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Conditions on complex partial-wave amplitudes necessary and sufficient for the validity of the Mandelstam 
representation have been derived for both nonrelativistic potential scattering and relativistic two-particle 
scattering. These conditions have been used to obtain iterative solutions to the nonrelativistic scattering 
problem with a given potential (restricted to superposition of Yukawa potentials), and to the relativistic 
problem in the elastic unitarity approximation with a given discontinuity across the left-hand cut. In the 
first case, the method used reduces to the well-known determinantal method for physical partial waves, 
and in the second case, it is a natural generalization of the N/D method to complex values of I. The Regge 
poles, given by the zeros of the denominator, can be studied in a perturbative expansion in terms of the 
strength of the potential. Several applications are pointed out. 

I. INTRODUCTION 

IN this paper, we develop a method for the determina
tion of both the nonrelativistic and relativistic 

partial-wave amplitudes. For the nonrelativistic case, 
this method has some similarity to the well-known 
determinantal method,1 and for the relativistic case, it 
can be considered as the natural generalization of the 
N/D method.2 The approach we are going to use relies 
heavily on the concept of complex angular momentum, 
which, since its original introduction,3 has proved to be 
a powerful tool in the study of the two-particle scat
tering matrix. The connection between the poles in the 
complex angular momentum plane and the high-energy 
behavior of the scattering amplitude has been made 
clear in several papers.4,5 It is also possible, however, to 
use the notion of complex angular momentum as a 
practical tool in determining the scattering amplitude 
from the usual requirements in both the nonrelativistic 
and relativistic cases. The requirements we have in mind 
are the Mandelstam representation and the two-particle 
unitarity relation. In the case of a potential scattering 
problem with a superposition of Yukawa potentials, 
these conditions are known to be completely equivalent 
to the usual Schrodinger equation.6 As for the relativ
istic problem, at our present stage of knowledge it seems 
necessary to assume that the two-particle unitarity 
condition is exact for all energies and also that the 
discontinuity across the left-hand cut is a known quan
tity in order to make the problem tractable. It may 
still be possible to determine this discontinuity from the 
crossing relations in a self-consistent fashion7; however, 
we do not concern ourselves about this point in the 
present paper. Following the approach of an earlier 
paper,8 we will obtain conditions on the complex partial 
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waves that are completely equivalent to the Mandelstam 
representation and the unitarity equation for the origi
nal amplitude, for both the relativistic and the non
relativistic cases. We will then be able to obtain an 
iterative solution for the partial waves using the N/D 
method, assuming that the potential in the nonrelativ
istic case or the discontinuity across the left-hand cut in 
the relativistic case is given. The poles in the complex 
angular momentum plane correspond to the zeros of the 
denominator, and they can be studied by means of a 
perturbative treatment such as used by Lee and Sawyer 
in their discussion of the Bethe-Salpeter equation.9 

H. PROPERTIES OF PARTIAL WAVE AMPLITUDES 

In this section, we derive certain conditions for com
plex partial waves which will ensure the existence of a 
double-dispersion relation for the total amplitude. In 
the case of potential scattering, these conditions were 
first obtained by Bottino et al. starting from the 
Schrodinger equation.10 In our case, we take the 
Mandelstam representation as our starting point to 
simplify matters. We assume that we are dealing with 
the scattering of a spinless particle from a potential 
given by 

rV(r) 
< 

dk<t>(k)erp(--kr)} where a>0, 

and we denote the scattering amplitude by fP(sp,tp), 
where sp is the square of the energy and tp is the square 
of the momentum transfer, and the cosine of the scat
tering angle is given by zp=l—tp/(2sp). Throughout 
this paper, the indices p and r will refer to corresponding 
quantities in potential scattering and relativistic scat
tering, respectively. Accordingly, / r , sr, and tr will 
denote the scattering amplitude, center-of-mass energy, 
and momentum transfer squared, respectively, in the 
relativistic case, with zr=l+2tr/ (sr—4m2), and for the 
sake of simplicity, we only consider scattering of iden
tical pseudoscalar particles of mass w. The double-

8 B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962). 
10 A. Bottino, A. M. Longoni, and T. Regge, Nuovo Cimento 23, 

