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Some formal and practical problems concerning the effects of the internal target nucleon motion and of the 
multiple scattering on the elastic scattering of high-energy nucleons by deuterons are considered. In order 
to provide a foundation for the examination of these effects, two well-known forms of the impulse approxi
mation are studied within the context of a multiple-scattering formalism, and it is found that the form due 
to Watson appears to be the most convenient and consistent in its application. Some methods for solving 
the multiple-scattering equations are investigated. The direct use of the optical-model approach is shown 
to be impractical for very light nuclei and, in particular, for the deuteron. An alternative means of obtaining 
solutions of the multiple-scattering equations (when the number of target nucleons is small) which permits 
the exact treatment of the ground-state scattering while allowing a systematic treatment of the contribu
tions due to the excited intermediate nuclear states is discussed. A practical technique is developed for 
generating approximate solutions of the two-body integral equations which occur in the various multiple-
scattering formalisms. 

In the study of the consequences of the internal target nucleon motion, the impulse approximation is 
used to express the complete nucleon-deuteron transition matrix element in terms of two-nucleon transition 
(0 matrices in the form of integrals over the internal-momentum distribution of the target nucleons; these 
integrals are then evaluated under the assumption that the principal contribution to the scattering occurs 
for those values of the relative target nucleon momentum, q, such that q=2K, where K is one-half the momen
tum transfer and O^z^ 1. The variation of the off-the-energy-shell / matrix elements over this range of q is 
taken into account for the Hamada potential. The integrals are then employed to calculate (in the single-
scattering approximation) the cross sections and polarizations for elastic nucleon-deuteron scattering for 
incident nucleon (lab) energies of 40, 95, and 150 MeV and cm. scattering angles of 30° to 150°. A com
parison is made between the present calculation and results obtained with the customary procedures of 
either neglecting entirely the q dependence of the t matrices (Chew approximation) or assuming that these 
matrices depend only linearly on q. At 150 MeV, where the off-the-energy-shell effects are largest, the 
results are shown to depend significantly on the type of / operator used, especially at large angles. The best 
fit to the polarization at 150 MeV is obtained with a t operator which corresponds approximately to Watson's 
form of the impulse approximation. 

INTRODUCTION 

THERE has been a considerable amount of effort 
devoted to the study of high-energy1 elastic N-

(nucleon)-d(deuteron) scattering.2,8 In most investiga
tions of this problem up to the present time the impulse 
approximation (IA) has been employed in the form 
originally proposed by Chew.4 That is, the scattering 
process is viewed as a simple superposition of the 
(single) scatterings of the incident nucleon from each 
of the (quasi-free) target nucleons. Usually, the internal 
motion of the target nucleons has also been neglected. 
This picture of the scattering appears to be quite 
accurate for small momentum transfers. 

When the momentum transfer is large, the preceding 
picture of the scattering process fails, for in this case 
several effects, whose relative importance is only poorly 
understood, can no longer be neglected. These effects 

* This work was supported, in part, by the U. S. Atomic 
Energy Commission. 

f Present address: the Department of Physics, Case Institute 
of Technology, Cleveland, Ohio. 

1 By high-energy we mean the circumstance where the kinetic 
energy of the incident particle is much greater than the average 
kinetic energy of a target nucleon. 

2 Proceedings of the Conference on Nuclear Forces and the Few-
Nucleon Problem, London, 1959, edited by T. C. Griffith and E. A. 
Power (Pergamon Press, Inc., London, 1960), Vol. I. 

3 M. Verde, Handbuch der Physik, edited by S. Fliigge (Springer-
Verlag, Berlin, 1957), Vol. 39, p. 142. 

4 G. F. Chew, Phys. Rev. 80, 196 (1950). 

include the internal motion of the target nucleons, the 
multiple scattering, the binding forces, and the pickup 
scattering. In the present work, we are concerned with 
some of the formal and practical problems related to 
the evaluation of the first two of these effects within 
the context of the IA, where we take the LA to imply 
only the neglect of the binding forces. We do not 
consider the pickup scattering.5-7 

The problem of accounting for the internal motion of 
the target nucleons appears, at first glance, to offer no 
difficulty except as to computational labor. In principle, 
all that is required is the proper evaluation of the 
(nuclear) matrix elements of the two-nucleon transition 
operators with respect to eigenstates of the noninteract-
ing system composed of the target and the incident 
nucleon. However, there does exist some ambiguity in 
the choice of these transition operators. 

This is, in part, due to the existence of two somewhat 
different formulations of the IA. The first, due to Chew 
and others,4,8~10 has been applied repeatedly, in various 

5 We will ignore those identity effects which result in the pickup 
scattering [as in reference 6] . Therefore, we formally regard the 
incident nucleon as distinguishable from the target nucleons. It 
appears that for reasonably high energies the pickup process is 
significant only for extreme backward scatterings (cf. reference 7). 

6 G. Takeda and K. Watson, Phys. Rev. 97, 1336 (1955). 
7 H. Postma and R. Wilson, Phys. Rev. 121, 1229 (1961). 
8 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952). 
9 J. Ashkin and G. C. Wick, Phys. Rev. 85, 686 (1952). 
10 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952). 
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degrees of approximation, to N-d scattering.11-14 The 
second was introduced by Watson15,16 within the 
context of a multiple-scattering theory. The two-body 
transition operators which appear in these alternative 
formulations of the IA have quite distinct mathematical 
properties.17 Even the Chew et al. formalism itself is not 
without ambiguity.9 

Now, given some definite choice of a two-nucleon 
transition operator, the evaluation of the nuclear 
matrix elements of this operator is an exceedingly 
involved computational problem. An essentially exact 
calculation has been carried out by Fulton and Schwed12 

using a simplified model of the N-N interaction. 
However, the necessity of performing a nearly exact 
evaluation may be questioned from several points of 
view. Such a computation is somewhat inconsistent in 
view of the uncertainties existing in the present-day 
knowledge of the deuteron wave function and the N-N 
potential. Secondly, the calculations of Fulton and 
Schwed and others7,11,14 indicate that the approximation 
of completely neglecting the internal motion of the 
target nucleons is valid for a rather large range of 
angles in the forward scattering hemisphere. Finally, 
there is evidence that a simple modification of the 
preceding approximation yields improved results for 
large momentum transfers.3,14'18,19 It would, therefore, 
appear that it should be possible to devise a method for 
evaluating the nuclear matrix elements of the two-
nucleon transition operators which accounts for the 
dominant effects of the internal target nucleon motion 
(including off-the-energy-shell effects) and yet which 
does not involve either a prohibitive and/or an unneces
sary amount of computational labor. 

Next, let us consider some of the problems associated 
with the determination of the multiple scattering. There 
exist a variety of ways in which one can construct a 
multiple-scattering theory for the scattering of particles 
from complex nuclei. A formulation which seems to 
permit the most convenient and consistent application 
of the IA has been developed by Watson.15,16 When the 
pickup scattering is neglected, this formalism is directly 
applicable to the N-d problem. Nevertheless, even with 
the application of the IA, the solution of the multiple-
scattering equations is a complicated many-body20 

problem. 
The inherent many-body character of the multiple-

scattering equations arises from intermediate scatterings 

11 Y. Sakamoto and T. Sasakawa, Progr. Theoret. Phys. (Kyoto) 
21, 879 (1959). 

12 T. Fulton and P. Schwed, Phys. Rev. 115, 973 (1959). 
13 L. Favella and M. Olivetti, Nuovo Cimento 11, 679 (1959). 
14 L. Castillejo and L. S. Singh, reference 2, p. 193. 
16 K. M. Watson, Phys. Rev. 89, 575 (1953). 
16 K. M. Watson, Phys. Rev. 105, 1388 (1957). 
17 K. L. Kowalski and D. Feldman, J. Math. Phys. (to be 

published). 
18 P. B. Daitch and J. B. French, Phys. Rev. 85, 695 (1952). 
19 O. Chamberlain and M. O. Stern, Phys. Rev. 94, 666 (1954). 
20 We apply the term many-body to any system containing as 

few as three particles. 

which involve excited nuclear states.21 About the only 
possibility for solving these equations in any simple way 
occurs when the contribution from the excited states is 
small enough to be considered as a perturbation upon 
the scattering which takes place with the nucleus 
always in its ground state.22*23 A method for systemat
ically evaluating these corrections to the ground-state 
scattering is the so-called optical-model formalism.24""26 

From a formal standpoint, it is easy to establish the 
existence of an operator, the optical potential, which 
comprises the inhomogeneous term and the kernel 
(exclusive of a two-body propagator) of an integral 
equation involving only the ground-state matrix 
elements of the complete transition operator.24 On the 
other hand, the problem of finding an integral equation 
for the optical potential which is suitable for the 
approximate treatment of the excited states is consider
ably more difficult. Unfortunately, the existing optical-
model formalisms do not seem to be directly applicable 
to the case when the target consists of a small number 
of nucleons. Some studies make the explicit assumption 
that the number of target nucleons is large.15,25 Other 
treatments introduce pseudo-two-body transition 
operators which contain projection operators whose 
quantitative effects are not very well understood.26,27 

It is evident that it is generally desirable to have an 
optical-model formalism which is valid independently 
of the number of target nucleons and which contains 
only quantities which can be calculated without the 
introduction of a subsidiary many-body problem. It 
should be stressed that in the case of a deuteron target 
the only reason for considering the optical-model 
formalism is to permit the systematic evaluation of the 
contributions arising from the excited intermediate 
nuclear states. If one is only interested in the ground-
state scattering, there is no advantage over the direct 
consideration of the multiple-scattering equations. 

