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Transition rates for the final states 2°-r-w-h» and A-fw+w are calculated in impulse approximation for 
2~d capture from rest, taking into account the J5o n-n attraction and the tensor term in the S"/> —> An transi­
tion amplitude. Using the X~p —» S°» and 2~p —> An amplitudes calculated for global symmetry by de Swart 
and Dullemond, the branching ratio 20/(S0+A) obtained is 0.24, compared with the observed ratio 0.037 
±0.022. The uncertainties in the comparison between the observed and calculated ratios are discussed in 
detail, especially those concerned with the validity of the impulse approximation, in view of the near-reso­
nant SiV interaction in the global symmetry model, and the question of the appropriate form of the spin 
average, in view of the strong electromagnetic spin-orbit forces in the X~d atom. It is concluded that the 
appropriate spin average is f[2?/(2°+A)]s-3/2+f[20/(2°+A)]s-i/2 within corrections of about 10%. 
Agreement with the experimental ratio appears unlikely with global symmetry, even when these uncer­
tainties are taken into account. 

I 
I. INTRODUCTION 

N experimental work on the processes 

S-+rf->S°+»+», (1.1a) 

2r+d-+A+n+n, (1.1b) 

the quantity convenient to measure is the branching 
ratio 

r=N(X0)/ZN&<>)+N(A)l, (1.2) 

where N(Y°) is the number of final F° hyperons. The 
experimental value of r for capture at rest, i.e., from 
bound states of a 2~d atom, is1 

r6(exp) = 0.037±0.022. (1.3) 

Day, Snow, and Sucher made a calculation of r& by 
means of the impulse approximation.2 They assumed 
capture from initial s-wave Bohr orbits, and that the 
relative SA parity is even and wrote the amplitude for 
the reaction S~+^ —> Y°+n as 

ooiY^+aiiY^avVY, (1.4) 

where a0(Y°) and ai(Y°) are constants and crjv (<ry) 
operates between initial and final nucleon (hyperon) 
spinors. 

From the amplitude (1.4) one can calculate also r (H), 
the ratio for S~ capture in hydrogen. For 2~ coming to 
rest in hydrogen, the experimental value is3 

r6(H;exp) = 0.33±0.05. (1.5) 
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The calculated rb and r&(H) were, therefore, expressed 
in terms of three adjustable parameters [two for each 
final hyperon, less one because r& and r&(H) are ratios]. 
Still, it proved impossible to reconcile the two measured 
numbers. 

Chen4 improved the calculation of reference 2 in two 
respects: He used a more accurate deuteron wave func­
tion, and (more important) he included the effects of the 
^o force between the two final neutrons. Since the 
energy release in the 2° case is so small (0.94 MeV), the 
two neutrons always emerge with low relative momen­
tum; the strongly attractive forces at these energies 
enhance N(E°) by a factor of about 5. He could then 
obtain a fit to the experimental r &(H) and r&. 

The present paper is motivated in part by a new 
consideration. Recently, there has been considerable 
interest in calculating hyperon-nucleon scattering from 
first principles, de Swart and Dullemond5,6 have related 
FA7 scattering to nucleon-nucleon scattering by means 
of global symmetry, and de Swart and Iddings7'8 have 
calculated the YN scattering amplitudes as a function 
of the TYN coupling constants. This work indicates 
that, in channels containing final A particles, tensor 
forces can contribute as much to the rate A7 (A) as do 
the terms (1.3). Already from one-pion exchange one 
obtains a strong tensor force. Accordingly, in Sec. 2 we 
calculate rb from a matrix element for 2~+/>—> Y°+n 
having the form 

<pYn'\M\pzp) 
= Xf[_AsYPs+AT

YPT
Y 

+ DY(pYn20N'OY-3pYn'0NPYn-0Y)/2W2Xi- (L6) 

Here AS
Y, ATY, and DY are, in general, functions of 
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energy. Ps and PT are singlet and triplet spin projection 
operators: 

Pa=\{\-«N-eY), (L7a) 

Pr=l(3+<rtf-«rr). (l-7b) 

The first two terms of (1.5) are readily seen to be the 
earlier matrix element (1.4) rewritten so as to be more 
easily comparable to references 5-8. Since the tensor 
term is proportional to pm'2, it need not be considered 
in computing 2V(2J°), where the momentum available to 
the final state is small. 

We wish to point out that in the earlier work the 
ratios r for capture from bound state were calculated 
from formulas which actually apply only to capture in 
flight [we denote the latter ratios by r/ and r/(H)]. In 
Sec. 2 this situation is corrected. As a result of this 
change the conclusion reached by Chen,4 that the data 
can be fitted only if values of a0(A), «i(A) differing con­
siderably from 0o(2°), 0i(2°) are employed, is found no 
longer to hold. In fact, these data could now be fitted if 
the parameters were similar in magnitude. 

In Sec. 3 the parameters of Eq. (1.6) are obtained 
from the calculations of de Swart and Dullemond,6 and 
rt is calculated and compared to experiment. 

Section 4 discusses a spin-orbit effect which might 
alter the theoretical expression for r& by introducing 
transitions between initial bound states of different 
total spin. 

For clarity of presentation, we discuss in the body of 
the paper only S~ capture in deuterium. Results for S~ 
capture in hydrogen have been collected together in an 
Appendix. 

II. CAPTURE RATE IN DEUTERIUM 

The impulse approximation considers reaction (1) to 
occur in two steps, 

2 - + J - > (2~+p)+n-> (Y°+n)+n. (2.1) 

The first step, the virtual breakup of the deuteron into 
its composite particles, is governed by the wave function 

(r\d)=N(e-ar-e-er)/r (2.2) 

in the Hulthen approximation; or in momentum space 

{p\ J)=4riV[(a2+/>2)-1- (F+f)-1!. (2.3) 

The second step, reaction of the 2~~ hyperon, is taken to 
be determined by the matrix element equation (1.6) for 
the two-body process 2~~-\-p —* Y°+n; such approxima­
tion is justified if that matrix element is not sensitive to 
the small extrapolation off-energy shell which is made 
and if no serious "multiple scattering" effects occur, 
i.e., the intermediate neutron is on the average well re­
moved from the point of interaction between p and S~.9 

In momentum space, which is more convenient than 
configuration space for integration of the tensor term, 

9 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952); G. F. 
Chew and M. L. Goldberger, ibid. 87, 778 (1952). 

the impulse approximation amplitude for reaction (1.1) 
is written10 

A±(k,q) = / —-~—{nnY^M\Mpf) 
J (2TT) 1 2 

X(p'\M\p){p\2-d), (2.4) 
with 

(p\X-d)= (2wytns(Q)5{z)fc)(pnn\d), (2.5) 

(p'\M\p)= (2Ty8^(p/-p8)(pnYf\M\p^). (2.6) 

ps is the momentum of the "spectator" neutron, non-
interacting in the second step of reaction (1.1) 

{p>\nnY»-M\-) 
= (27r) 6[5^(k-p n n05 ( 3 )(q-py0-(k^ - k ) , (2.7) 

= (2TT)3J (27r)3^3>(k-pnn0+(*-i5 sind) 

47rr 1 1 -j] 

klpnn*-(k-ie¥ £nn2+A2Ji 
X« ( 8 >(q-pr )+(k->-k) . (2.8) 

The bracket (k —» — k) signifies the term obtained from 
the preceding one by changing the sign of k. The wave 
function for the two final neutrons is either antisym-
metrized [Eq. (2.7)] if for triplet nn spin states or 
symmetrized [Eq. (2.8)] if for singlet nn spin states. 
The latter wave function is an ingoing wave solution to 
the lSo nn scattering problem. In configuration space, 
this wave function has the form 
(r\nn;k; +)=[eik-T+e-ik-T 

+2e~i8 sm8(e-ikr-e~*r)O^)"1], (2.9) 
where 

e~ih s inS=£[- l/a+rQky2+ik~]-\ (2.10) 

The term containing X in Eq. (2.9) takes into account 
the finite range of the nuclear force. When Eq. (2.9) is 
inserted into the effective range integral, one finds 

r0=3/\-4/a\2. (2.11) 

Here a and r0 are the Ŝo threshold scattering length and 
effective range deduced from ^o np and pp scattering: 
a=— 23.7 F, ro=2.65 F. From these we deduce the 
value X= 1.18 F"1.11 

In this paper we consider S~ hyperons initially in 
S-wave Bohr orbits, or else in S wave in the continuum 
at vanishingly small momentum relative to the deuteron 
center of mass. In both cases, it is suitable to approxi­
mate the functions AS

Y, ATY, and DY in Eq. (1.5) by 
their values at zero X~p relative momentum. Of course, 
as the momentum distribution equation (2.3) indicates, 

10 When the same momentum appears both initially and finally, 
a prime will be used to distinguish the final value; when both a 
measurable value and a variable of integration in a sum over 
intermediate states appear in the same expression, a p will be used 
for the latter. These distinctions will be dropped when there is no 
danger of confusion. 

ii l F - ^ 1 9 7 MeV/c=1013 cm"1. 
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the proton is not completely at rest. Usually the varia- For the moment there is no need to consider the As, A T 
tion in M over this range of momentum is small, so that terms in (1.5). Their contribution to Ti± has been 
M is assumed constant in the present section. Situations computed by Chen.4 Further, there are no interference 
in which an energy dependence of M could be important terms between them and the tensor term; these cancel 
are discussed in the conclusion to this paper. when the angular integrations in (2.12) are carried out. 