954 (1962). 
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dispersion relation for fP(spytp) reads: 

ds' rdt' Pp(s'/) r &<w) rds rat
 PA* ,n 

fv(sp,Q = - dt' + (tp)"* — / • 
J a t'2+tp 0 7T J a* T t'"p(t'+tp)(s'-Sp) 

(1) 

Here Np is chosen sufficiently large to make the integral convergent, and also poles associated with possible 
bound states and the subtraction polynomial in tp are suppressed to simplify writing. The relativistic amplitude 
fr satisfies the following analogous relation: 

Pr(s>/) 100 ds'duf *r(s',U') r™ r™ ds' dt' Pr{s,t') r°° r00 ds'du' Pr{s,W) 

J*m*J*m* * * s'Nn'Nr(s'-Sr)(t'-tr) J Am>J Im* T 7T * ' * ' / ' * ' ( * ' - Sr) ( * ' " U. 

r(t',Uf) r™ r dv du' pAt'W) 
+ tr

NrUr
Nr / • , (10 

i t o J w TT T t'N*u'N*(t'--tT){u'--UTi 

where ur—4m2—sr— U and the subtraction polynomials 
in sr, tr, and ur are suppressed as in (1). 

In both cases, the partial-wave amplitudes are given 
by 

1 r1 

ai(p'r)(sp,r) = - / dzPtrPl(zp,r)fpASp,T,tp,r), (2) 

and they can be continued to complex values of I by 
means of the following defining equations 

1 r* dt ( t \ 
*p(sP,t) = — —Qil H )Ap(sp,t), (3) 

2SPJ a2 T \ 2sp/ 

)Ar(Sr,t), (3') 
/ 

ar(sril) = -
rx dt / 

' J 4m2 

It 

i r Ap(sp,t
f) 

fp(sP,tP)=-tP
N*> dt'—- -, (4) 
T J a2 t'N*(t'+tp) 

sr—^m2 J im* if \ sr—km2 

where A r and A p are defined to satisfy 

AP\sPyt) 

>(?'+tp) 
and 

1 /*«> Ar(Sr,t') 
fr(Sr}tr) = ~trNr / dt' 

T J^ *'*'(*'-*r) 

+-ur
Nr / du' . (40 

K Jim2 u'Nr(u' — Ur) 

In Eqs. (3) and (30, the real part of / should be taken 
sufficiently large to make the integrals in question 
convergent. Equation (3) can easily be shown to be 
equivalent to Regge's original definition of partial 
waves in complex / plane.8 

We finally write down the Watson-Sommerfeld inte
gral3 which expresses the scattering amplitude in terms 
of partial waves in a compact form: 

/ . (W*)=*E' (2H-1)<**(P> W i M O 
1=0 

1 r* 

2iJN, 
dl-7——ap(sPjl)Pi(-zp)J 

sin(irf) 
(5) 

fr(Sr,tr) =
 Nt\2l+l)ai^(Sr)Pl(Zr) 
J-0 

1 rN^ 

4iJNr-

tfrffoo 21+1 
dl ar(sr,l) 

X [ P l ( * r ) + P l ( - * r ) J (SO 

The integrals that appear in (5) and (50 converge for 
all complex values of t if the energy is restricted to its 
physical values (sp>0, sr>4m2)y and they, in general, 
diverge for complex values of s. 

With these preliminaries out of the way, we ask the 
following question: What are the conditions that must 
be imposed on ^4p,r(sp,r,Z) in order that the scattering 
amplitudes given by (5) and (50 exist and satisfy the 
dispersion relations given by (1) and (10, respectively? 
Here we definitely ignore the symmetry of p r in (10 
under the interchange of s' and ( and consider only the 
analyticity and behavior at infinity implied by (10. 
(The symmetry mentioned above, which leads to the 
well-known crossing relations, seems to be very difficult 
to exploit in an approach which deals with partial waves 
in a given channel.) With this point in mind, we can 
now write down the following three conditions on APtf 

which are equivalent to (5) and (50, respectively: 
(a) The function sp(~

l)Ap(sp,l) is analytic in the sp 

plane except for cuts on the real axis extending from 0 
to + co and from — a2/4 to — <x>, and in the I plane to the 
right of a certain line Re(/) = iVr. 

(a0 The function (sr—4m2)~lAr(sryl) is analytic in 
the sr plane except for cuts on the real axis extending 
from 4m2 to + oo and from 0 to — <x>, and in the / plane 
to the right of a certain line Re l=Nr. 