In Sec. I of this paper we discuss the relationship 
between the two forms of the IA in terms of a multiple-
scattering theory. Section II is devoted to some aspects 
of the solution of the multiple-scattering equations 
with particular regard to the derivation and application 
of an optical-model formalism when the target consists 
of a small number of nucleons. In Sees. Ill-VI we 
consider the evaluation of the ground-state nuclear 
matrix elements of the various two-nucleon transition 
operators, taking into account the internal motion of 
the target nucleons. These matrix elements are used to 

21 We assume throughout this work that the target is initially 
and finally in its ground state. 

22 Some work has been devoted to the case when the target 
particles can be regarded as fixed. A comprehensive review is 
contained in reference 23 along with additional references. See 
also Sec. 6 of reference 16. 

23 L. H. Schick, Rev. Mod. Phys. 33, 608 (1961). 
24 H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49 (1958). 
25 N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953). 
26 A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys. 

(N. Y.) 8, 551 (1959). 
27 See the Appendix to reference 25. 



278 K . L . K O W A L S K I A N D D . F E L D M A N 

calculate the cross sections and polarizations for 
N-d scattering, in the single-scattering approximation, 
over a representative range of energies and momentum 
transfers. The results are discussed in Sec. VII, and 
some concluding remarks are made in the last section. 

I. FORMULATION OF THE SCATTERING IN 
TERMS OF TWO-BODY PROCESSES 

The scattering of a high-energy particle by a nucleus 
is conveniently studied by formulating the problem in 
terms of successive collisions of the incident particle 
with individual target nucleons. One such multiple-
scattering theory has been developed by Watson.15 We 
now study some aspects of this and similar formalisms 
with regard to the application of the IA. 

The Schrodinger equation for the scattering problem 
is written as 

H\*a) = Ea\*a), (1.1) 

where H is the complete Hamiltonian, viz., 

H^KX+HK+V. (1.2) 

Here, HN is the complete target Hamiltonian with 
eigenstates, 17), defined by 

HN\y)=ey\y\ (1.3) 

and Ki is the kinetic-energy operator of the incident 
particle. We assume that the particle-nucleus interac
tion, V, can be represented by a sum of two-body 
potentials, 

V=Zav(a), (1.4) 

where v(a) denotes the interaction between the incident 
particle and the target nucleon a; the sum in (1.4) is 
over all the target nucleons. Finally, the total energy, 
Ea, is given by 

£ a = £ i + 6 0 , (1.5) 

where E\ is the initial energy of the incident particle, 
and €0 is the total ground-state energy of the target 
(which includes any possible initial c m . motion).21 

The outgoing-wave solution, |>F0
(+)), of Eq. (1.1) 

can be expressed in terms of the wave operator 0 a
( + ) , i.e., 

|^aC+)) = O a c + ) | a ) = ( l + G a F O a ^ ) | a ) , (1.6) 
where 

Ga=(Ea~HQ+ie)~\ (e->+0), (1.7) 
and28 

HQ\a)^(K1+HN)\a)=Ea\a). (1.8) 

The transition probability is calculated from the 
energy-conserving matrix elements of the transition 
operator 

TaM=VQaW=V+VGaTaM. (1.9) 

28 The index a actually refers to a complete set of commuting 
observables of the noninteracting system composed of the incident 
particle and the target. However, we use a primarily as an energy 
index. 

Similar relations can be written down for the incoming-
wave solution of (1.1). 

The solution of the integral equation (1.9) can be 
written in the form15 

r«(+)=E«r(«), (i.io) 
where the T(a) satisfy the set of coupled integral 
equations 

T(a) = t(a)+t(a)Ga £ T(fi\ (1.11) 

and 
t(a) = v(a)+v(a)Gat(a) = v(a)+t(a)Gav(a). (1.12) 

A solution of Eq. (1.9) which is equivalent to the 
preceding is 

2V+> = £ r 0 ( a ) , (1.13) 
a 

where 

To(a) = t0(a)+k(a)Ga £ T0(fi)+Z(*)To(a). (1.14) 

Here, 

t0(a) = v(a)+v(a)G(a)to(a) = v(a)+tQ(a)G(a)v(a)y (1.15) 

G(a) = [ £ i - (Kx+Kj+ieJr1, (1.16) 

A(a) = io(a)G(a)A(a)Ga=to(a)GaA(a)G(a), (1.17) 

A ( a ) = - [ € 0 - ( # * - £ « ) ] ; (1.18) 

Ka is the kinetic-energy operator of particle a. I t should 
be noted that 2o(a), in contrast to t(a), is a two-body 
operator; the connection between the two is given by 

t(a) = tl-A(a)J-%(a). (1.19) 

The solution (1.13) permits a somewhat more descrip
tive introduction of the IA than does the solution (1.10); 
otherwise, the formulation of Watson, Eq. (1.10), is 
definitely more useful. In the IA it will be seen that the 
two solutions are identical in form. 

I t is apparent from Eq. (1.19) that the operator 
A (a) contains the effects of the nucleus on the scattering 
of the incident particle from the target nucleon a. The 
presence of the last term on the right-hand side of 
Eq. (1.14) and the structure of A (a) indicate that these 
effects manifest themselves as "rescatterings"29 of the 
incident particle from the same target nucleon. This 
sort of rescattering can only occur because of the 
binding forces acting on a. However, the IA is commonly 
understood to mean that for sufficiently high incident 
energies the binding forces have a negligible dynamical 
effect on the scattering of the incident particle from 
the individual target nucleons. Accordingly, we can 
formally define the IA by the requirement that the 
operator A (a) be set equal to zero in Eqs. (1.14) and 
(1.19).30 

I t is interesting to observe just how the binding 
terms, A (a), enter into the integral equation for a 

29 Each of the individual scatterings is represented by t0. 
30 We call this the Watson form of the IA. 
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particular To (a). In the case of a deuteron target the 
set (1.14) can be decoupled and one obtains, for 
each a, 

r 0 (a ) = /o(a)+«o(a)GaCl-S(a /)]-1/o(aO 
+/o(a)G a{[l-2(a /)3-1fa(a /)Ga 

+A(a)G(a)}TQ(a), (1.20) 

where a'^a. Therefore, in order that the LA be valid, 
it is necessary that 

and 
| < a " | A ( a ) | a ' ) | « l , (1.21a) 

\(af,\A(af)\af)\«\(af,\to(a)Gato(af)Ga\a
f)\, (1.21b) 

at least for those states a', a" with energies Ea>, Ea>> 
near the energy shell (Ea)- The condition (1.21b) is 
simply a consistency requirement since it asserts that 
the binding corrections be much smaller than the 
multiple-scattering corrections. I t is clear from Eq. 
(1.19) that (1.21a) is a necessary condition for the 
replacement of t(a) by t0(a) in (1.11). Henceforth, we 
assume that the inequalities (1.21) are satisfied and, 
moreover, that they are sufficient for the validity of the 
IA. Some examples have been considered which indicate 
that (1.21a) should be satisfied for sufficiently high 
incident-particle energies.8 

The IA was originally introduced in a manner slightly 
different from that of the preceding discussion.4'8-10 

We now examine this alternative (Chew) form of the 
IA and study its relationship to the Watson formulation. 

Let us introduce the two-body transition operators 

where 

/(+)(a) = v(a)[l+M^>(a)] , 

/<-> (a) = [ 1 + M ( ~ ) («)>(«), 

M(-)(a) = E«|»X»|<» (- )(«)G». 

(1.22) 

(1.23) 

Here, \n) denotes an eigenvector (plane-wave state) 
of the complete kinetic-energy operator, K, viz., 

also, 
K\n)=En\n); 

Gn=(En-K+ie)-K 

The operators /» (± )(a) satisfy 

tn«\a) = v(a)+v(a)Gjn^(a), 

*»<-> (a) = j(a)+*n<-> (a)Gnv(a), 

(1.24) 

(1.25) 

(1.26) 

where it is to be understood that <»(+)Q„(~)] always 
operates to the left (right) of states with energy En. I t 
can then be readily verified that10 

Gj<+> (a) = M
(+> (a)+G*A <+> (a), 

H->(a)Ga=^(a)+A(--Ka)Ga, 
(1.27) 

where 

and 

A <+> (a) = A o<+> (a) - M
(+) (a)Ga-\ 

A^(a) = Ao(-)(<x)-G, y->(«), 

^o ( ± ) («) = ±CA(a) ,M ( ± , (a)] . 

(1.28) 

(1.29) 

The relations between / ( ± )(a) and t(a) are obtained 
from Eq. (1.12) with the aid of the identities (1.27), viz., 

((a) = J < + ' ( a ) [ l - G J ' + » ( a ) ] - 1 , 

t(a) = 11-A <-> (cdGaTW-l (a). 
(1.30) 

I t is evident from Eq. (1.19) that similar relations hold 
between i ( ± )(a) and h(a). 