The capture rate is given in terms of AzL(k,q) by The notation Aij± is introduced for the second-rank 

/

tensor which results when, in Eqs. (1.5) and (2.4), the 
i ; / |x / ^ ± X t |

2 i (27r)-^k^q5(£ i -£ / ) . (2.12) AS
Y, AT

Y terms are ignored and a factor ( c r^ iMy is 
removed from the tensor term which remains. Then 

where 

f {(Ti+Tz+Tz), subscript+ 
/ dkdq AiS±*AkiJ= (^rYN2\rpns\2mHnn)(2mnnQ^\D\mijklX (2.13) 

J [(T1-T2), subscript-

Mim={^)~1 \ d^bi — ̂ pvp^^u-^pk'h)/^^-- [«»*&i+Mi*--iM*il (2.14) 
/ AH 

3 
— I 
4(T 

ma(bc) = ma{mh+mc){ma+mb+mc)-
1, (2.15) 

2mnnQK=mn[mp— mn+mz~ wA—-B], (2.16) 

7^=2 f ^ M [ ( ^ ) 4 + ( c 2 # ] C o + ( ^ ^ (2.17) 
Jo 

T2=2 [ ^ ^ { C ^ i ^ + M ^ C o ' + ^ i ^ g ^ C ^ - l O C o a X i } , (2.18) 

Jo 
Tz= 2 j k2qdk{H(lmH)2- (Re#)2] sin25+ (ImH) (Re#) cos5 sin5}, (2.19) 

Jo 

Ca=lD(aY- (kqYJ-1- ^-a")-i(kq)-1L(a)+ (a *->0), (2.20) 

1 D(a)+D(0) D(a) 
C l = £ ( a ) + (a<-»/3), (2.21) 

2(kq)*(p-c/) {kq)[_D{ay-{kqn 
1 (kq¥-3D(a)Dm PlD(a)/kq] 

C2= L ( a ) + _ _ _ —|-(«*«-• 0), (2.22) 
2 (kqYip-a2) D(aY-(kq¥ 
1 /32-a2 

C0'= i(a)+(o«-»j8), (2.23) 
2kqD(fl)tD(a)+D(0)2 

1 (p-ct)P£D(a)/kq] 
C,'= £(a)+(a<->|9), (2.24) 

2 *9Z)(a)[Z>(a)+Z>03)] 

Z)(a) = a 2 +#+ig' , (2.25) 

C l = W A / ( ^ A + ^ n ) ; C 2 = | ( W A + 2 w n ) / ( w A + W n ) . ( 2 . 2 7 ) 

-P2(#) is the ordinary Legendre polynomial. 

Re£t = ci2H 
0 

D(a)] rD{a) -] q 
P£D(a)/kq-]L(a) \+2c1c2\ Z(a ) -2 \+c<?-L{a)- (a <-»£), (2.28) 

^ i L Jfcg J & 
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Imff= { 2 ^ 2 - P 2 [ Z > ( a ) A g ] + 4 c ^ 2 - T — + - ; - I tan^f j + t a n " ^ J J - 4 t a n ~ ^ ~ J 

X 

q kq k 

3 / C i X \ 2 r / a 2 + i ? 2 - X 2 \ 2 1-| _ /a2+iq2-X2 
f3AiX\2r/«2+k2-x2\2 l i /a2+j^2-x2\ i ar {V+\*) -i 
J _ \ r tl J + _ J + 2 ^ 2 f J+cA \3aa —+4<*X J - ( * « - > £ ) . (2.29) 

The factor {2mnnQkf appears in Eq. (1.13) when 
quantities in the integrands of the 7\ , T2, T% are ex­
pressed in units of &max= {2mnnQk}112 [hence, the limits 
of integration 0 to 1 in Eqs. (2.17)-(2.19)] and origi­
nates in the angular momentum barrier against transi­
tions to final D-wave states. Using it we find that these 
final states contribute insignificantly to 2° production; 
i.e., the 2° tensor contribution is down by four orders of 
magnitude from the A and the nontensor 2° con­
tributions : 

(Qs/Q^2= (0.941/77.1)2= 1.49X10"4. (2.30) 

The integrals Ti were integrated on an IBM 1620 
digital computer; the results are presented in Table I. 

A remark is in order on the value of the deuteron 
parameter 0 which we use. I t is the one found in the 
older literature, 0=6 .2a=1 .44 F"1, a value which fits 
the 35i np effective range.12 At an earlier stage of the 
present calculation some work was done with a value 
0 = 1.20.13 Apparently this latter value was intended by 

TABLE I. Tensor force integrals Ti for final A states. Tensor 
force terms for final 2° states are too small to affect the 2° rate 
measurably. 

T1+T2 
Ti-Tt 

4.067 
3.79 
5.274 

its authors to furnish a better fit to the data on elastic 
e~d scattering. These data require a repulsion between 
nucleons at small distances,14 and small distances 
(r <0.2 F) are indeed suppressed by decreasing 0. Simul­
taneously, however, the asymptotic region r>\/0 F is 
unduly enhanced. The effective range calculated with 
this wave function is in error by + 1 6 % . A more 
sophisticated parameterization would leave the asymp­
totic region unchanged while enhancing only the inter­
mediate region, 0.2 ¥<r<l/0 F. Of course, behavior of 
(r\d) for r<0 .2 F is hardly important to the present 
problem; in fact, it is difficult to imagine a problem of 
any sort to which a two-parameter wave function would 
apply when it is inaccurate in the asymptotic region. 
The inclusion of this parameterization into the deuteron 
literature is to be lamented. 

The expressions for rf and r& can now be derived. We 

discuss this step more fully than is usual because in 
references 2 and 4, rf was used where r & applies. 

In reactions in flight (capture from bound states), 
each 2~ interacts with a very large number of deuterons 
(only one deuteron). In consequence, the initial state is 
a statistical distribution over spins (is a state of one 
definite total spin). Therefore, in flight, 

12 L. Hulthen and M. Sugawara, in Handbuch der Physik, edited 
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39. 

13 M. J. Moravcsik, Nucl. Phys. 1, 113 (1958). 
u J. I. Friedman, H. W. Kendall, and P. A. M. Gram, III, Phys. 

Rev. 120, 992 (1960). 

-dX&~)/dt= (£< TigdNQr), 

+dN(Y»)/dt=(ZiT*gi)N(lr), 

and for a bound state 

-dNi(2r)/dt=TiNi(lr), 
+dNi(Y°)/dt=TiNi(2-). 

(2.31) 

(2.32) 

These equations can be integrated readily to give 

f=E.-ViCs»)]/{EiCA7.-(s°)+^(A)]}, 

'/=(Ei*.W(L,-g<ro, (2.33) 
n = E ^ i V / r ; ) . (2.34) 

The gi appear in the equation for r& because of the 
boundary condition Ni(Z~)/N(L~)t^o=g^ 

I t is easy to see that Eqs. (2.33) and (2.34) can differ 
widely in their predictions for special cases. For example, 
if there are two spin states and r i s »r i ^>>r2^ r2 S , then 
Eq. (2.33) predicts that almost all final hyperons will be 
2°, while Eq. (2.34) predicts that at most the fraction gi 
will be 2°. 