(b) As | / | —> oo in its domain of analyticity, 

\ap(sp,l)\ <- Q \ 2s J 
when Im(sp) and Im(/) have the same sign, and 

\ap(sp,l)\ <-
C2 
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when Im(sp) and Im(7) have opposite signs. (In the 
above inequality, the increasing exponential has to be 
chosen.) In these inequalities, sp is kept fixed and / is 
let to vary. The constants C\ and C% may depend on sp. 

(W) As \l\ —» oo in its domain of analyticity, 

\ar(sr>l)\<-
Cx I / Sm2 \\ 

N1+—n)h \sr-4fn2\ 

when Im(^r) and Im(/) have the same sign, and, 

C2 
\ar(sr,l)\<-

5 r— 4m2 | 
A±iTl\ 

when Im(5r) and Im(7) have opposite signs. Remarks 
similar to those in (b) also apply here. 

(c) For sp < — a2/4, we have 

erirlap(sp+ie, l) — eirlap(sp—ie, l) = E(spJ), 

where E(s,l) is an entire function of I and satisfies: 

E(s,l) = E(s,-l-l). 

(cO For j r < 0 , 

(rirlar(sr+ie, l)-e^lar{sT-ie, l) = I(sr,l)+F(srjl), 

where 

H(sr,I) = tea(irt)ZI(sr,l)--I(sr, -1-1)1 

is an entire function of I for fixed sr, and F(srJ) goes to 
zero as |/| —> oo uniformly along any direction in its 
domain of analyticity. Also, for — 4m2<s r<0, F(srjl) 
vanishes and I(sr,l) becomes an entire function of /, 
satisfying I(sr,l) = I(sr, —/—1). 

At this point, it must be noted that the bounds (b) 
and (b') are certainly not the best possible results. They 
are, however, sufficient for our purposes. 

We now briefly sketch the derivation of these results 
from (1) and (1'), and we refer the reader to reference 10 
for a treatment of the nonrelativistic case starting from 
Schrodinger's equation. Since (a) and (a') by now are 
well known,10'8,11,12 we restrict ourselves to the second 
and third conditions. We first assume that sp is not on 
the negative real axis and use the fact that the weight 
function in (3) must be bounded by an expression of the 
form tNp uniformly in sp, and obtain, 

\ap(sPit)\ <-
1 r00 dt\ / 

n -\Q{ 
\SP\ J a* T\ \ 

X\Ap(sp,t)t-"r-*\<-

1 \ I 
H \tNM 

2sp/ I 
D I / to \ 

<\Sp\\ \ 2Sp/ 
toN^2 (6) 

11 A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962). 
12 E. J. Squires (to be published). 

where to is such that the function Qi achieves its maxi
mum value at this point, and D is given by the integral 
over A p. Now we use the following asymptotic esti
mates, 

\C(z) i 
1 -[z+(22-l)1 /2]* I0i(*)l< Jl/2 

as |/j —> oo 

\Qi(z)\<\K(f)*-»\ 

if z^dbl. 

for \z\ -

(7) 

Here the value of the square root is uniquely de
termined from the condition that arg[Yf (is2—1)1/2] 
is never greater than T in absolute value and its sign 
is the opposite of that of Im(s). It is then easily seen 
that when Im(sp) and ImZ have the same sign, 
\Qi(l+to/(2sp))to

Np+2\ decreases exponentially as 
j /1 —> oo, and the smallest rate of decrease comes from 
the smallest possible value of t0, t0=a2. This gives us the 
first bound in (b). On the other hand, when Im(^p) and 
Im(Z) have opposite signs, Qi(l+t0/(2sp)) blows up 
exponentially for |/| —> oo, but it is still bounded by 
| exp(±i7rZ) | for all values of to. This gives us the second 
bound. If Sp is real and negative, the expression 
l+t/(2sp) assumes the value —1 for some /, and since 
Qi(z) has a logarithmic singularity at 2= — 1, the above 
argument fails. One can, however, explicitly separate 
this logarithmic singularity and still obtain the same 
results even for the case of negative sp. The justification 
of (b') is completely similar to that of (b) and we do not 
repeat it here. A possible objection to the reasoning used 
above is the fact that A(s,f) is not a function but a 
distribution. We believe, however, that a more careful 
treatment would yield the same final results.13 

The conditions (c) and (c;) are easy to derive. The 
properties of the function Qi that are needed are the 
relations 

Qi(z±ie) = -eTiTlQi(-z:¥i€). 

eivlQi(z+ie)-e-ivlQi(z-ie) 
= -iTPi(-z). ( - 1 < 2 < 1 ) . 