I t follows from Eqs. (1.30) that 

/(a) | o) = «C+>(a) | a)+t(a)GaAow(<x) I a), 

(a\t(a) = {a\t™(a)+{a\AJ-\a)Gj(a). 
(1.31) 

The terms which involve Ao(±)(a) in (1.31), and which 
evidently represent binding corrections, were estimated 
by Chew and Wick to be negligible for high incident 
energies.8 The Chew form of the IA can then be defined 
by the stipulation that the quantities t(a)GaAo{+)(a) 
and i4o(-)(a)Go^(a) be set equal to zero in Eqs. (1.31). 

In the (Chew) IA, Eqs. (1.31) can be used in conjunc
tion with (1.11) to construct an expression for Ta

i+) 

which involves only the operators t{±)(a) provided one 
is concerned only with the single- and double-scattering 
terms. For higher order multiple scatterings one is 
forced to employ Eqs. (1.30) as they stand. However, 
it is not at all evident that the operator Ga^ (+)(o!), for 
example, is small even if the IA is valid. Therefore, the 
replacement of t(a) or tQ(a) by ti+)(a) in (1.11) appears 
to be unjustified, unless the intermediate multiple 
scatterings take place primarily on the energy shell. 
This observation emphasizes the difficulty in construct
ing a multiple-scattering formalism in terms of the 
/ ( ± ) (a) operators which is convenient for the application 
of the IA. 

Moreover, there exist difficulties with the Chew form 
of the IA even if one is only concerned with the single-
scattering terms. If the IA is valid and the multiple 
scattering is neglected, we see from Eqs. (1.11) and 
(1.31) that one can apparently write, with equal 
validity, 

?v+>~i: a /<+>(«), 

?V+>~Ej<->(a) . ( U 2 ) 

However, 2(+>(a) and ^(a) are not identical; for 
example, on the energy shell,9 

/ (+ ) ( a ) - ^ - ) ( a ) = i 4 0
( + ) ( a ) - i 4 o M ( a ) . (1.33) 

The terms on the right-hand side of (1.33) do not 
have the form characteristic of quantities which are 
small when the IA is valid. Therefore, there is no reason 
to expect the difference between /(+)(o:) and *<->(a) to 
be especially small, even for high incident energies, 
except in the case of vanishingly weak binding forces. 
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It is completely consistent with the Chew approach 
to represent the single-scattering terms by the mean 
of /<+)(«) and *<->(<*), viz.,10 

l(a) = iB (+)(«)+< (- )(«)]. (1.34) 

The use of the operator i(a) instead of £(+)(a) or /(_)(o:) 
in (1.32) has the advantage of preserving the reciprocity 
property of r a

( + ) . Unfortunately, one cannot generally 
substitute i(a) for t(a) in Eq. (1.11). Also, since i(a) 
apparently does not satisfy an integral equation, it is 
difficult to see how one can develop a multiple-scattering 
formalism in terms of this operator. 

It is evident that the Chew form of the IA possesses 
many undesirable features, particularly with respect 
to the description of multiple-scattering processes. 
Although the multiple scattering (in the IA) can be 
elegantly expressed in terms of the operators 20(a), these 
two-body operators have a considerably more compli
cated mathematical structure than the 2(±)(a) operators 
which appear in the Chew formalism. These mathemat
ical differences have been discussed elsewhere.17 

II. SOLUTION OF THE MULTIPLE-SCATTERING 
EQUATIONS 

The solution of the multiple-scattering equations 
(1.11) is still a many-body problem even after the 
application of the IA. However, it is evident that, if 
the contribution arising from excited intermediate 
nuclear states can be neglected, the solution of the set 
(1.11) becomes simply a two-body problem. If one is 
interested only in the multiple scattering which occurs 
with the nucleus always in its ground state, and if the 
number of target nucleons is small, then it is practical 
to consider Eqs. (1.11) directly. 

On the other hand, the use of these equations as they 
stand is inconvenient when one wishes to account for 
the effects of the excited states in an approximate way 
while treating the ground-state scattering exactly or 
else when the number of target nucleons is not very 
small. Under either or both of these circumstances 
different ways of solving (1.11) must be sought. One 
such method is the optical-model formalism and most 
of this section is devoted to an elaboration of this 
technique. 

Now the integral equation31 

T=V+VGaT=V+TGaV (1.9a) 

can be rewritten in the form 

T=U+UPGaT, (2.1) 
where 

U=V+VQGaU, (2.2) 
and 

P + G = l . (2.3) 
31 We replace Ta

{+) by T in order to emphasize that T is denned 
with respect to states of arbitrary energy. The symbol 7V+) will 
be reserved for the situation when T operates to the left of states 
corresponding to the energy Ea. 

We define a particular P and Q, namely, PQ and Q0j by 

PO^ETOITOXTOI, (2.4) 

where 170) is a nuclear ground state which includes the 
cm. motion. In this case, Eq. (2.1) is a two-body 
equation for the ground-state matrix elements of T. 
All the effects of the excited states are contained in the 
optical potential, U. 

Equation (2.2) for U is not very useful as it stands. 
A great deal of effort has been devoted to the problem 
of finding an alternative integral equation for U in a 
form suitable for approximate calculations.24 One 
method26,27 is of particular interest, even though it 
departs from the form (2.1)—(2.2) slightly, since it 
makes no explicit assumption as to the number of 
target nucleons in contrast to other studies.15*16,25 We 
discuss this method in detail in order to ascertain 
whether or not its applicability in the case of a very 
light nucleus is justified. Our treatment follows closely 
the work of Kerman, McManus, and Thaler.26 

Now, if an isotopic-spin notation is employed, all of 
the target nucleons can be regarded as identical. Then, 
the only matrix elements of T which are of interest in 
calculating observable quantities are those defined 
with respect to the completely antisymmetrized target 
states |Y') . We may, therefore, write 

T=Av+AvGa'T, (2.5) 
with 

G«'= aGa, (2.6) 

where (2.5) is assumed to be defined with respect to 
the states 17'), (X is the antisymmetrization operator in 
all the nuclear variables, and A denotes the number of 
target nucleons. The particle index a in v(a) need no 
longer be explicitly indicated. 

It is a simple matter to show that 

T=At'Zl-(A-l)Ga't'l-\ (2.7) 

where /' satisfies 
t'=v+vGa'f. (2.8) 

From (2.7) we deduce that 

r=(A-l)t'(l+Ga'T'), (2.9) 
with 

T'=l(A-l)/A3T. (2.10) 

In view of Eqs. (2.9) and (2.2), the optical potential, 
U'9 corresponding to V satisfies 

U'=(A~\)tf{\+Q<£a'U
f). (2.11) 

The principal difficulty with the preceding formalism 
is the occurrence of the operator /'whose defining integral 
equation (2.8) contains the propagator Ga

f instead of 
Ga, and so we must consider the question of how to 
approximate tf by a somewhat more manageable 
quantity (say, / or /0). Kerman, McManus, and Thaler26 

interpret the replacement of /' by t0 as a form of the IA 
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and estimate, in a rough way, that the corresponding 
error should be small, in the case of a deuteron target, 
at sufficiently high incident energies. However, this 
replacement does seem somewhat unnatural.32 More 
generally, we examine the possibility of substituting t 
for t'. 

Now tf is related to i by 

t'=t+t(Ga'-Ga)t
f. (2.12) 

Equation (2.12) can be used in conjunction with (2.7) 
to obtain the solution for T* in terms of /, viz., 

r , = ( i 4 - l ) C l - ( i 4 - l ) 5 a < J - 1
> (2.13) 

where 
Ga= (AGa

f-Ga)(A-\)-\ (2.14) 

In order to obtain an equivalence33 between (2.13) and 
(2.7) (with tr replaced by t in the latter equation), it is 
necessary that Qa be set equal to Ga

f. This is possible 
only if A^>1, as is evident from (2.14). We conclude 
that the replacement of tf by t (and also /' by to) is a 
(I/A) correction and, therefore, is unjustified for very 
light nuclei. 

In view of the preceding, we now turn our attention 
to the possible development of an optical-model 
formalism which is valid for light nuclei. The solution 
of Eq. (2.1) can be written as 

r = I „ f ( a ) , (2.15) 

where T(a) satisfies 

T(a) = t"(a)+t"(a)PoGa £ ? (£) , (2.16) 

and 

t"(a)=U(a) + U(a)PdGat"(a). (2.17) 

We have expressed the solution of Eq. (2.2) in the form 

U=Z«U(a). (2.18) 
I t may be expected from the structure of Eqs. 