We compute rf and rb when the initial states i are 5 
wave, total Ird spin S= 1/2 (subscript D for doublet) or 
5 = 3 / 2 (subscript Q for quartet). For this choice of 
initial states i, Eqs. (2.33) and (2.34) become 

rf=GrD*+irQ*)/(irD+trQ), (2.35) 

n=KiV/ri>)+t(iV/r0). (2.36) 

The tensor terms involve the spin sums 

a x r = E (25+1) - 1 Trace[>,-w<r/Pz(2-<*) 
ij'kl 

XPt(np)ck»v{rpY(nn)Mim-]. (2.37) 

TABLE II. Spin sums for the tensor terms. axY is defined by 
Eq. (2.37). The subscripts X and Y refer to the multiplicities 
(25-1-1) associated with the total spin of the 2~d system and the 
total spin of the final neutrons, respectively; Q, T, D, and S stand 
for the multiplicities quartet, triplet, doublet, and singlet. 

XY 
axY 

QT 
5/8 

QS 
3/8 

DT 
1/4 

DS 
0 
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The Pa(ab) are projection operators for those states of 
the system ab with total spin a. The aXY are given in 
Table II. 

Collecting together the tensor results and including 
nontensor contributions, we get 

TQ
Y=TQ^+TQ+

Y 

= (4/TT).V2 | * W S (0) |%F(nn)C(/l-/2) \A TY |2 

+ (2tnnnQY)2\DY\* 
XLUTi-TJ+UTi+Ti+Tzn (2.38) 

TD
Y=TD„Y+TD+

Y 

= (4/TT),V2 \*nS(0) \2mY(nn)lMh-h) \A TY+M sY |2 

+Mh+h+h)\ATY-AsY\2 

+ (2tnnnQY)2\DYn(T1-T2). (2.39) 

The integrals h can be obtained from the integrals 2 \ : 
set ci=0, ^2=1, and remove a factor g4 from the 
integrands of Eqs. (2.17)-(2.19). Their values are given 
in Table III. The numerical results of reference 4 differ 
a little from those of the table because of an algebraic 
error in computing the nn force terms. In Eq. (A.l) of 
reference 4, the nn force terms, i.e., all those involving r0 

and a, should be multiplied by an over-all factor 2; 
further, all arctangents involving the parameter X (fi in 
the notation of reference 4) should be multiplied by an 
additional factor 2. With these corrections, the expres­
sion (A.l), when expanded for small values of X and k, 
has the behavior which would be predicted for it upon 
examining a similar expansion of the original nn wave 
function. 

III. YN REACTION PARAMETERS 

In this section we compute r& and f/, using X~p 
scattering parameters calculated by de Swart and 
Dullemond5-6 under the hypothesis of global symmetry. 
To take into account a major effect of the symmetry-
violating interactions, de Swart and Dullemond obtain 
the YN scattering matrix from a Schrodinger equation 
in which the kinetic energy terms are written with the 
observed AS mass difference; while the potential energy 
terms are those linear combinations of the NN poten­
tials prescribed by global symmetry. Their calculations 
are carried out for three choices of NN potentials. The 
first two agree remarkably in their predictions. The 
third, an "antiglobal symmetry" potential seems to be 
excluded by data on low-energy zSi AN scattering.5 In 
the examples of this section we use the results obtained 
from one of the first two, an NN potential due to 
Hamada. 

TABLE III . Nontensor integrals /». 

A 2° 

Ii+h 474 0.100 
h-h 3.33 1.19X10-3 

Ii+It+I* 4.90 0.557 

These authors do not take into account in the wave 
equation the mass splittings between the 2 hyperons. 
They can, then, employ isotopic spin conservation to 
reduce considerably the number of independent parame­
ters in their problem; however, near threshold ("thresh­
old" in this section always refers to that for X~p —» Y°n) 
the reactive and kinematical effects of the mass differ­
ences are important. 

To correct for these effects, these authors use, in their 
expression for the scattering matrix T near threshold, 
the scattering length and effective range matrices calcu­
lated for the case of zero mass difference, but momenta 
and energies calculated from the kinematics appro­
priate to the actual case, namely, 

pxP=0, (3.1) 

PYn'=(2mYnQY)112. (3.2) 

They have applied this procedure to deduce S~ reactions 
in hydrogen.645 We apply the same procedure to the S~ 
reactions in deuterium, except that we change the 
energy release QY from 3.1 and 79.3 MeV to that ap­
propriate for deuterium, 0.94 and 77.1 MeV, to take 
into account the deuteron binding energy of 2.2 MeV. 

We neglect the effective range corrections to the 
scattering length. In reference 6 the T matrix is calcu­
lated both with and without inclusion of finite-range 
effects. The two calculations are referred to as Case I 
and Case II, respectively. If any element of the scat­
tering length matrix is large, that element is modified 
considerably by these effective range corrections, but 
the scattering matrix T is modified hardly at all, and r& 
and rf by at most a few percent. We do not quote the 
results for Case II in deuterium, but for a detailed ex­
ample, see the discussion by de Swart and Dullemond 
for S~ reactions in hydrogen.6 

The expression for the scattering matrix is 

T= -A (E)[l+ip»lA (E)J-K (3.3) 

The relation between T and M, Eq. (1.6), is 

(N'Y'\T\NY) 
= i(EAr£rE^,Ey01/2(£tot7r)-1(AT,r \M \NY) 

«^(w^ry^ivy')1/V-1(iV,F, \M \NY). (3.4) 

The last approximation holds in the nonrelativistic 
limit. 

A (E) is obtained from the effective-range expansion 
of the K matrix, 

p l+v*K~lp l+v2 = - A~l+mWRmW ( £ - E0) 
= ~lA(E)2-\ (3.5) 

In accordance with our approximation, we set A (E) = A 
in Eq. (3.3), with A obtained from the expansion of K~l 

16 Such an approach, together with the assumption of zero-range 
forces, has been used in RN scattering to obtain the effect of the 
R°K- mass difference: R. H. Dalitz and S. F. Tuan, Ann. Phys. 
(N. Y.) 8, 100 (1959). 
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for the case Qs=0 . The results of de Swart and 
Dullemond are given for channels of definite isospin, so 
that a unitary transformation to basis states of definite 
charge must first be applied to T, K, and A (E) before 
the momenta can be changed. 

In evaluating pzp and pYn as in Eqs. (3.1) and (3.2), 
we have picked only one set of values of the many which 
these momenta can assume in deuterium. The spectator 
neutron can carry off a varying amount of momentum. 
The general formulas for pxP and pYn'y therefore, depend 
on p/, 

p2P= —pi'mz/itnu+fnp) (3.6) 

initially; and for the final momentum either 

pYn'= l2mYn(QY-psf2/2mn(Yn))J12 

(final plane waves), (3.7) 
or 

pYn=qYf+ps'mY/(niY+tnn) 
(final nn spherical wave). (3.8) 

In Eq. (3.7) we have anticipated a constraint which 
will be imposed on the final momenta by conservation of 
energy when the amplitude is inserted into the 3-
particle phase-space integral. In Eqs. (3.8) and (3.9), 
we again invoke the convention of Sec. I that momenta 
written with a p (q) are virtual (observable). 

In the case of the final nn, spherical wave ps', hence 
pYn y can assume all values since it is related to pnn

f, the 
variable of integration which occurs in the Fourier 
transform of the spherical wave, Eq. (2.8): 

pnn=-hY'-ps'. (3.9) 

The choice pYn= (2ntYnQY)112 is obtained from the 
general formulas (3.6)-(3.8) by selecting final plane 
waves and setting £ / = 0 . This value was chosen because 
the deuteron momentum distribution favors small 
values of p/. 

Table IV gives the values of T calculated from Eqs. 
(3.1)-(3.3) and the A matrix given by de Swart and 
Dullemond.6 One can then convert from T to M using 

TABLE IV. T matrix at threshold and 2° branching ratios n and 
rf calculated from the A matrix of de Swart and Dullemond 
(reference 6). The initial states are either (ST; *Si) or (2~~; ^o) for 
final /—1 or 0, respectively. The last column gives a shorthand 
notation for the T-matrix element in column 1. 

Final state 

S°j35i 
S V ^ o 
A; ^ 
A ; 1 ^ 
A;*Z>i 

n 
rf 

(T) (F) 

-1.18H-0.197 
3.47*-1.47 
0.534*4-0.328 

~0.0722i-0.244 
0.363^+0.133 
0.24 
0.25 

Notation 

%T 
S S 

AT 

As 
ATD 

Eq. (3.4), and then insert M into formulas (2.38) and 
(2.39) to find rh and rf, also given in Table IV. 

No experimental information is available on rf. I t is 
seen that the calculated r h is larger by roughly a factor 4 
than the upper limit on the experimental value 0.037 
±0.022. 