(8) 

Now a direct calculation using (3) and the fact that 
Ap(sPjt) has no left-hand cut in the sp plane immediately 
gives: 

e-irlap(sp+i€y l)-eiirlap(sp-i€, I) 

i r~A8p ( t \ 

=— * p , - i - r k M . 
2SpJa} \ 2SV) 

(sp<-a2/4:). (9) 
From the well-known properties of the function 

Pi (Pi(z) — P^u-i(z)), and from the fact that the range 
of integration is finite, (c) easily follows. In the relativ-

13 M. Froissart, Phys. Rev. 123, 1053 (1961). 
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istic case, we obtain a similar relation 

e~irlar(sr+ie} l)—ei7rlar(sr-ie, I) 

4 rim*-sr r / 2/ \ / 2* \ I 4 

= / dt\ QA - 1 )Ar(sr+ie, t)-Qi[ - 1 }Ar(sr-ie, t) 
Sr—^^Jim* L \ sr—bm2+ie/ \ sr—Am2—ie/ J sr— 4m2 

X f dtQi(-l \Ar(sr+ie, t)-Ar(sr~iey 0 ] . (*r<0) (9') 
Am2-*, \ Sr—4m2/ 

If we identify the first term on the right-hand side 
with I(sr,l) and the second term with F(sr,l), use some 
well-known properties of Legendre functions and note 
the fact that for — 4fw2<^r<0,^4r(^r+^, t)—Ar(sr— it, t) 
vanishes, (c') easily follows. 

Our next task is to prove that conditions (a) through 
(c) with their primed counterparts are actually sufficient 
for the validity of the Mandelstam representation. The 
analyticity domain given by (a) plus the fact that 
ap(sP}l) goes to zero as |Z| —»<x> for real sP>0 already 
implies the dispersion relation in momentum transfer 
given by (4).8 A similar conclusion also holds in the 
relativistic case. The proof of a dispersion relation in the 
energy variable is a little bit more involved. We will give 
the argument only for the relativistic case, since the 
nonrelativistic case has already been treated in reference 
10, and since it is possible to view the nonrelativistic 
problem as the limiting case of the relativistic problem 
in which the left-hand cut in the energy plane vanishes. 
We now write formula (5') in a slightly different fashion 

MSr,tr) = N£\2l+lW')(Sr)Pl(Zr) 

+/(^)+/W, (io) 
where, 

1 r*rH«> 21+1 
f(Sr,tr)= / dl ar(sr,l)Pl(-Zr). 

tejNr-i* sin(?rZ) 
In what follows, we consider only f(sr,tr), since the 

other term can be treated in exactly the same fashion by 
simply interchanging tr with ur. At this point, it is con
venient to use a slightly different version of the Watson-
Sommerfeld integral due to Bottino et al.10: 

1 r*r>ri«> 21+1 
f(Sr,tr)= / dl **Mar(Sr,t)Pl(zr). (11) 

tejNr-i* sin(7r0 
Formally, (11) can be obtained from the partial wave 

expansion like the usual Watson-Sommerf eld integral by 
changing the sign of zr and compensating for this change 
with a factor exp(=Fi7r/). It remains to investigate the 
convergence of the integral in question. For this purpose, 
we take the upper sign in the factor exp(=Fi7r/) for 
lms r>0, and the lower sign for lm? r<0. Using condition 
(b'), it follows that the integral in (11) converges for all 
complex sr if 0<tr<4m2. (See Appendix A for details.) 
For the same restricted interval in momentum transfer, 
f(sntr) is then analytic and bounded at infinity by a 
polynomial in the sr plane except for possible cuts along 

the real axis. To investigate these cuts, take sr=real and 
form the difference: 

f(sr+M, tr) — f(sr—ie, tr) 
1 r̂ M-too 21+1 

= / dl PiiZr) 

Xlr-Mar(sr+U9 l)-eivlar(sr-ie} /)] 
1 rtfrfioo 21+1 

= / dl Pl(zr)lI(sr)l)+F(Sr,in (12) 
4dJNr-io0 sin(wl) 