(2.15)—(2.18) that the quantities U(a) will correspond 
to a multiple-scattering-type solution of Eq. (2.2). 
Obviously, one such solution is 

U(a) = u(a)+u(a)QoGa £ U{&\ (2.19) 

where 

u(a) = v(a)+v(a)QdGau(a). (2.20) 

The relationship between u(a) and t(a) is 

t(a) = u(a)+u(a)PdGj(a). (2.21) 
The quantity u(a) is clearly the "optical potential" 
for the scattering of the incident particle from the 
target nucleon a. If the number of target nucleons is 

32 A. Herzenberg and E. J. Squires, Nucl. Phys. 19, 280 (1960). 
33 It should be remarked that Eq. (2.13) cannot be used to 

deduce an integral equation for V in terms of / and Qa as was done 
with Eq. (2.7). This is due to the fact that Ga permits intermediate 
nuclear states of arbitrary symmetry. 

very large, it then follows from Watson's considerations 
on projection operators16 that Eqs. (2.19) are valid to 
within terms of order A~l if u(a) is replaced by t(a). 
In this case one obtains the usual16*25 optical-model 
formalism which holds for heavy nuclei. 

If the contribution to U(a) arising from the excited 
intermediate nuclear states is neglected, viz., 

U(a)**u(a), (2.22a) 

we see from Eqs. (2.17) and (2.21) that 

*"(a)«*(a). (2.22b) 

This is, of course, just what one would obtain from 
Eqs. (1.11), again with the neglect of the excited 
states. Equations (2.22) demonstrate why it is much 
more practical, for very light nuclei, to consider the 
multiple-scattering equations (2.16) directly rather 
than to calculate T from (2.1) with the use of the 
optical potential. Even in the lowest order approxima
tion to U given by Eq. (2.22a), the quantities u{a) 
must be calculated from t(a) [or to(a) in the IA] . I t 
is clear from (2.21) that this is a two-body problem; 
but since the solution will inevitably be approximate, 
even the single-scattering terms will not be treated 
exactly. We conclude that the direct use of the optical 
potential is apparently not practical in the case of very 
light nuclei. 

We, therefore, return to a consideration of Eqs. (2.16) 
with particular emphasis on obtaining an improved 
evaluation of t"(a). The corrections to t"(a) arising 
from the excited nuclear states can be carried out in a 
systematic, if somewhat cumbersome, manner with the 
use of the iteration solution of Eq. (2.19). For the sake 
of illustration, we consider the first-order correction to 
t"(a). Let 

t"(a) = t(a) + A / ' (a) (2.23) 
and 

U(a) = u(a)+A1U(a), (2.24) 
where 

AiU(a) = u(a)QoGa £ u(fi). (2.25) 

Then, to this order, Eq. (2.17) becomes 

A / , ( a ) = A 1 t / ( a ) [ l+PoGj ( a ) ] 
+u(a)P(£a&lt"(a), (2.26) 

where use has been made of Eq. (2.21). The solution of 
Eq. (2.26) is 

Alt"(a) = t(a)Q0Ga £ u(p)Zl+P&at(a)J (2.27) 

The higher order corrections to t"(a), namely, A2t"(a), 
Azt"(a),'-, where Ant"(a) contains only terms of 
order n in the excited states, can be found in an analo
gous manner. 

The expression (2.27) for Ait"{a) is somewhat more 
complicated than what one usually expects. However, 



282 K . L . K O W A L S K I A N D D . F E L D M A N 

it appears that this additional complexity is the price 
one has to pay in order to avoid errors of order A"1 or 
the appearance of many-body projection operators 
such as <$. 

We have seen how it is possible to describe the 
dominant features of the multiple scattering by means 
of two-body integral equations, the prototype of which 
is Eq. (2.1). These equations are still rather difficult to 
solve in practice for several reasons. First, it is incon
venient to employ a partial-wave analysis due to the 
fact that the quantities of interest are nuclear matrix 
elements rather than matrix elements defined with 
respect to plane-wave states. Secondly, the "potential" 
terms appearing in these equations are non-Hermitian 
so that methods, such as conventional variational 
principles, which assume that the potential is Hermitian 
are inapplicable. Finally, it is well known that the 
solutions obtained by iteration (Neumann) or Fredholm 
expansions are usually either unreliable or very slowly 
convergent. 

We accordingly discuss a very simple method for 
obtaining approximate solutions to equations such as 
(2.1) which avoids the preceding difficulties. Let us 
consider, in the cm. system,34 the integral equation 
(2.1) for the ground-state matrix elements of T, viz.,35 

<k,|r|ktf>=<k,|i7|i^> 

r <k,|I7|kPXkp|r|k*> //%t%0, 
+ \dkp , (2.28) 

J Ei—Ep+ie 
where the k's denote wave vectors of the particle 
originally incident on the nucleus, and the £'s are the 
corresponding energies. 

Now suppose that U yields a fairly good representa
tion of T, but we wish to obtain a somewhat better 
approximation. It is consistent with our supposition 
to write 

<kp\T\ki)zsTv,i**UPttC9 (2.29) 

where, for example, 

C-LUf^Tf.n (2.30) 

here kp and k/ are completely arbitrary as to both 
direction and magnitude. If the expression (2.29) for 
TPfi is inserted into the right-hand side of Eq. (2.28) 
with C given by (2.30), one obtains an algebraic equa
tion for T/,i which is easily solved, viz., 

r r UftPUPti -rl 

T/^Uf.AUfs- dkp Uf,i. (2.31) 
L J Ei-Ep+ieJ 

This approximation technique can be continued in
definitely. In general, after N repetitions of the pro-

34 The transformation to the cm. system is particularly simple 
in the case of a deuteron target; otherwise, cf., R. Lipperheide, 
Ann. Phys. (N.Y.) 17, 114 (1962). 

36 Throughout this discussion we suppress any spin dependences 
for the sake of simplicity. 

cedure, one obtains 

y .(N+i) 

= TfM Tf/n- dk, '* P'1 Uffi, (2.32) 
L J Ei-Ep+ieJ 

where N=Q, 1, • • •, and 

Tf/v=Ufti. (2.33) 

The method just outlined for solving the two-body 
integral equations has a number of desirable features. 
For example, the form of Eqs. (2.31) and (2.32) suggests 
that the procedure may have the convergence properties 
expected of a variational formulation in contrast to 
successive iterations of (2.28). Furthermore, each order 
of approximation requires no more computational 
labor than do corresponding orders of approximation 
in the direct iteration approach. 

The approximate procedure [jEqs. (2.32) and (2.33)] 
can easily be adapted to the coupled set of two-body 
equations (2.16). In the concluding section of this 
paper we comment upon the usefulness of Eq. (2.31) 
in obtaining multiple-scattering corrections in the 
N-d problem. 

III. NUCLEAR MATRIX ELEMENTS OF THE 
TWO-BODY TRANSITION OPERATORS 

The work of the preceding two sections has been 
largely independent of the nature of the target nucleus. 
We now confine ourselves exclusively to the case of a 
deuteron target and consider the problem of evaluating 
the ground-state matrix elements, (af\t\a)i of the two-
nucleon transition operators.36 Here, \a) is the state 
composed of the free incident particle and the deuteron 
ground state including its cm. motion. For the sake of 
simplicity, we neglect the D state of the deuteron and 
any possible Coulomb effects. 

The states | a) are written as 

|a>Hki,f>, (3.1) 

where ki is the wave vector of the incident nucleon (1) 
and f refers to a three-body spin state; it is not necessary 
to mention explicitly the deuteron variables other than 
the spin since we consider only the case when the target 
is in its ground state. In the coordinate representation, 

<r1,r2,r3|k1,r>= (2w)-^e^'^(^r,) |f>, (3.2) 

where ^(r2,r3) is the deuteron 5-state wave function 
including its cm. motion and | f) is any one of the six 
three-nucleon spin functions which are symmetrical in 
particles (2) and (3) which comprise the deuteron. 
The position vectors of the various particles are r,-
(j= 1, 2, 3). In what follows the three-body plane-wave 
states are denoted by | k1,k2,k3,f). 

36 The symbol t is here used in a generic sense to refer to / ( ± ) or t0. 
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The three-body spin functions can be decomposed 
into the sum87 

\0=Z„,b(i;,P,s)\v)\s), (3-3) 

where | v) and | s) represent two- and one-nucleon spin 
functions, respectively. The indices f, v, and s serve to 
label the eigenvalues of both the total spin as well as 
the component of the spin in some direction for the 
system in question. 

We confine ourselves, for the sake of defmiteness, to 
two-body transition operators involving only the target 
nucleon (2). We then have 

<k/,r/U(2)|kl-,rl> 

= £ fdrk.dTk..Qif£f\ki"MW,t") 
t',t" J 
X(k1",k2",k3",f" 11(2) | k,',k2',k3',r> 

x<ki',k,',k,',r|k<»r<>, (3.4) 
where 

drk=dkidk2dk3, (3-5) 

and k», k/ are two different wave vectors of particle (1). 
It follows as a consequence of translational and Galilean 
invariance that 

<k1",k2",k3",r"|/(2)|k1')k2',k,')f') 
= 5(k3"-k3 ' )5(k1"+k2"-k1 ' -k2 ' ) 

X(i(ki"-k 2") , r | / . ( 2 ) | i ( k i ' - k , ' ) , f>, (3.6) 

where tc{2) is the transition operator defined in the 
cm. system of particles (1) and (2). Equation (3.4) 
becomes, with the aid of (3.6), 

^,,^1/(2) | k,,^ 

= 5(K /-K f) £ A{S},v,;U,v%) fdq<l>*(q-K)4>(q) 
Vf.Vi J 

X(fk/+jK-k," /Uc(2) | fk / -k ,» ' . ) . (3.7) 

We have introduced the vectors 

also 

K=M-k2+k3, 
k '=f [k i - ! (k2+k 3 ) ] , 
q=3(k2-k3) ; 

K = | ( k / - k / ) . 