IV. SPIN-STATE MIXING 

Because the spin-orbit electromagnetic interaction in 
the H>"d atom is not symmetric in the spins of S~ and d, 
the total spin 

|S|=|s++s_| 
= 1/2 or 3/2, (4.1) 

in the initial state is not a good quantum number; that 
is, the initial atomic eigenfunctions are mixtures of 
quartet ( 5 = 3 / 2 ) and doublet ( 5 = 1 / 2 ) spin eigen­
functions. (Though not those with 1=0, since there is no 
spin-orbit interaction for 1=0.) In this situation, one 
can conceive of two mechanisms whereby the expression 
(1.32) for rb would be distorted from its simple form. 
We take them in turn. 

A. Mixing During Collisions 

At the moment of nuclear capture, it is likely that the 
atom will be in a strongly polarized state.16-17 While the 
2~d atom is polarized, transitions l—^V^l are allowed. 
Therefore, via intermediate states ly^O a hyperon bound 
in a 4S state can change to a 2S state, or vice versa, e.g., 

4 5 3 / 2 - » 4P 3 / 2 -> 2Ps/2 - * 2 5 1 / 2 . (4.2) 

The spectroscopic notation is 2S+1Lj, i.e., 453/2 is total 
spin 5 = 3 / 2 , orbital angular momentum Z=0, total 
angular momentum J'=3/2. Therefore, the rate of 
change of the number of doublet spin states depends on 
the number of quartet states. Equation (2.32), and in 
consequence the expression (2.34) for r& derived from it, 
is not true exactly if i indexes total spin. 

The error suffered in using states of definite spin will 
be small if 

I (Da\V\Qa")(Qa"\V\Qaf) I 
E « 1 . (4.3) 

\«>> (EDJ»-EQa^)(EDJV-EQaW)i 

The a are the quantum numbers other than spin, and 
superscript (0) denotes quantities computed in the 
absence of V. 

ESaW = a>Sa-%iTSa. (4.4) 

Following Breit,18 one can write the spin dependence 
of the JTd electromagnetic interaction as 

16 T. B. Day, G. A. Snow and J. Sucher, Phys. Rev. Letters 3. 61 
(1959). 

17 M. Leon and H. A. Bethe, Phys. Rev. 127, 636 (1962). 
18 The Breit equation is discussed in Sec. 42 of H. A. Bethe and 

E. E. Salpeter, Quantum Mechanics of 1- and 2-Electron Atoms 
(Springer-Verlag, Berlin, 1957). 
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V=VS+VLS, 

Vs=g+g-
r 8TT 

:-M2\ s 

(4.5) 

s+-s_5(3)(r)+(s+-s_—3s+-rs_-r) 

1 1 
X-+i(s+'-g-')^i-L-(s++sJ), (4.6) 

1 1 
^ ^ - ( g + ' + g - ' W - L - (s+-s_). 

2 r3 
(4.7) 

In Eq. (4.3) terms of first order in (V) have vanished. 
Because of rotational symmetry about the z axis, taken 
along the line from neighbor nucleus to 2~d center of 
mass, lz is a conserved quantum number. Only states 
with lz—0 will be able to decay, and (/z=0| VAS|/*=0) 
= 0. 

Matrix elements of V s preserve total spin 5 ; so also 
do some elements of FAS, if S+

2T*SJ. In what follows, 
we shall ignore spin-preserving elements if they are 
diagonal in S and a; such elements can only help by 
further removing the degeneracy between quartet and 
doublet states. 

The g factors are defined in terms of the proton Bohr 
magneton JJ,*?, 

fiN=eh/2mpC, (4.8) 

y=g$fxN, (4.9) 

g±=dz2 for a Dirac particle, +5.4 for a proton, — 3.7 
for a neutron, +0.957 for deuterium. The g± include 
factors of inverse mass coming from the orbital motion 
as well as a factor mp because the unit of magnetic 
moment was chosen to be the proton magneton. 

g± = mp[l/m±+ 2/rnT~]g±. (4.10) 

Equations (4.6)-(4.10) would look more familiar if 
taken to various limits. Two of these are w+»w_ and 
gJmp-*gJmB (hydrogen); and w+=w_, £ + = - £ - , 
g±/mp~^ g±/m+ (particle-antiparticle, e.g., positronium). 

We estimate (V) and T in turn. The order of magni­
tude of (V) is determined mainly by the factor 

fJLN2(ln | r~z | In) = 
2nN

2 1 

(aXdn)H(l+l)(2l+l) 

9X1014 1 

n* 1(1+1) (21+1)' • sec~ 

(4.11) 

(4.12) 

Note that in baryonic atoms the distinction between 
fine and hyperfme structure disappears. The angular 
factors are of order /, e.g., 

(L, 5 = i , lzSz\ L (a+- SL.) \L, 5=f, / , ± 1 , S,=Fl> 
= ±i[(/=Fy(/±^+l)(f=F52)(fT5,)]1 /2 , (4.13a) 

\-L, o == 7j, lZj Ojj J Li' \&-+> S_J J .L , o = : ^, lZJ ioz) 

= !^C(I) 2 -^ 2 ] 1 / 2 . (4.13b) 

TABLE V. Estimate of the coupling factors occurring in the spin-
dependent part of the electromagnetic interaction in S"lf and S~/>. 
The S~ hyperon is taken to have the same magnetic moment as the 
neutron. 

2-rf 2-p 

g+g-
h(g+'-g-') 
i(g++g-f) 

-3.6 
4.4 

-2.4 

-20.5 
8.8 
5.0 

Finally, there are the coupling factors %(g+'zLgJ), 
g+g— The g factor for a S" hyperon is not known. If one 
chooses it equal to that of the neutron, one gets the 
values given in Table V. Thus, for /= 1 in deuterium, the 
typical spin-mixing matrix element is 

|(In| VAS\ln)\ «4X1014/V sec" (4.14) 

and falling off rapidly with /. 
For the estimate of T we can use the T-matrix 

parameters calculated by de Swart and Dullemond for 
2~p —»An scattering. These parameters are not unusual 
in order of magnitude and are consistent with the scanty 
data on the total cross section in hydrogen.19 We ignore 
the contribution from final states, as Eq. (1.3) indicates 
it is small. Using formulas (2.38), (2.39), and (3.4), and 
the results of Tables I and III, we get 

7 52X1017 

TQ=- [3.331 Ar[
 2+15.01 A rD | 2 ] sec"1, (4.15) 

7.52X1017 

TD = - [0.208JAr+3A(S|2 

+0.918|A r-A s |
2+3.27|Ari) |2] sec"1. (4.16) 

For the key to the notation, see Table IV. The results of 
de Swart and Dullemond give | A12,s all of order 0.1 F2, 
so that 

r 0 «ixiow 
T D « 3 X 1 0 1 7 M 

The estimates (4.14) and (4.17) must be transformed 
from the representation diagonal in / to a representation 
in which the a are diagonal. The eigenfunctions \aS) 
will be linear combinations of, in general, all I values 
l<n—l. In computing (aS\ V&s\<x'3') we neglect con­
tributions from D and higher waves. Then T and VAS, 
when evaluated in the (a,S) representation, will be 
proportional to the fraction of 5 and P waves, re­
spectively, in the eigenfunctions \aS). We assume that 
the fraction of S wave in each \aS) is of the same order 
of magnitude as the fraction of P wave. Then estimates 
(4.14) and (4.17) may be used directly in Eq. (4.3). 
That criterion is seen to be very well satisfied. 

If the 2~d atom is small compared to the distance to 
the neighbor nucleus, then the field at the atom is ap-

19 G. Alexander, J. Anderson, F. Crawford, W. Laskar, and L. 
Lloyd, Phys. Rev. Letters 7, 348 (1961). 
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proximately constant. The eigenfunctions in such a field 
(those of the linear Stark effect) are well known and 
may be used to check the assumption that the fraction 
of S and P waves are comparable. Every Stark eigen-
function with lz=0 has exactly the same fraction of S 
wave, 1/n; the fraction of P wave varies from 0 to 3/n, 
the average value being ~ 1/n. 

An approximate degeneracy 

EDJ» = EQa^+0((V)) (4.18) 

would reduce Eq. (4.3) to first order in (V). Even were 
this fortuity to occur, the correction due to spin mixing 
would still be small, of order 10u/101 7= 10~3. 

