2 (0)+c 2 (0) , (31) 

where a and b are the two core orbitals, and c is orthogo
nal to the orbital which represents the electron with 
the same spin orientation as the outer electron. The 
value in the R H F method is simply 

2 R H F = C 2 ( 0 ) . (32) 

The result, Eq. (28) and its generalization Eq. (27), 
with <p(123)=<p(213), is much more closely related to 
Eq. (32) than to Eq. (31), in that the direct contribu
tion from the inner orbitals appears multiplied with the 
square of a small orthogonality integral. As we have 
given strong arguments in favor of the use of the first 
type doublet functions, the excellent value obtained 
for Li with Eq. (31) is either fortuitous or should be 
attributed to a hidden mathematical identity. The 
intuitive arguments, to which we have referred above, 
might indicate the direction in which such an identity 
could be found. We think that this is not the case, how
ever. We have come to this conclusion on the basis of 
the following analysis of the Li case. 

The physical meaning of Eq. (31) is habitually ex
pressed in terms of the concept of "spin polarization/' 
i.e., of polarization of the core due to exchange terms in 
the variational expression for the energy. We doubt 
that, within the framework of the UHF method, the 
concept of spin polarization of the core through the 
exchange interaction has been well defined. In any case, 
for the concept of "spin polarization/' and, indeed, 
even of "core" to have, besides a mathematical defini
tion, a physical meaning, they should apply to a much 
wider class of ^ functions which are relevant to the 
physical system. An important point lies in the question 
of what constitutes a core. 

There is little doubt that, in atoms in general, this 
is a useful physical concept, i.e., that in the true ground 
state it can be defined in a good approximation. Within 
the class of functions constructed from three orbitals, 
it is tempting to speak of a core when two of the orbitals 
have much smaller radii than the third. However, in 
a variational calculation, the radial dependence is 
usually not fixed. If it were left completely free, as in a 
Hartree-Fock calculation, the "sizes" would be a result 
and not input information. With this criterion, a R H F 
lithium function and also ^ i ( 0 ) would develop a core 
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but it is doubtful that this would be true for ^ 2
( 0 ) . 

Although we have not attempted to verify this, it seems 
plausible that ^2 ( 0 ) with radial functions a, b, and c 
would approximate a function corresponding to the 
configuration (Is) (2s) (3s) with small admixtures of 
(Is)2(2s), etc. Unfortunately, the situation with the 
UHF function is not clear because it is a mixture of 
doublet and quartet states. However, it seems likely 
that one is quite safe in speaking of a core so long as the 
admixture of the doublet component of type two and of 
quartet components is small. 

In order to ascribe further physical properties, such 
as polarization, to the core in a function as it develops 
in a variational calculation, the function should not be 
subject to conditions which are at variance with known 
properties of the state which it is supposed to approxi
mate. For this simple reason, the properties of a core 
developed by a function of type ^ i ( 0 ) (but with unre
stricted analytical form of the radial functions a, b, and 
c) can be trusted more than those of a core obtained 
with a single-determinant (UHF) function which is 
neither of the first type nor free of quartet components. 

With this discussion in mind, we shall now indicate 
schematically how the polarization of the core presum
ably comes about in the UHF calculations. The pro
cedure is as follows: 

a a c \ 

a fi a I 

where ^ R H F is of the first type, i.e., the core is spatially 
symmetric; when we "let exchange interaction destroy 
symmetry," it becomes 

( a b c \ 
I , 

a p al 

where ^ U H F contains type one, type two, and quartet 
components and the core is asymmetrical; and the re
sults are a very small lowering of the energy and a large 
asymmetry (polarization) of the core which gives a 
large change in Q attributed to the core polarization. 
Our calculations show that we can carry out exactly 
the same procedure with wave functions which have 
correlation and get quite different results. Thus, for 
example, S£ is of the first type and well correlated; when 
we "let exchange interaction destroy symmetry/ ' ^ 
becomes a mixture of type one, type two, and quartet 
components, the core being asymmetrical; and the 
results are a very small lowering of the energy, a small 
asymmetry of the core, and a small improvement in Q. 
The mechanism which supposedly produces the polari
zation is exactly the same in both cases, i.e., the ex
change interaction, but the result is quantitatively and 
qualitatively different. As we have established several 
reasons for preferring the latter calculation, we may 
conclude that the effect of exchange or spin polarization, 
as it is introduced by the UHF method, is not a physical 

effect. I t cannot, therefore, be used as an argument to 
explain why QUHF for Li comes out so well. 