(3.8) 

(3.9) 

The Fourier transform, <£(q), of the (5-state) deuteron 
wave function, ^(r), expressed in relative coordinates, 
and normalized to unity, is given by 

*(q) = 

Finally, 
(2TT)3/2 J 

* « . (3.10) 

^(f/^/; iV<)=L. t>(£f,vf>s)Hti,vi,s)- (3-11) 

The quantity on the right-hand side of Eq. (3.7), 
exclusive of the momentum-conserving delta function, 
is just the matrix element of t(2) in the three-body 
cm. system. The corresponding matrix element for t(3) 
is identical in form to (3.7). 

The quantities A (f/,j>/; f*,?»•) are known constants. 
Hence, we need consider only the integrals 

</!«>, > , . . , - / • <*q**(q-ic)0(q) 

37 The coefficients b(£,v,s) in Eq. (3.3) can be calculated quite 
easily. See, for example, reference 13. 

X<ik/+iK-Jq,,v|/e(2)|ik/-§q, Vi). (3.12) 

These integrals will be called the average two-body 
amplitudes, and their evaluation constitutes the 
principal difficulty in the calculation of the matrix 
elements of t(2). 

Henceforth, we restrict ourselves to the particular 
case when 

| k / | = | k / | = A \ (3.13) 

Also, we assume that k4- (k/) are the initial (final) wave 
vectors of the incident particle in the laboratory system. 
Thus, we are concerned only with the matrix elements 
of the two-body transition operators which correspond 
to the single scattering of the incident particle from 
each of the target nucleons. Actually, a good portion 
of our subsequent work is valid even when (3.13) is 
not satisfied. 

Under the preceding assumptions, it is easily found 
that the integral equation satisfied by to(2) appropriate 
to the matrix element contained under the integral sign 
in (3.12) is 

to(2) = v(2)+v(2)(E12-Kl2+ie)-%(2) 
= v(2)+to(2)(En-K12+ie)-h(2), { ' } 

where 
En=E/-i(W/2M)q\ (3.15) 

E/=(¥/2M)(lk/-H)\ (3.16) 

and KM is the kinetic-energy operator for the relative 
motion of particles (1) and (2). The reduced two-
nucleon mass is denoted by M. Also, we have omitted 
the subscript c in Eq. (3.14) for the sake of clarity. 
The corresponding equations for t{±)(2) are 

ti^(2) = v(2)+v(2)(E/-Kl2+ie)~Hi^(2)y (3.17a) 

tf^(2) = v(2)+tf^(2)(E/-K12+ie)-h(2), (3.17b) 

where 
E/= (ft2/2M)(fk/+jK-iq)2. (3.18) 

Once again, c has been suppressed in these relations. 
Equation (3.17a) [(3.17b)] is defined only when 
operating to the left (right) of states of energy E/ 
(£ / ) . The domain of definition of (3.14) is arbitrary. 

IV. AVERAGE TWO-BODY AMPLITUDES 

The quantities 0(q) and <Kq—K) appearing in (3.12) 
define the momentum distribution of the struck target 
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nucleon before and after the collision, respectively. 
Therefore, the average amplitude (3.12) represents the 
sum, over the initial and final momentum distributions 
of the target particle, of all kinematically possible two-
body collisions of the incident particle with a given 
target nucleon. However, the kinematics of these two-
body scatterings are such that E/ and£/ are, in general, 
unequal. Thus, in order to evaluate (3.12) exactly, one 
needs to know all the matrix elements of the two-
nucleon transition operators both off and on the two-
body energy shell.38 For N-N scattering these matrix 
elements are not known except for a limited range of 
energies and then only approximately. 

In addition to the uncertainties in the description of 
N-N scattering, the deuteron wave function 0(q) is 
not accurately known for large values of Iq].39 It is 
thus not necessary to insist on an extremely accurate 
evaluation of the average amplitudes. We, therefore, seek 
approximate methods for evaluating the integral (3.12) 
which make allowance for our lack of knowledge of the 
integrand and yet which do not involve a prohibitive 
amount of calculation. We now describe several methods 
which satisfy these criteria to varying degrees. 

If the matrix element of tCj (/c), could be taken outside 
the integral sign, the evaluation of (3.12) would be 
simplified considerably. That is, if we write (suppressing 
the spin indices) 

<<«>=<P/IMpi>/dq**(q-K)«(q), (4-1) 

where p; and p/ are appropriate wave vectors (to be 
considered presently), the integration over q can be 
carried out to yield 

<'M)=<P/UC |P<)FO(K), (4.2) 
where 

F o ( K ) ^ ^ r [ e x p ( - ^ . r ) ] | ^ ( r ) p ; (4.3) 

in our case the wave function ^(r) is real. All the (tc) in 
(3.12) represent scatterings with the same momentum 
transfer ^(k/—k/). Therefore, for consistency, we 
should require that 

| P / - P i | = | k / - k / | . (4.4) 

Equation (4.2) is approximate, except when tc is a 
local operator. However, the approximation is not 
defined unless the relations between k/, k / and pt, p/ 
are known. Equation (4.4) represents a necessary 
condition for these relations but does not, by itself, 
specify p», p/ in terms of k/, k/ . 

38 We refer to the energy-conserving and energy-nonconserving 
matrix elements of the two-body transition operator as being 
on-the-energy-shell (OES) and off-the-energy-shell (FES), respec
tively. The OES matrix elements of *(±) which occur in (3.12) can 
be identified with the two-body scattering amplitudes. This is 
not the case for the operator tQ unless one also has E/—Ei'=*Eit. 

89 L. Hultheii and M. Sugawara, in Handbuch der Physik, edited 
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 1. 

Suppose we simply set q=0 in (tc) in the integral 
(3.12). In this case one obtains the form (4.2) with 

Pi=fk/, (4.5a) 
and 

P / = ! V + § * . (4.5b) 

This approximation can only really be justified for small 
K= |K | . Since <£(q) is peaked at q=0, one may expect 
that for small K the major contribution to the integral 
(3.12) will arise from a fairly small neighborhood of 
q=0. It is implicitly assumed here that <£(q) has a 
much stronger dependence on q than does (tc); this 
seems to be the actual state of affairs when kf corre
sponds to energies consistent with the validity of the 
IA.12 

On the other hand, <£*(q—K)<£(q) has peaks of equal 
magnitude at q=0 and q=K. So for large K it is highly 
questionable whether the q dependence of the matrix 
element can be ignored. Also, it is evident that for 
nonzero K the choice (4.5a, b) for pt and p/ leads to an 
FES matrix element of tc in Eq. (4.2). Therefore, to be 
consistent, as well as to avoid FES matrix elements, it 
has become customary26 to define the magnitude of p/ by 

| p / l = i * ' ; (4.5c) 

its direction is taken to be in the scattering plane and is 
determined by Eq. (4.4) with pt given by (4.5a). We 
refer to the approximation (4.2), (4.4), (4.5a), and 
(4.5c) as the Chew approximation (CA).4*40 

We next discuss an alternative approach to the 
problem of relating pt, p/ and k/, k/ . Let us define an 
average value of q3 namely, (q), by 

FoM(q)=jdq **(q-fc)*(q)q. (4.6) 

It is then easy to show that 

<qW*. (4.7) 

Now, suppose that (tc) in (3.12) is expanded in a 
power series in q about the point q=(q). If we retain 
only the zeroth-order and linear terms in this expansion, 
it then follows from Eqs. (4.6) and (4.7) that the 
average amplitude (3.12) is given by Eq. (4.2) with 

P ; = t k / - i * , (4.8a) 
and 

P / = | k / + i K . (4.8b) 

The approximation of (3.12) as given by (4.2) and (4.8) 
has been discussed previously by several authors from a 
somewhat different point of view.3,18'19 Since it is 
evident that all that is involved here is the assumption 
of a linear dependence of (/c) on q, we refer to this 
approximation as the linear approximation (LA). 

The LA represents a simple and convenient extension 
of the CA to large momentum transfers. It is clear from 

40 G. F. Chew, Phys. Rev. 84, 1057 (1951). 
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Eqs. (4.8) that the LA is equivalent to evaluating 
(tc) in (3.12) at a point midway between the peaks of 
<j>(q) and <£(q—K), and then taking it outside the 
integral sign. For small momentum transfers ( K « 0 ) , it 
follows from Eqs. (4.8) that the Chew and linear 
approximations become identical. Also, we note from 
(4.8a, b) that 

IP/IHP<| . (4.8C) 

Thus, the average two-body amplitude calculated in 
the LA involves only OES matrix elements of tc. 

The CA and the LA have been used extensively to 
calculate N-d scattering in the single-scattering approx
imation over a wide range of energies.7 •11~14,26*41 In 
general, the results of these calculations indicate that 
for small momentum transfers, not only do the single-
scattering terms seem to account for the dominant 
features of N-d scattering, but also these terms appear 
to be well represented in either the CA or the LA. 