B. Mixing between Collisions 

In general, a 2~<2 atom passes through the polarizing 
field of a neighbor atom sufficiently quickly that some 
hyperons remain uncaptured after several mean collision 
times. Suppose there were more doublets than quartets 
remaining at that time because the quartet capture rate 
happened to be the faster. Between collisions the spin-
state mixing goes on (not prevented by any complex 
energy difference, since / > 0 ) and tends to restore the 
number of quartet and doublet states to the statistical 
distribution. The net result would be that the fraction 
of hyperons captured from quartet states would be 
greater than the factor of 2/3 = #Q, used in Eq. (2.34) 
for rb. 

The spin S amplitude will tend to increase at the ex­
pense of the spin S V S amplitude as sin(5' | V±s\S)L 
Therefore, expression (2.34) for rb is an excellent ap­
proximation if (Sr \V&s\S)T is small; r is the mean time 
spent outside a polarizing field, between initial polarizing 
collision and final capture. 

1. Simple Model 

The collision problem is too complex for r to be 
computed exactly, but the following simple model of the 
collision should give the order of magnitude. We con­
sider a 2~~~d atom which collides with a polarizing source 
of effective radius Ro. Recoil is neglected and the path of 
the 2~~d atom is taken as a straight line. The radius RQ is 
taken to be that at which the polarizing field first be-

TABLE VI. Factors for computing the amount of mixing of oppo­
site-spin amplitudes (S'\ V&s \S), during transits in field-free space. 
w3r = 3Xl017 sec*"1. The factors missing from r""1 and (S'\ VAS\S) 
decrease (S'\V*S\S)T by « (5 /n) . n" 1 and < S ' | 7 A S | S > are in 
units of 1010 sec"1. 

n 

5 
8 

13 
20 
30 
37 

Ro/a0 

1 
2 
3 
4 
5 
5.5 

vRo 

50 
14.7 
3.82 
0.964 
0.234 
0.114 

/(») 
1.0 
0.99 
0.88 
0.46 
0.14 
0.076 

rClf(n) 
OC T - l 

32 
130 
250 
240 
110 

74 

2/i2v2(asd») 3 

«{S'\VAs\S) 

630 
150 
40 
12 
3.4 
1.8 

comes strong enough to overcome the energy splitting 
«—£ir between |»,0> and all states |w, />0 ) . Inside Ro 
the eigenfunctions are assumed to be of Stark form. 
Bethe and Leon,17 who have solved the Stark field 
eigenvalue problem for various decay rates T and ex­
ternal fields F, show that the decay rate of a Stark 
eigenfunction has reached 0.9 of its strong-field limit 
T/n when the following criterion is satisfied: 

§e<zSdF0^2=0.66(ir), (4.19) 

F0= F(R0) = eR0~
21 e-^a«pHp^~% 

Jo 

= lI1+2(—)+2(—) V*so/.o. (4.20) 
jR0

2L \ a 0 / \<h/ J 

We use Eqs. (4.19) and (4.20) to determine Ro. 
If the I>~d atom moves along a chord of length d inside 

the polarizing region, the fraction of hyperons with 
/ 2 = 0 captured per pass is 

/ ( » ) = l - e x p M / 2 ) , (4-21) 

v=2T/nVthj (4.22) 

7th = thermal velocity = 8.5X10+4 cm/sec (?-d), (4.23) 

or averaged over all impact parameters, 

/ (#) = l - 2 [ l - e x p ( - ^ 0 ) ( l + ^ o ) ] ( ^ o ) - 2 . (4.24) 

For small TJR0 ( T ? ^ 0 < 0 . 2 ) , we use the approximation, 
good to better than 10%, 

/ ( » ) - > fifJRo as 7]R0->0. (4.25) 

Since lz=0 is only a fraction l / ( 2 / + l ) of the total 
number of states with angular momentum /, it should 
take of order 

(2l+l)/f(n) (4.26) 

collisions to depopulate the level (l,n). Now the (mean 
free t ime) - 1 between two successive collisions, n""1, is 
calculated from a familiar formula to be 

rrl=VthwRo2N, (4.27) 

where tf=4.3X10® cm"3. Then 

r " 1 = r 1 - 1 / ( W ) / ( 2 / + l ) 

= 3 .4Xl0 1 1 (^oAo) 2 /W/(2 /+ l ) sec-1. (4.28) 

We compare r~l and {S'\ VAS\S) in Table VI. 
I t is simpler to choose a value of Ro and then calculate 

n rather than vice versa. This treats n as a continuous 
variable; the n value given in Table VI has there been 
rounded off to the nearest integer. 

A number of considerations determined the range of n 
values to be emphasized in the table. To begin with, 
n>38 should not be important because this corresponds 
to a X~d radius > ao and we expect the 2~ hyperon to be 
captured initially into a Bohr orbit approximating the 
size of a deuterium atom. Small n values should not be 
important either. Bethe and Leon17 have shown that for 
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K~p essentially all mesons have been captured by n= 4, 
the captures occurring with roughly equal probability 
from every n value 4 < w < 2 3 (the latter corresponding 
to a K~p radius of ao). They show that for ir~p, on the 
other hand, the captures are bunched toward smaller n 
because V is smaller and Auger de-excitation faster. We 
expect the trend indicated by K~p to persist to 2~~<2, 
with perhaps n^S the lower limit. 

Since the hyperon awaiting capture changes its / 
value at each collision, the average over I should be used 
in computing (Sf \VAS\S)T : 

n - l / 2 / + l \ 1 

i - i \ » 2 - l / 2 H - l 

•V2[lQ+3/2)Ji* 2 
« - . (4.29) 

21+1 1(1+1) (21+1) n 

Therefore, 

((S'\V*S\S)T)„ 

- C r i / / W ] C 2 W
2 f e ^ ) - 3 ] C i f e +

, + g - , ) ( 2 » ] . (4.30) 

In Eq. (4.29) we have used 

(2LL±m\ L- ( s + - s_) 14iz,±i/2) 
= (2tf/3)Q(l+3/2)Ji*, j=l+l/2, 
= (2v2/3)C(Z+l)(Z-l/2)]>^, j=l-1/2. (4.31) 

Thus, to compute {S'\VAS\S) from Table VII, one 

should take the ratio of the last two columns, then 
multiply by the factor § (g+'+gJ) (2/n) ~ (S/n). Then it 
follows that spin-mixing need be taken into account only 
for those mesons which survive down to n<&. 

2. Effect of Rotating Coordinate System 

We designate the polarizing interaction by V' E : 

7 * = - e ( r + - r _ ) - F , (4.32) 

F=RF. (4.33) 

In order to use the symmetry of VE about the field 
direction, we chose R as axis of quantization. This is a 
moving axis, so that a spatial coordinate in the wave 
function becomes an explicit function of t ime: 6=d(t), 
where 6 is the polar angle between R and a fixed axis in 
the plane of collision. Then on taking the time deriva­
tive in the wave equation, one gets what is in effect a 
new interaction term in addition to VE, 

d 
Ve= -id—=d(Ly+Sy), (4.34) 

d$ 

where y is the axis normal to the plane of collision. The 
term 6Sy can change neither r nor | S | and in the ensuing 
discussion will be dropped from V$. Ve is not symmetric 
about the z axis, and in contrast to VE its matrix 
elements obey the selection rules A/3=:±:l, AZ=0. 
Further, Ve is Coulomb-like in its R dependence and 
will eventually predominate over VE for large R: 

6<Vth/R 

«2X10"(a</R)sec- 1 . 

TABLE VII. Factors for computing the amount of mixing of oppo­
site-spin amplitudes (S'\ VA S IS), during transits in field-free space. 
»3r = lXl0 1 8 sec-1. The factors missing from T"1 and (S'| VAS IS) 
decrease <S' |FAs|S)r by «(S/») . r{~1 and ( S ' I F A S I S ) are in 
units of 1010 sec"1. 

n 

5 
7 
8 

11 
17 
25 
38 

Ro/ao 

0.5 
1 

2 
3 
4 
5 

vRo 

1X102 

64 

18.8 
4.86 
1.23 
0.30 

/(») 
1.0 
1.0 
1.0 
1.0 
0.92 
0.54 
0.20 

rC'fin) 
oc r - 1 

8.0 
32 

(56)-
128 
267 
280 
162 

2/x«7(02d«)3 

<*<S' |FA,S |S> 

840 
310 
175 
72 
20 

5.6 
1.6 

a By linear interpolation. 

As R increases, it mixes more of the ( />0, h^O) 
states into the state ( />0, Z3=0), so that the latter is 
less able to couple to 5 wave. As a result, Ve decreases 
the interaction radius RQ in the model of subsection B.l 
to a smaller value RQ determined by the new criterion 
Ve=VE. 