However, we have good reasons for contending that 
it is not the exchange interaction which produces the 
asymmetry in either of the above cases. James and 
Coolidge were convinced by their calculations that the 
nature of the state of the outer electron affected the core 
very little. The same conclusion appears from the work 
of Ritter et al. on the excited states of Li which shows 
that the splitting of the inner shell in their calculations 
is almost completely independent of the value of n in 
the (ls)2ns notation. We conclude that the outer electron 
does not influence the splitting which, evidently, is due 
partially to core correlation and hence the name "cor
relation splitting" which is frequently used. Much of 
the splitting in the Ritter et al. calculations is due simply 
to an improved analytical approximation of the R H F 
Is orbital as can be seen by writing their wave function 
in a configuration interaction form.13 

We wish to speculate on the effect actually introduced 
by the UHF method in lithium. The UHF lithium func
tion is a mixture of doublet and quartet components. 
Minimization of the energy expression given by the 
function will result in a compromise between the 
tendency to lower the energy because of the Coulomb 
correlation introduced and the tendency to raise the 
energy introduced by the inclusion of the quartet 
component. The correlation contribution just dominates 
and so there is a small lowering of the energy; however, 
the quartet component should contribute substantially 
to the spin density—hence part of the improvement over 
RHF which is found to result. Part of the improvement 
in the hfi is due to the correlation in the doublet com
ponent. This interpretation is supported by the results 
of projecting out a UHF lithium function after energy 
minimization. I t is then found that the hfi is worse 
than before projection but it is still better than the R H F 
value. The projection has removed the quartet com
ponent but allowed some of the correlation in the doublet 
components to remain. Of course, after projection, the 
parameters do not minimize the doublet component and 
the wave function is not of pure type one. As greater 
flexibility is built into the trial function, the variation 
procedure will cause the effect of the quartet component 
to become less important until finally, if one had the 
exact ground state wave function of lithium, the 
quartet component would be completely absent; but 
then the doublet function would be completely correlated 
and, evidently, almost entirely of the first type, i.e., 
with a symmetric core. 

Note added in proof. In a private communication, Dr. 
A. W. Weiss has informed us of the results for the hfi 
which he has obtained with his configuration inter
action wave functions. He obtains values of Q which 
are too low by about 10%. While it is true that this 
result is disappointing it is, perhaps, not too surprising 

13 We want to thank J. Linderberg for pointing this out to us. 
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in light of our own experience with the James and particularly R. McWeeny, K. Ohno, and A. Froman. 
Coolidge wave functions. The calculations were carried out on the ALWAC-III 
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Positronium Decay in Teflon. Influence of Lattice Transitions 
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The decay of positronium in Teflon has been investigated at temperatures between —200 and -j-280°C and 
in greater detail in the region of lattice transitions around room temperature. It is found that the long life
time T2 increases sharply in the interval between 20 and 50 °C, while the probability of formation of posi
tronium shows a drop around 20°C. Evidence of the reversibility of the lattice transitions results from the 
decay features of positronium. 

THE decay of positrons in Teflon has been investi
gated by several authors1 with the help of differ

ent techniques and in a wide range of temperature, up 
to 300°C. Teflon is considered to be a suitable material 
for checking the validity of the theory of pickoff 
annihilation of positrons bound in orthopositronium, 
because both the T2 lifetime and the probability of 
positronium formation were found to be smooth func
tions of temperature. This seems to indicate that the 
well-known temperature effects can be rather accurately 
described in terms of the "excluded volume" effect.2 

However, remarkable differences in the values of the 
T2 lifetime around room temperature were found with 
different samples and are reported in the literature. The 
occurrence of lattice transitions involving changes of 
density (at 19 and 30°C) might be thought to be 
responsible for these differences, though a search for 
changes in the ri decay due to the lattice transitions 
was reported to be negative.3 

In the measurements described here, differently 
processed specimens from a number of suppliers were 
used, the T2 lifetime at 20°C proving different from 
specimen to specimen, in the range between 1.8 X10-9 

sec and 3.3 XlO^9 sec. Moreover, it was noticed that r2 

increases remarkably after short thermal treatments 
such as the ones usually performed to obtain commercial 

1R. E. Bell and R. L. Graham, Phys. Rev. 90, 644 (1953); 
R. L. de Zafra and W. T. Joyner, ibid. 112, 19 (1958); A. Bisi, 
A. Fasana, E. Gatti, and L. Zappa, Nuovo Cimento 22, 26(5 
(1961). 

2 W. Brandt, S. Berko, and W. W. Walker, Phys. Rev. 120, 4 
(1960). 

8 G. P. Furukawa, R. E. McCoskey, and G. J. King. J. Res. 
Natl. Bur. Std. 49, 273 (1952). 

Teflon in the shape of rods or plates. Systematic 
measurements of positronium decay were consequently 
carried out with a method already described,4 the 
specimens being in the shape of cylinders, 10 mm long 
and 8 mm in diameter, obtained with pure powder5 

compacted at room temperature. Pure powder was 
chosen for the final measurements because it exhibits 
the shortest TI lifetime at 20°C, according to pre
liminary results. 

Figure 1 shows the T2 lifetime vs temperature for such 
specimens, and the percentage of positrons decaying 
through T2 is given as a function of temperature in 

i 
7H 
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FIG. 1. The long lifetime (r2) of positronium vs temperature. 
The results obtained with three specimens are plotted. 

4 C. Cottini, G. Fabri, E. Gatti, and E. Germagnoli, J. Phys. 
Chem. Solids 17,65 (1960). 

* Kindly supplied by Firm Montecatini. 