On the other hand, for large momentum transfers 
the agreement with experiment is comparatively poor, 
particularly for the polarization. This may be due either 
to the failure of the single-scattering approximation or 
to an inaccurate evaluation of the average amplitudes. 
I t is of interest, therefore, to examine how much of an 
improvement with experiment is obtained if one eval
uates the average amplitudes in a somewhat more 
accurate manaer than is the case in either the CA or LA. 

Consider the product function 

i>(q ,*)^*(q-K)<Kq) . (4.9) 

We have observed previously that jP(q,ic) has peaks 
of equal magnitude at q = 0 and q=K. Equation (3.10) 
suggests, and it can be verified by numerical calculation 
with typical deuteron wave functions, tha t : (1) For a 
given value of q, P(q,K) attains its maximum value for 
q in the direction of K, and (2) for q> K, P(q,K) decreases 
quite rapidly. These two effects are more pronounced 
the larger the value of K. 

On the basis of the preceding argument, let us assume 
that most of the contribution to the integral (3.12) arises 
from those vectors q which satisfy 

q=g(K/*). 

Then, with the aid of Eq. (4.10), we have 

(4.10) 

<<i0 » > - / dq<j>*(q-K)<t>(q) 

x<!V+Ki-(?/«)]|f.(2)|ik i '-iic(?/«)>. (4.H) 
The integration over the angular variables of q results 
in the function 

F(q , « > - / <ffl,#*(q-ic)0(q). (4.12) 

For typical deuteron wave functions, F(q,%t) can be 
evaluated in closed form. 

41 J. Sawicki and S. Watanabe, Nucl. Phys. 10, 151 (1959). 

In view of our discussion of P(q,K), we may expect 
that F(q,*) will decrease rapidly for q>K. If we assume 
that this decrease is much more rapid than any possible 
variation of the matrix element in (4.11), then the 
integration over q in (4.11) for q>n can be approx
imated by setting (tc) equal to its value at g=/c. When 
this is done, we obtain 

<faO 

where 

JO 

dq q*F(q,K) 

X(fk/+Kl-(2A)]l'c(2)|fk,'-jK(gA)) 

+<fVUc(2)|fk/-|K)F«(K), (4.13) 

> .«> . / ; dq q2F(q,K). (4.14) 

Since (4.13) involves energy-nonconserving matrix 
elements of tc, in contrast to the CA and the LA, we will 
call (4.13) the off-the-energy-shell approximation (FA) 
for the average two-body amplitude. We note that for 
small K the first term on the right-hand side can be 
neglected. Thus, in the limit of small momentum 
transfers, all three approximations become indis
tinguishable from one another. 

V. OFF-THE-ENERGY-SHELL APPROXIMATION 

In this section we discuss some of the details involved 
in the calculation of the average amplitude as given 
by (4.13). 

The two-body wave vectors associated with (tc) will 
be denoted by 

P*=fk/-§KZ, 

Bf=ik/+Ml-*) , 
where 

zssq/ic. (5.2) 

When 3 = | , Eqs. (5.1) reduce to the relations (4.8) 
which hold in the LA; no such corresponding reduction 
can be obtained for the CA (except in the case of small 

«). 
The scattering angle, 0, in the three-body c m . 

system is defined by 

k / - k / = ( £ ' ) 2 c o s 0 ; 

it will then prove convenient to write 

K=k'x, #=sin(j0) . 

(5.3) 

(5.4) 

Finally, the magnitudes of p» and p/ can be expressed in 
the form 

Pf=Wf(*, 1-z), 
(5.5) 

respectively, where 

/(*,«) = [ 1 + ( 4 / 9 ) A ( a + 3 ) ] w . (5.6) 
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It is clear that we will be interested in values of x, z 
such that 0 ^ (x,z) ̂  1. 

Let us next define the three scattering angles in the 
two-body cm. system, 6/i, 0/, and 0», by 

Vf'Vi^PfPitOsBfi, 

Vf'pL=PfpLCO$df, (5.7) 

pi'$L=pipL COS0i, 
where 

P L = I P ; - | K . (5.8) 

It can now be verified that in the domain 0 ^ (x,z) ̂  1, 
cos0/i is virtually independent of z for a given value of 
x, the maximum variation in 6/i being about 2.5°. 
Similarly, one can show that cos0i is close to unity in 
the same domain of x and z, which corresponds to an 
upper limit on 0* of about 8.0°. At this point we have 
sufficient kinematical information available so that we 
can proceed to simplify (/c) in (4.13). 

Let us study the partial-wave expansion42*43 of (/) 
(it is convenient in this detailed discussion to omit the 
subscript c on t). In the singlet case the antisymmetrized 
matrix element of / can be written as 

<P/^/M(0'J)!PW> 

2 /2H-1\ 1 / 2 

= - E A ( l M ) hipApdYKwi), (5.9) 
T l \ 47T / 

where 
A(Z ) >S ) /)=l-(-iy+ s+' ) (5.10) 

and 5(=0,1), J(=0,1) refer to the total ordinary- and 
total isotopic-spin quantum numbers, respectively. 
Fjm(p/,p;) denotes the normalized spherical harmonic 
which is a function of the angles of p/ with respect to a 
set of coordinate axes whose polar axis is in the direction 
of pi. 

We know that 0/» is, to a good approximation, 
independent of z. Therefore, we evaluate all of the Yp 
in (5.9) at z— \. With this choice 0/t- is just the two-body 
scattering angle which occurs in the LA. 

In the triplet case the i matrix element has the form 

(P/^/I^IP^) 

2 
= - E A(Z,l , /)F,«*(p.> P <)F,^^(p / jp.) 

l+l 
Xh.v E Cvl(J,rn;vhv%)iv,iJ(pf\pt), (5.11) 

J-\l-\\ 

42 The partial-wave expansions to be employed here are devel
oped, for example, in reference 43. It is supposed that / conserves 
total angular momentum, total ordinary spin, parity, is independ
ent of the orientation of the total angular momentum, and is 
charge independent. The spin index v takes on the values ± 1 , 0 , 
and 0', the index 0' referring to singlet states. 

« K, L. Kowalski and D. Feldman, J. Math, Phys. 2,499 (1961). 

where 
liti> = $iti'—$U'-JI,2, (5.12) 

Gvi(J,m\ Vfyvd^Ci'iiJifn+viim+Vi—Vf, vf) 
XCn(J, m+vn m,vi), (5.13) 

and Cj'j{J, m\ vf,vi) is the Clebsch-Gordan coefficient.44 

In Eq. (5.11) p8 refers to a vector along the axis of 
spin quantization (all angular momenta are to be 
quantized with respect to this direction). The vector 
ps must be independent of the coordinates of q when 
the expansion (5.11) is used in Eq. (4.13). 

The principal complication which appears in this 
case arises from the fact that the orientation of the 
wave vector p* with respect to the axis of spin quantiza
tion is not a constant. This results in the appearance in 
(5.11) of two independent sets of angular variables. 
We examine to what extent the expression (5.11) can 
be simplified for convenient use in the calculation of 
the average amplitudes. 

In all of our subsequent work we identify p8 with pL. 
Then (5.11) becomes 

2 
= - E A ( / , l , / ) F r * ( ^ ) F ^ + ^ / ( ^ ) 5 M , 

Tl,l',m 

l+l 

X E CmVyfniVftvdti'SlpApi), (5.14) 

where, since p*,p/, and pi, are coplanar, we have set the 
various azimuthal angles in (5.11) equal to zero. 

The expression (5.14) is still quite cumbersome due 
to the sum over m. If Si were equal to zero, we would 
have 

[F^(^)]^=o=[(2/+l)/47r]1/250)m, (5.15) 

and so the summation over m would be trivial. We have 
observed previously that Si is rather small in the relevant 
domains of x and z. However, some of the Legendre 
functions are rapidly varying for small angles and 
sometimes attain their maximum values at angles only 
a few degrees away from zero.45 Therefore, we expect 
that simply to set Si equal to zero in (5.14) would be a 
poor approximation. 

Now let | v) denote a two-body spin function defined 
with respect to an axis of quantization in the direction 
of pi. Then 

{vf\ t\ Vi)=Y. (vf\ v'){vf\ t\ v"){v"\vt). (5.16) 
vr

 tv
ff 

The quantities (v\ v) describe a rotation of a coordinate 
system with a polar axis defined by the direction of pt-
into a coordinate system with a polar axis defined by PL. 

44 J. Blatt and V. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952), Appendix A. 

45 E. Jahnke and F. Emde, Tables of Functions (Dover Publica
tions, Inc., New York, 1945). 
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From the well-known representation46 of the rotation 
operator for this case, it follows that for $i less than 
about 8.0°, 

(v\P)~*,.,. (5.17) 

Assuming (5.17) to be valid, we have then 

<P/,i7l<(1'7)|P**> 

= T~W E A(/,l,/)(2/+l)1/»r,/*-v(^)8 I t r 
i.i' 

X £ Cvi(Jfi'9vf9vi)h.iJ(pf\pi). (5.18) 

It should be emphasized that (5.18) is entirely distinct 
from what one would obtain by setting 0* equal to zero 
in (5.11), since 0/ and 0/* are, in general, quite different. 
As in the singlet case, we make the additional approx
imation of setting 0/4- in (5.18) equal to its value at z = \ . 