To obtain R0
f, we need a measure of the ability of Ve 

to couple Stark eigenfunctions of different lz. On ex­
amining VE and Ve written in the /, l3 representation, 

-,1/2 

IL(2H-1)(2Z-1) J 

r W + i ) 2 

1)J 
k 2 ] [ w 2 - ( / + l ) 2 ] l 1 / 2 

(2Z+3)(2H-1) 
ai+ih\, (4.36) 

Vi^—iillQ+V-Uh-m'tyr-i 

- p ( / + l ) - / , ( / , + l ) ] 1 / 2 a , ^ 1 } . (4.37) 

We note that each term from VE and Ve comes out to be 
approximately ^ea^dFn2 and ^6n, respectively, if the 
quantities (n2 — P)1/2, etc., are summed over /, lz by a 
rough procedure, replacing I and lz by continuous vari­
ables and integrating. As criterion for determining i£</, 
therefore, we take 

where 
%ea2dFon2 = %dQfn, 

0Q— Vth/Ro, 

Fo' = F(R0'). 

(4.38) 

(4.39) 

(4.40) 

TABLE VIII. The interaction radius of a neighbor atom, con­
sidered as a polarizing source, changes from R0 to R0' if the region 
in which V$> VE is ignored. The last column gives the maximum 
increase in (S'\ VAS\S)T to be expected from this decrease in 
radius. »3r = 3Xl017 sec'1. 

Ro/ao idon/ieazdFon2 Ro/ao (Ro/Ro')* 
37 
30 
20 
13 

5.5 
5 
4 
3 

32 
16 
4.0 
0.98 

3.6 
3.5 
3.25 

3.6 
2.9 
1.9 

(4.35) 
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TABLE IX. The interaction radius of a neighbor atom, con­
sidered as a polarizing source, changes from Ro to i?</ if the region 
in which V$> VE is ignored. The last column gives the maximum 
increase in (S'\V&S\S)T to be expected from this decrease in 
radius. w3r = lXl0 1 8 sec""1. 

n 

38 
25 
17 

Ro/ao 

5 
4 
3 

idon/ieasdFon2 

12 
3.1 
0.78 

Ro'/ao 

3.6 
3.35 

(Ro/Ro')3 

2.6 
1.7 

Note that VB/V$ falls off rapidly with 2?, so that Ro and 
Ro should not differ by factors as great as orders of 
magnitude. 

VE/Vdoz e-w«oll+2(R/ao)+2(R/ao)2lR-\ (4.41) 

Ro' is given in Tables VIII and IX. In the final column 
of each table we compute (Ro/Ro)d, which is the re­
sultant increase in (S*\VAS\S)T [in r"1 there is a factor 
of JRO2 from the collision cross section, as well as addi­
tional RQ dependence, amounting to another factor of at 
most Roy from the factor of / («)] . For levels n< 13, the 
criterion Ve= VE is less restrictive than the previous 
criterion. For levels ri> 13 we see on referring back to 
Table VI that even with the additional factor (Ro/Ro'Y, 
(S\ VAS\S)T is still not of order unity. Therefore, our 
previous conclusion, that spin mixing will be important 
only for those which survive down to n<8} is unaltered. 
However, in the remainder of this section we will include 
the factor (Ro/Ro)z in our estimates of r. 

3. Hyperons Surviving to n—8 

We can neglect quartet-doublet transitions occurring 
for n> 8, especially since the hyperon spends even less 
than a capture lifetime in any of these states, due to the 
cascading. The time between arrival at n<8 and cap­
ture, however, will be sufficient for thorough mixing. 

One collision, after n<8, suffices to capture the 2~ 
since f(n)«1 for this range of n values. During this 
terminating collision, a fraction 5 of the initially doublet 
S~ will be captured from quartet states, 

S=KND(S)/ND(38)-NQ(S)/NQ(38)1 (4.42) 

rb will be given, not by Eq. (2.36), but by 

i(i+i*)rQz/TQ+W-i)rD*/rD. (4.43) 

In deuterium TQ^^TD^: initial quartet states are 
allowed by angular momentum conservation to reach 
only those final nn states which have triplet spin, there­
fore, P wave or higher; while initial doublet states can 
reach S-wave final nn states. Consequently, the first 
term in Eq. (4.43) is negligible, and it follows that 

Arb/rb~d. (4.44) 

The depletion N(8)/N(38) is computable if r~l and 
the rate of cascading are known. The two cascade 
mechanisms which predominate for large n are (a) 

inelastic collision with ejection of an electron, important 
for 5<w<28 (Auger effect); and (b) inelastic collision 
with dissociation of the neighbor molecule, important 
for28<rc<38. 

Bethe and Leon17 have calculated in Born approxima­
tion Auger rates TA for nrp and K~p. We shall scale 
their results for the case of the Ird system. Writing only 
the factors in TA which depend upon the characteristics 
of the atom being polarized, we have 

TA* £ u , \(nT\nd\nl)\^AEzd+3.7 ev]-1 '2. (4.45) 

The first factor comes from the coupling of the Z~d 
charge distribution, approximated by its dipole moment, 
to a virtual Coulomb photon. The radical comes from 
numerical integration over factors containing (electron 
momentum)2 ocAEsd'. a phase-space factor times a 
squared matrix element, from the coupling of the virtual 
photon to the deuterium electron. Since AExd> 15.2 eV 
(here we use the ionization energy of the deuterium 
molecule rather than 13.6 eV, that of the atom), we can 
neglect the 3.7 eV in computing the scaling factor. Then 

TA*d=l J ( ) TAK* 
\nKp/ \ Mzd/ 

for fixed An=n'—n, (4.46) 
where we use 

AE~e2 An/an*, (4.47) 

and we conjecture the dipole moment goes as 

(r)ozn2m, (4.48) 

since the nth Bohr radius is proportional to n2. The n 
dependence (4.47)-(4.48) fits well the tables of TA

Kp 

compiled by Bethe and Leon using exact (n'\r\n); e.g., 
for An=2, n<5<U, 0.37X1010 sec"1 <I\i<430X1010 

sec-1 the rule r^^^ oc n5-b is good to within a factor of 4; 
for An=l, 5<»<11 , 2.5X1011sec-1 < r y ^ < 2 9 0 X 1 0 n 

sec-1 it is good to within a factor of 2. To obtain TA
Xd, 

then, we first compute min {An)> the minimum n—n' 
which supplies 15.2 eV, for each n, for S~J. There will be 

TABLE X. Auger rates for levels in 2~d; extrapolated by means 
of formula (4.51) from Auger rates for levels in K~p with same 
min (An) = minimum change in n value which produces sufficient 
energy to ionize a neighbor electron. The rates are in units of 
1010 sec-1 and are evaluated at the mean of the corresponding n 
ranges; the r u ^ are the interpolated values when the mean n is 
half-integral. 

'p n range 

21 
20 

19-17 
16-15 
14-12 
11-10 

9 
8 
7 
6 

ird n range 

28-27 
26-24 
23-21 
20-19 
18-15 
14-13 

12 
11 
10 
9 

TAK» 

15 
41 
70 

125 
310 

2400 
960 
470 
210 
85 

rA*d 

8.5 
18 
27 
55 

150 
1200 
600 
350 
190 
102 
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a corresponding range of n values for K~p with the same 
min (An). Picking the mean n of each range, we multiply 
YAKP by the scaling factor from Eq. (4.46) to obtain an 
average TA

xd which we use over the range of n values 
in 3rd. The numbers involved in the calculation are 
collected together in Table X. 

For fixed mass mab and increasing n, TA
ab eventually 

begins to decrease because the concomitant increase in 
An implies the initial and final wave functions in 
(ri\r\n) differ more in radial extent and number of 
nodes. In fact, above n=2% we expect TM, the rate of 
de-excitation by molecular dissociation, to predominate 
over TA on the basis of the following estimate of the 
former rate: 

TM~hNVthTa<?(n/3S¥ (4.49) 

(the factor J appears because N is the density of 
deuterium atoms). 

From each n level the fraction of S~ captured will be 

A n = / a r r W r n - 1 [ r n - 1 + r i + r ¥ ] - 1 , (4.50) 

- 1 = ^ - 1 ftwv-tf. (4.51) : rrlf(n)/n, 

where faTT(n) is the fraction of hyperons which arrive at 
the nth. level. We estimate 

/arr(»)«l/min(An). 

The fraction of 2~ surviving to n<m is 

N(nQ)/N(3S)-- II (l-An). 
n>no 

(4.52) 

(4.53) 

Table XI presents the life history of a S~ from n=38 
to n=S. For each n range in Urd a value for r n

- 1 was 
obtained from Table VI or VII by means of linear 
interpolation where required. From Eqs. (4.42) and 

TABLE XL Capture schedule for S~ hyperons. (1—A) gives the 
probability N(no— 1)/N(n0) that a S~ in « = » 0 will survive to 
«<»o, calculated for the mean value in the n range of column 1, 
and p is the number of levels in this range. Rates are in units of 1010 

sec""1. Values of min (An) in parentheses are calculated from the 
energy of molecular dissociation. 

n 
range 

38 
32 

28-27 
26-24 
23-22 
21-19 
18-15 
14-13 

12 
11 
10 
9 

min(A») 

(6) 
(4) 
(3) 
5 
4 
3 
2 
1 

VM 

16 
11 
8.4 

M 3 r = 3X1017 

sec-1 

TA2P T^1 

0.5 
1.0 

8.5 2.1 
21 3.0 
29 4.5 
35 6.9 

150 10 
1200 18 
600 19 
350 18 
190 18 
102 17 

N(26)/N(3S) 
N(S)/N(26) 
N($)/N(3$) 

(1-A)* 

0.97 
0.92 
0.93 
0.91 
0.93 
0.89 
0.88 
0.98 
0.97 
0.95 
0.91 
0.86 
0.83 
0.47 
0.39 

»3r= 1X1018 

sec-1 

Trr1 

1.6 
3.7 
5.4 
6.5 
9.5 

11 
16 
14 
13 
12 
10 
8.0 

(1-A)* 

0.91 
0.83 
0.80 
0.87 
0.88 
0.84 
0.82 
0.98 
0.98 
0.97 
0.95 
0.93 
0.55 
0.43 
0.24 

(4.44), and the results of the table, it follows that 
Arb/rb~l0%. 

V. CONCLUSION 

In cases such as global symmetry, in which one or 
more of the two-body scattering lengths are large, one 
can list three assumptions of the present calculation 
which might be poorly satisfied, so that the calculated r & 
would not be accurate. We discuss at any length only 
uncertainties springing from the present calculation. 
The uncertainties in the calculation of reference 6 con­
cern mainly the treatment of the short-range forces, 
which there are approximated by a hard core in the 
potential. 

The corrections for the 2~2° mass difference were 
carried out as though the forces were zero range. The 
corrections to A~x, the inverse scattering length matrix, 
which most probably are of order \R(2mAM), would be 
appreciable for large A. In fact, the effective range cor­
rections of de Swart and Dullemond, which are of this 
order, change the sign of the Ŝo, 7=3/2 A -matrix ele­
ment: from Am= +22 F to Am~-20 F.6 That is, 
after the A matrix is transformed from basis states of 
definite isospin to basis states of definite charge and 
corrected for finite range effects, the A matrix appears 
as though it had been calculated directly from an A 
matrix in isospace with a large negative A 3/2. 

This change does not greatly affect either T or rb 

[when a single scattering length is large, it dominates 
both the numerator and denominator of Eq. (3.3) for T, 
and its precise magnitude and phase tend to cancel out 
in taking the ratio]; however, taken in conjunction with 
effects B and C to follow, the mass-splitting correction 
could lower r& appreciably. 

We note that Az/2 is required to be negative if it is 
large, since a large positive value would imply a S~w 
bound state which has not been observed. 

A large Az/2 is characteristic of global symmetry 
solutions, since this hypothesis relates lSo, I =3/2, 
2N-+2N scattering to lS0, 1=0, NN -> NN scat­
tering, which is quite strong at low energies. 

B. 

The two-body amplitude was approximated by its 
value at the most probable momentum. However, the 
spectator particle carries off a varying amount of the 
momentum from the site of the YN interaction. 

In the A channel the effects of this momentum varia­
tion should be small for small scattering lengths even 
though the kinematics allow a large spread in q/, 
0<£/<1.6 F_1. The qs' momentum distribution 

I (q I d) 12 X phase space 
<^+q/^-V(2mn(An)QA-q/^ (5.1) 
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is sharply peaked at g,'«a=fca=0.23 F~1db0.23 F"1 (the 
limits give the half-maxima). The corresponding values 
of p?p and qAn, from Eqs. (3.6) and (3.7), are 0.1 
± 0 . 1 and 1.40±0.2 F"-1, respectively. For compari­
son, in Sec. I I the T matrix was approximated by its 
value at psP=0, qAn'= 1.42 F _ 1 . 

In the 2° case the amplitude which leads to the domi­
nant term in the rate is that to the nn 1So state. For this 
final state the integration (2.4) over virtual spectator 
momenta ps

r9£qs
f is nonvanishing. One can estimate the 

average p/ by inspection of the several factors in the 
integrand (approximated by their leading terms), 

/ • (5.2) 

Very roughly, ps'
2{pnn

2—qnn2)~l~l for large enough 
pa C see Eq. (3.9)], so that eventually the integral goes 
as 

/•« T(p.') f T 
I dp9'+ivqnn I dttnn. (5.3) 

Jo c?+p§» J <*+p9* 

The second term comes from the pole at pnn=qnn. In 
this term, T becomes averaged over values of ps' lying 
in the physical range, 0 < ^ / < 0 . 1 8 F_ 1 . However, in the 
first term there are important contributions to the 
integrand from values of p8

f of order a. 
We estimate the effects of spectator recoil by adding 

an effective range term %Rz/2(pzn)2 to —A z/2~l. Choosing 
^3/2=3 F (the value given by reference 6), and p/^2a, 
so that from Eq. (3.8) pxn~a, we get §i?3/2^2n2~0.08. 
Since — ̂ 43/2~1~0.05 after the mass difference effects of 
part A above were taken into account, we find Az/2 
roughly halved in magnitude to ^U/2~ — 8 F. 

This value is still too large to bring one within the 
experimental upper limit on r&. If one were to repeat the 
calculation of r& with smaller Az/2 but with all other 
A -matrix elements kept as before, one would reach the 
experimental upper limit at Az/2~ — 1 F (or + 5 F in the 
positive direction) and the mean experimental value for 
any A 3/2 in the range 4̂ 3/2— —0.5 to + 1 F. The experi­
mental rb is quite consistent with A and 2° scattering 
parameters comparable in magnitude. 

C. 

Multiple scattering effects were not taken into ac­
count in computing the amplitude by impulse ap­
proximation. In order for multiple scattering to affect r& 
strongly, two conditions must be satisfied.20 

(i) exp(ip<2nR)(2?\T\lr)/R must be of order unity. 
R is a typical internuclear distance in the deuteron. We 
can neglect contributions exp(ipAnR)(A\T\X~)/R from 
rescattered A particles, even were (A|T|2~) large: On 
integration over R, contributions from different R 
largely cancel one another due to the rapid oscillation of 
exp(ipAnR). Contributions from rescattered 2~ do not 

20 L. H. Schick, Rev. Mod. Phys. 33, 608 (1961). 

TABLE XII. T-matrix elements (in F) for estimation of multiple 
scattering effects; from global symmetry results for the lSo channel. 
The S~S° mass difference is taken into account according to the 
method of Sec. II . 

<A«|r|s-^> 
<Aw|r|s°»> 
QPn\T\2-p) 
<s°»|r|2°»> 

-0.072i-0.24 
-0.042^+0.026 

3.47*-1.47 
5.34^-2.22 

affect rb since final A and 2° channels will be enhanced 
proportionate to their values in the impulse approxima­
tion limit, and the multiple scattering effect drops out in 
computing the ratio r &. Condition (i) is certainly met in 
the global symmetry case. 

(ii) The returning 2° must interfere constructively 
with production of one hyperon, and destructively with 
production of the other; or at least its effect must be 
appreciably different in the two channels. Otherwise the 
effect will again drop out on computing the ratios rb 

and 77. 
In the global symmetry case, the amplitude 

(YQn\T\^n) for production by the returning 2° inter­
feres constructively with the (Y°n\ T\X~p) amplitude in 
both final channels (Table XII ) , so that the effect C 
may not be too important in this particular case. 