It will prove convenient in future discussions to write 

<p/,i>/|*| Vi,n)= (l/pi)M9ft,t(pf\ Pi). (5.19) 

The form of the M's is evident from Eqs. (5.9) and 
(5.18). 

We next examine some special complications which 
arise if one chooses to employ to as the transition 
operator, tc, in Eq. (4.13). The calculation of the 
matrix elements of to is known to be considerably more 
difficult than that of the operators ti+) or t^K17 There
fore, it is of considerable interest to investigate whether 
or not it is possible to approximate to in (4.13) by either 
/<+) o r /(-). i t is apparent from Sec. I l l that this question 
reduces to whether or not Eu is nearly equal to E/ 
or E/ in the range of q which is of interest in the FA. 

Let us define E& by 

E8=E/-El2. (5.20) 

In the range of q which is involved in the FA one can 
show, with the aid of Eqs. (5.5) and (5.6), that 

(E&/E/)=(8/9)Zzx/f(x,z)J, 

(E8/E/)=(S/9)lzx/f(x, \-z)]*, (5.21) 

(E//E/) = tf(x,z)/f(x,l-z)J. 

It is interesting to note that for z= \ we have 

(Et/E/)= (£a/£/) = 2^(9+7*2)-i; (5.22) 

this is small even for backward scattering (#=1) and so 
in the LA one can to a good approximation identify 
(tc) with the N-N scattering amplitudes, independently 
of which of the three two-body transition operators is 
used to represent tc.

Z8 

It can be shown by direct calculation that, in the 
domain of interest, (Eu/E/) is close to unity except 
when (#,*)« 1. On the other hand, {Eu/E/) differs 
quite appreciably from unity except for very small x 

46 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), Chap. 4. 

or when z«J . We, therefore, conclude that E{ is a better 
approximation to Eu than is E/9 and in the FA we may 
identify ti+) with t0. Most of the calculations to follow 
will be concerned primarily with the /c+) operator; 
however, we will see that the partial-wave amplitudes 
of /(_) are easily determined from the corresponding 
quantities for t{+). 

VI. PARTIAL-WAVE AMPLITUDES OF THE TWO-
NUCLEON TRANSITION OPERATORS 

We proceed with the calculation of the partial-wave 
amplitudes of the operator U(+) [cf. Eq. (3.17a)]. 
Once this is done, we can, in view of the work of the 
preceding section, complete the evaluation of the 
integrals (4.13). 

Now ti(+) is related to the reactance operator, Ri, by 

tS+^Ri-iwRibiEi'-KuW+K (6.1) 

Ri satisfies an integral equation identical to (3.17a) 
except for the replacement of (Ei'—Ku+ie)"1 by 
P(Ei—K12)~

l, where P denotes the Cauchy principal 
value. The use of Ri has the advantage that its partial-
wave amplitudes are real if those of the potential are 
also real. 

Most phenomenological N-N potentials contain a 
hard-core (h.c.) term.47 Then, instead of Ri, it is more 
convenient to consider the operator48 

Ri'=Ri-Ti, (6.2) 

where I\ is the reactance operator for the case of pure 
h.c. scattering.49 It can be shown that 

R/= V/+ Ui'P(Ei'-K12)-iR/, (6.3) 
where 

£7/=(l+««Ml+otf). (6.4) 

Here, v is the two-nucleon interaction exclusive of the 
h.c.; it is assumed that the coordinate representatives 
of v vanish for distances less than the h.c. radius. 

With the use of expansions of the form (5.9) and (5.11), 
one can obtain from Eq. (6.3) an integral equation 
for the partial-wave amplitudes, R'(pf\pi), of R/, viz., 

R'(Pf\pi)=U'(Pf\pi) 

r dpp2 

+cP U'(pf\p)R>(p\pi), (6.5) 
Jo pi2-p2 

where 
c=(4M/7r¥). (6.6) 

We use the symbol R'(pf\pi) in a generic sense. Thus, 
in the singlet and uncoupled triplet cases R'(pf\pi) is 
equal to R/(p/\pi) and Rj,/J(pf\pi), respectively. In 

47 T. Hamada, Progr. Theoret. Phys. (Kyoto) 24, 1033 (1960); 
25, 247 (1961), and references cited therein. 

48 The operator Ti, as well as the operator co,- which is introduced 
below, is defined in the Appendix. 

49 The following treatment of the scattering operators is 
elaborated upon more fully in references 17 and 43, 
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the coupled triplet case Rf(p/\pi) is a 2X2 matrix with 
diagonal (nondiagonal) components Rj±itj±iJ(pf\p%) 
ZRj±i,jTiJ(Pf\pi)l- A similar notation is used for the 
partial-wave amplitudes of 17/. 

The solution of Eq. (6.5) can be written as17-43 

R'(pAp<)=<p(P/\pi)R'(pi\p<), (6.7) 
where 

<p(pf\pi) = T(Pf\Pi)+[ dpA(pf\p)<p(p\pi), (6.8) 
J o 

r(Pf IP) = 1J'bt\P)lU'{j><\p)T\ (6-9) 
and 

A(pf\p) = ctf/(p^f)Xr(pf\p) 
-T(pf\Pi)liJ'(ti\p). (6.10) 

It follows from Eq. (6.2), with the aid of the expression 
(6.7) for R'(pf | pi), that 

R(Pf\pi)=<p(Pf\pi)R(pi\pi)+0(Pf\pi), (6.H) 
where 

0(Pf\pi) = T(Pf\pi)-<p(Pf\pi)f(fii\pi)- (6-12) 

In terms of partial-wave amplitudes, Eq. (6.1) becomes 

t(+)(pf\pi) = R(Pf\pi)-iZR(Pf\pi)ti+)(pi\pi), (6.13) 

where 
l^\KpiC (6.14) 

A relation for t(+)(pf\pi) similar to (6.11) can be 
obtained by combining Eqs. (6.11) and (6.13), viz., 

ti+Kpf\pi)==Hpf\pi)t(+)(pi\pi)+e(pf\pi), (6.15) 

where 
*(Pf\pi)=<p(Pf\pi)-M(Pf\pi). (6.16) 

Equation (6.15) permits a calculation of the FES 
partial-wave amplitudes of 2/+) in terms of the OES 
amplitudes. The latter quantities can, in turn, be 
expressed in terms of phase shifts in the standard 
manner.50 An expression for the partial-wave amplitudes 
of the operator //~) which has nearly the same form as 
Eq. (6.15) can be obtained by use of the identity 

t^{pi\pf)=lmij>f\pi). (6.17) 

In the present work both the FES and the OES 
partial-wave amplitudes of Ui+) were calculated for 
the Hamada potential.47 The OES amplitudes corre
sponding to two-body laboratory energies up to 300 
MeV were determined exactly using the phase shifts 
listed in reference 47. For energies between 300 and 
350 MeV, the OES amplitudes were obtained by 
extrapolating the quantity piti+)(pi\pi) which varies 
rather smoothly with energy. For energies greater 
than 350 MeV, p%t{+)(pi\pi) was set equal to its value 
at 350 MeV. 

60 See, for example, H. P. Stapp, T. J. Ypsilantis, and N, 
Metropolis, Phys. Rev. 105, 302 (1957). 

30 60 90 120 150 
0(deg) 

FIG. 1. Nucleon-deuteron polarizations at 40 MeV; 
6 is the cm. scattering angle. 

In order to calculate the FES amplitudes, one needs 
to know the function <p(p/\pi). (The h.c. amplitudes 
are regarded as known.) It is evident from (6.8) that 
the simplest approximation to <p is just 

<p(Pf\pi)~T(pf\Pi). (6.18) 

This approximation has been discussed elsewhere,17,43 

and it is expected to be valid when pi and p/ are not 
too different, which is the circumstance in the FA. We 
have confined ourselves only to the consideration of 
the representation (6.18) for <p. 

The partial-wave amplitudes of U/ are required in 
order to calculate r(pf\pi). These consist of a sum of 
integrals which have the form (in the triplet case, for 
example) 

Ui<,i'J(pf\pi)*=B(J)j drf*Fv(phPi/) 

X*x(r)F,(^<,r), (6.19) 
where 

Hpf,piS) = ji(pjr)-ji{Pfa)lni{p^)/ni(pia)2, (6.20) 

and a is the h.c. radius. The index X is used to distinguish 
the central, tensor, spin-orbit, or quadratic spin-orbit 
parts of the potential, v. The integrals (6.19) were 
evaluated numerically with the upper limit of integra
tion cut off at a distance of three pion Compton wave
lengths beyond the core radius. The error resulting 
from this cutoff is estimated to be no more than a few 
percent, at least for the values of pi and pf employed. 

Once the partial-wave amplitudes of ^ (+) are known, 
the integration (4.13) can be carried out in a relatively 
straightforward manner. It was found that MVftV. [cf., 
Eq. (5.19)] can be represented, at least to an accuracy 
consistent with all the other approximations which have 
been made, as a function of z (for 0 ^ z ^ 1) by two 
linear segments which join at z—\. The slopes of these 
segments were deduced from the values of MVftVi at 
a=0.1,i ,1.0. 