An interesting conceivable source of extreme three-
body effects would be a 2NN T=l metastable bound 
state. A discussion using impulse approximation would 
not be relevant if such a hyperfragment existed, al­
though some remarks on observable consequences are 
appropriate. The most probable mode of formation for 
the conjectured hyperfragment would be by electric 
dipole transition from an 1=1 Bohr orbit. (We are as­
suming all internal angular momenta of the final state to 
be 1=0.) For a photon of energy a>, the rate goes as 
|(r)(2co3, where (r) is a typical nuclear dimension, 
probably at least a factor 10 down from the Bohr radius 
of the X~d system (37 F). Therefore, in order to compete 
even with radiative nP —» Is transitions, the binding 
energy should be such as to give rise to a photon of 
energy at least of order co^l02/3a>fl = 4.6co#, where a>R, 
the Rydberg energy, is 19 keV for 2~J. I t is likely that 
•zd will be weakly bound if it exists at all, however, 
especially in view of the fact that the lighter hyperfrag­
ment y,n has not been found. Therefore, it would be 
entirely reasonable to expect few transitions to this 
hyperfragment and consequently no great effect, arising 
from its subsequent decay via strong interactions, on the 
spectrum of final A particles. This conclusion might hold 
even in the case of a moderately large branching ratio, 
since the momentum spectrum of A's from the hyper­
fragment could be very similar to that of the A's directly 
from Bohr orbits, if the momentum distribution of the 
nucleons in the hyperfragment were still deuteron-like. 
(The end point of the spectrum would, of course, be 
somewhat lower.) Thus, if such a metastable state ex­
isted, it would probably not show up until such time as 

-0.072i-0.24
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TABLE XIII. Effect of TM -* GTM on depletion of 2~ hyperons during cascade. 

N(26)/N(3S) N(S)/N(3S) 
G w3r = 3Xl017sec~1 nzV = 1X1018 sec"1 «3r = 3Xl017sec~1 «3r = 1X1018 sec"1 Arb/rb 

~5 095 084 044 036 0.05 
1 0.83 0.55 0.39 0.24 0.10 

1/2 0.73 0.43 0.36 0.18 0.12 
1/4 0.59 0.24 0.28 0.10 0.12 

the 7 spectrum of this process became available for 
study. 

Effects A and B together have brought ^3/2 from 
+ 2 2 F to « — 8 F. Our estimates were crude, and it is 
entirely possible that more accurate ones would reduce 
A 3/ 2 still further. However, it seems unlikely that these 
effects would reduce A 3/2 as far as the values A 3 / 2> — 1 F 
which fit the experimental rb. 

I t is heartening to note that the observed ratio can be 
well fitted using small scattering lengths, for which 
effects A, By and C above are not expected to be 
important.21 

tb is affected not only by a possible large nuclear 
scattering length, but also by electromagnetic spin-
orbit couplings which cause transitions between initial 
states of different total spin. For captures from w>8, 
these couplings are so weak that formula (2.34) is an 
excellent approximation to rb. For captures from n<8 
uncertainty in estimating the effect of spin-state mixing 
stems from the uncertainty in estimating the depletion 
of 2~ during cascade down to n<8. We discuss three 
sources of uncertainty. 

1. The Estimate of am 

If the cross section for de-excitation via molecular 
dissociation were reduced by a factor G from the 
geometrical assumed in Sec. 4, 

aM->GTao2(n/3&)2 (5.4) 

Arb/rb should increase. Decreasing G increases the time 
spent in n>28, where quartet and doublet states differ 
greatly in their values of r_1. Consequently the spin 
distribution becomes shifted farther from statistical. 
Table X I I I shows, however, that the effect is small. 

Further, unlimited reduction in G does not lead to 
unlimited error in rb\ for G < 1/2 even the more slowly 
captured state will become seriously depleted while in 
n^28. 

2. The Estimate of Vth 

As the subscript indicates, we have simply taken the 
thermal value for the Z~d translational velocity. Bethe 

21 de Swart and Iddings, who calculate YN scattering from 
meson-theoretic potentials with hard cores, find such small scat­
tering lengths for a wide range of 22*- and A2x coupling constants 
and reasonable values of core radii x0. They obtain values of 
r6<0.6for - 0 . 0 5 < / 2 2 < + 0 . 1 and 0 . 2 5 < / A S < 0 . 3 5 , with 0.3<xc 
<0.4 (in units of pion Compton wavelength). These values include 
unitary symmetry (/ss = 0, /SA = 0.28) but not global symmetry 
( / s s - / A S = 0.29). 

and Leon, however, use a velocity about five times 
thermal, arguing that the immediate past history of the 
X~d atom is one of de-excitation via molecular dis­
sociation, from which the 2~~d atom should emerge with 
about 1 eV translational energy. Since I V oc VVM, while 
TA is independent of V for all n and TTT1 is roughly inde­
pendent of V for w>28 [because approximation (4.25) 
for f(n) holds for these n], taking V —> 5V has the same 
effect on depletion from n>28 as taking G=5 in Eq. 
(5.4). The depletion for G=5 is given in Table XI I I . If 
now we examine low n, 28>n>8, we find depletion will 
increase as V increases; r n

_ 1 oc Vf(n) goes over to linear 
dependence on V as f(n)~> 1. Therefore, in both n 
ranges, the increase in V should bring about a decrease 
in Arb/rb. If we approximate the change in depletion 
from 2 8 > w > 8 by the change in depletion from n=9, 
where V —> 5 V produces the greatest effect, we get 
iV(8)/iV(26)<0.33 for both T and, therefore, Arb/rb 

<0.02. We have not taken into account the effects of 
the increase in Ve with V. Increasing Ve slows but does 
not reverse the trend towards more depletion from low 
n, so that we still expect a decrease in Arb/rb. Further, 
we have not taken into account that, when V—>5F, 
spin mixing may be neglected for an additional level, 
11 = 8. Thus, our previous estimates for Arb/rb may have 
been too high, especially since it is difficult to imagine a 
mechanism which would lower V from F th. 

3. Estimate OJTA 

Bethe and Leon note for Kr~p that Auger rates near 
n=\\ exceed the geometric value NV-wai by as much 
as a factor of 10, and suggest that a treatment more 
accurate than Born approximation would reduce TA

Kp 

in this region. Likewise in 2~d near n— 14, TA
Zd exceeds 

geometrical even when V= 5 Kth (5NVthwao2~ 160X1010 

sec -1). If TA~d were reduced in this region, there would 
be greater depletion from the spin states which under­
went less depletion in 38^n^ 28, so that Arb/rb would 
decrease. 

In summary of our efforts to estimate Arb/rbl then, it 
is impossible to calculate exactly the effects of spin 
mixing on rb, but, however, we have estimated i t ; 
Arb/rb appears small enough that comparison between 
the experimental and theoretical numbers is still pos­
sible. 

If the X~d reaction were observed in a diffusion 
chamber, so that the density N were reduced con­
siderably, then complete equilibration of spin states 
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would occur between each collision. The branching 
ratio for capture from 38^ n^ 8 would lie between f/ 
and rb, while for capture from « < 8 the appropriate 
branching ratio would be r&. 
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APPENDIX CAPTURE IN HYDROGEN 

For convenience, we list some formulas and results for 
2~ capture by the free proton. 

Ts
Y=w-^nM\2^YnL2mYnQY(B.)J^\As

Y\^ 

TT
Y^W-l\^n8(0)\2^Yn£2mYnQY(li)J/2\ATY\2 

+L2mYnQY{B)J\DY\\ 

rr«(1.19X1018/w3)|Ar |
2+4.33|Ari>|2sec-1. 

Contributions from |2s,:r|2 terms are down by a factor 

(Al) 

(A2) 

of K Z ( H ) / 0 A ( H ) ] 1 ' 2 = [ 3 . 1 / 7 9 . 3 ] 1 / 2 » 1 / S . Taking |A|2 

= 0.1 F2, we get 

r s « ix i (FM 
rr«5xio17M 

In Table XIV are given the results of a calculation of 

TABLE XIV. Depletion from 2~p. 

»3r 1X1017 5X1017 

N(23)/N(33) 
N(6)/N(23) 
N(6)/N(33) 

0.81 
0.39 
0.32 

0.48 
0.37 
0.18 

depletion from X~p, for V= Vth and G= 1. Using 

5(H) = f [ iV s (6) /^ (33) -^(6) /^ (33) ] , (A4) 

I V I V -
Ar,(H)/r,(H) = i5(H) -J-+— \ 

[ 
i r s

s 31V 
- + ,, 

4 Ts 4 TT J 

we get 

|Ar4(H)/r6(H)|<|8(H)|, 

|Ar 4 (H)/r 6 (H) |<l l%. 

(A5) 

(A6) 