Finally, the deuteron wave function was taken to be 

x//(r)= (N/r){e-«r-e-tr), (6.21) 

where a=0.232 f"1 and 0=1.332 i~K The constant N 
is defined by the requirement that \j/(r) be normalized 
to unity. 
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VH. RESULTS AND DISCUSSION 

The average amplitudes (4.13) were computed in the 
FA in the manner discussed in the two preceding 
sections for incident nucleon (lab) energies (Ei) of 40, 
95, and 150 MeV and for cm. scattering angles (0) 
ranging from 30° to 150°. The operator tc was taken as 
Ui+) except at 150 MeV where the calculations were 
also carried out with $/i=§[*/<+)+**("~)]. The resultant 
matrix elements (3.7) were then employed to deduce the 
N-d cross sections [o"(0)] and polarizations [P(0)] in 
the single-scattering approximation.51 The results are 
presented in Figs. 1-6. For purposes of comparison, the 
curves for the CA and the LA, for which cases U{+) and 
2/(-) are identical, are also shown. The specific choice of 
energies and angles was motivated by the following 
considerations. 

For Ei <40 MeV one may expect that the IA will 
cease to be a good approximation and, in addition, 
multiple-scattering effects will become increasingly 
important.8 Therefore, a comparison of various methods 
for calculating the average two-body amplitudes which 
is based upon an identification of the single-scattering 
terms with the complete N-d transition matrix cannot 
be too meaningful for such low energies. 

On the other hand, even for £i«150 MeV, it turns 
out that for large /c, two-nucleon scatterings correspond
ing to (two-body laboratory) energies in excess of 300 
MeV contribute significantly to the average amplitudes. 
Thus, for Ei > 150 MeV, information is required about 
the N-N transition matrix which is not available at the 
present time in any consistent form. 

When 6 is less than about 30°, the CA, the LA, and 
the FA all tend to become virtually identical and so 
nothing new can be learned. When 6> 150°, the pickup 
scattering is dominant and so a comparison of the 
direct-scattering terms with experiment is of little value 
except, perhaps, as part of a study of the nature of the 
interference between the direct and pickup scattering. 

Now, in the CA or the LA, <r(0) is proportional to the 
square of the form factor, EO(K), and P(B) is entirely 
independent of the deuteron wave function. Therefore, 
in the FA it seems reasonable to expect that P(0) will 
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FIG. 2. Nucleon-deuteron polarizations at 95 MeV; 
$ is the cm. scattering angle. 

81 The spin sums which need to be performed in order to relate 
the matrix elements (3.7) to observable quantities have been 
carried out many times in the literature (cf., reference 41). 

FIG. 3. Nucleon-deuteron polarizations at 150 MeV; 6 is the 
cm. scattering angle. (The experimental points are taken from 
reference 7.) 

be relatively insensitive to any uncertainties in the 
deuteron wave function, in contrast to <r(0). So, in 
order to ascertain better the relative merits of the 
various methods for evaluating the average amplitudes, 
we will devote most of the subsequent discussion to 
the polarization calculations. 

In Figs. 1 and 2 some differences can be noted between 
the polarizations computed in the FA [with £(+)] and 
those in either the CA or the LA. Unfortunately, there 
exists no experimental information on P(6) at either 
40 or 95 MeV, and so the significance of these differences 
is not apparent. 

However, at 150 MeV, it is evident from Fig. 3 that 
a fairly large negative P($) is obtained at large angles in 
the FA. The improvement over either the CA or the LA 
is significant. The failure to obtain a better fit to the 
peaks in P(B) (except in the pickup region) may be, in 
part, due to the Hamada potential itself; it is, however, 
clear that the neglect of the multiple scattering must 
also, in part, be responsible for the discrepancy, 
expecially at the larger angles. 

In order to estimate the FES effects of (p/I/»(+)|p;) 
on the value of (4.13), we also calculated the average 
amplitudes, within the context of the FA, setting pf 
equal to pi. This we call the OES approximation. It is 
apparent from Fig. 3 that FES effects are needed to 
obtain an improved fit to P(6). 

At 150 MeV, the polarization computed in the (FA)' 
[i.e., in the FA with ifi] is virtually identical to that 
obtained in the LA. Since the latter differs from the 
result derived with ^ (+), there seems to be some doubt 
as to whether the /(+) and ^c~) operators can be regarded 
as equivalent, even in the IA [cf., Eq. (1.33) and refer
ence 9]. The cross sections (Fig. 6) also show important 
differences between the U{+) and £/* cases. On the basis 
of the present calculations, one may conjecture that 
Watson's form of the IA appears to be the most con
sistent in its application since the J(±) ambiguity does 
not arise; also, the best fit to the polarization is obtained 
with the U{+) operator which in the FA corresponds to tQ. 



290 K. L . K O W A L S K I A N D D . F E L D M A N 

0<deg) 

FIG. 4. Nucleon-deuteron scattering cross sections at 40 MeV; 
6 is the cm. scattering angle. [The experimental points are taken 
from J. H. Williams and M. K. Brussel, Phys. Rev. 110, 136 
(1958).] 

The cross sections for the several energies under 
consideration are presented in Figs. 4-6. A rather 
remarkable agreement is obtained with the large-angle 
data at 150 MeV using the various forms of the FA. 
However, this may be somewhat fortuitous. A compar
ison of the calculation of Postma and Wilson7 in the 
CA, using the experimental deuteron form factor, with 
a second computation,26 identical to the first except for 
the use of a form factor determined by a Hulthen wave 
function, leads us to suspect that with an improved 
deuteron wave function all the cross-section curves 
will be dropped down somewhat. Irrespective of the 
inadequacies of the deuteron wave function, Figs. 4-6 
indicate that it is necessary to account for the internal 
motion of the target nucleons as well as the FES 
behavior of (tc) in order to obtain a fit to the cross 
sections for large-angle scatterings. 

VHL CONCLUDING REMARKS 

We have seen in the preceding section that it is 
possible to obtain a fair agreement with experiment, in 
the single-scattering approximation, if the dominant 
effects of the internal target nucleon momenta are taken 
into account. Nevertheless, it is clear that there is 
considerable room for improving the detailed fit to the 
data. 

0(deg) 

FIG. 5. Nucleon-deuteron scattering cross sections at 95 MeV; 
0 is the cm. scattering angle. (The experimental points are 
taken from reference 19.) 

0(deg) 

FIG. 6. Nucleon-deuteron scattering cross sections at 150 MeV; 
0 is the cm. scattering angle. (The experimental points are taken 
from reference 7.) 
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Within the context of our calculation several 
possible improvements are obvious. For example, the 
FES behavior of (tc) can be determined more accurately; 
also, the D state of the deuteron can be taken into 
account. However, such refinements do not appear to 
be called for at the present time in the light of current 
uncertainties in our knowledge of the two-nucleon 
system, particularly the deuteron. 

In view of the difficulties associated with the evalua
tion of the single-scattering terms it would appear 
somewhat academic, at this stage, to consider the 
multiple scattering. However, there exists a considerable 
angular range (beyond about 75° at 150 MeV), exclusive 
of the pickup region, where the agreement with experi
ment obtained with the single-scattering terms still 
leaves something to be desired. It may very well be 
that a more accurate evaluation of the single-scattering 
terms is in order, but this does not seem too probable. 
It is more likely that any discrepancy is due to the onset 
of multiple scattering. In any case, some estimate of the 
magnitude of the multiple scattering would be of 
considerable interest. 

The computation of multiple-scattering corrections 
is, of course, an exceedingly tedious task. Moreover, 
Everett52 has suggested that the standard iteration 
techniques may be unreliable in the case of N-d scatter
ing. However, it will be noticed that, with the use of an 
equation such as (2.31) [as applied to Eqs. (2.16)], 
only the terms corresponding to double scattering need 
be calculated. Equation (2.31) then effectively includes 
all orders of multiple scattering, although only the 
double-scattering terms are represented exactly. 

52 A. Everett, Phys. Rev. 126, 831 (1962). 

Finally, we remark that for N-d scattering the 
assumption of ground-state scattering is probably 
sufficient. In fact, due to the circumstance that for the 
deuteron the binding force acting on a target nucleon is 
actually the binding force of the entire nucleus, it 
would seem inconsistent with the IA to have too great 
a contribution to the scattering resulting from excited 
deuteron intermediate states. 
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APPENDIX 

The hard-core operators t \ and w» are defined in 
terms of their coordinate representatives as 

d(r-a) /2H-l\0i(a|r ' ) 
<r|«.-|r^= £ ( ) — — P i ( r - r O , (Al) 

a2 i \ 4w / Qi(a\a) 
8(r-a)5(rf-a) /2H-l\Pj(r-r') 

<r|r,|rO= L( — ) — - , (A2) 
a4 i \ 4TT / Qi(a\a) 

where r is the relative position vector of two nucleons 
and a is the h.c. radius. The radial Green's function is 
given by 

gi(r\rf)=(2M/hi)piji{py)nl(p{r)9 r>r\ 
= {2M/¥)pijl{p%r)nl{p%rf), r<r', K } 

where j% and ni are the spherical Bessel and Neumann 
functions, respectively. Finally, Pi is the Legendre 
polynomial. 