If -4w2<5 r<4m2 , F(sr,Z) = 0, and for 0<ar<4m2, 
l(sr,l) = 0, [Condition (a')], hence (12) vanishes. For 
—4m2<sr<0, I(sr,l) is an entire function of Z, so that 
we can shift the line of integration from ReZ=i\fr to 
Re/= — l/2, picking up residues at integer points in 
between. However, I(sr,l) vanishes at these points from 
our original definition, and there is no contribution. 
Furthermore, on the line ReZ= —1/2 the integrand is 
odd under the substitution Z—» (—I— 1) since I(snl) 
= I(sr, —I— 1), and the whole integral therefore van
ishes. Hence, the cuts in the sr plane extend from 
Sr=. —4^210 Sr= _ oo a n ( j from sr~4:m2 to sr= oo. 

To finish the proof, we need yet another version of the 
Watson-Sommerfeld integral, which we obtain from 
(12), keeping sr< — 4:tn2 and 0<£r<4m2, as follows: 

f(sr+U, lr)-f(Sr—ie, tr) 

1 /•*•+*» 21+1 
= / dl-—-Pl(zr)Zl(sr,l)+F(sr,l)-] 

4dJNr-i«> sm(xZ) 
1 rxn-ioo 21+1 

= / dl PiizjFiSrJ) 
U J Nr-i*> sm(7rZ) 
1 r^i™ co$(wl) 

/ dl (21+1) P,(sr)tf ($„/) 
8iJ-.i_ioo sin2(7i7) 

1 /•*•+*» 2Z+1 
= / dl PfarMSryt) 

4:iJNr-io0 sm(rl) 
1 /-*+i0° 21+1 

SwtJ-^-iao sin (wl) 
1 /-^rfioo 21+1 

= / dl Pt^FiSrJ) 
4iJNr-ia0 sin (wl) 

1 00 

+ - E {2l+l){-l)lQi{zr)H{sr,l). (13) 
2w i=o 
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Here H(srjl) —tan (TI) {I (sr,l)—I (sr, —/—1)} is an en
tire function in / by (c'). The last step in (13) follows by 
a residue expansion, and the series in question converges 
because of the bound on H(srjl) at /= <», given by (b'). 
Furthermore, since Qi(z) is a bounded function of z for 
large z and Re/> —1/2, this series continues to converge 
for complex tr. The integral involving f(sr,l) also con
verges for all complex tr since F(sr,l) is a bounded func
tion of / as |/| —>• oo. Since (13) holds for unrestricted 
values of tr, the singularities of the left-hand side are 
given by the singularities of the functions Pi(zr) and 
Qi(zr), which is a cut on the real axis from z r = l to 
zr= — oo. It can be shown by a simple calculation using 
the threshold behavior of ar(sr,l) that the cut actually 
starts at zr=*l+8rn2/(sr— 4m2)- (sr< — 4m2). It then 
follows that the jump across the left-hand cut of the 
function fr(sr,tr) is analytic in the variable tr except for 
a cut from tr=^m2 to tr= °°. We have mentioned before 
that (5') implies that for physical values of sr, f(st1tr) is 
analytic in tr except for cuts from tr=^m2 to tr— oo and 
from tr=— sr to /r=—-oo. It must also be mentioned 
that as in reference 3, the various integral representa
tions we have, imply that there are only a finite number 
of subtractions at infinity in the variables of interest, 
and they have the proper analyticity properties in the 
remaining variable. Combining the results that follow 
Eqs. (5'), (11), and (13), we have shown that for 
0<tT<4m2, fr(sr,tr) satisfies a dispersion relation in the 
energy variable, and the spectral functions in this 
representation themselves satisfy dispersion relations in 
tr. From standard results in complex variable theory, 
this gives us the double-dispersion relation we were 
looking for. Therefore, we have shown that conditions 
(a') through (c') imply the relation (1'), forgetting 
about crossing symmetry. A similar proof applies also to 
the nonrelativistic case, where the left-hand cut of 
fp(sp,tp) in the sp plane is clearly seen to vanish as a 
consequence of (c). 

HI. POTENTIAL SCATTERING 

In this section, we present a method of obtaining the 
solution of the nonrelativistic scattering problem with 
superposition of Yukawa potentials, staying within the 
partial-wave formalism. One can, of course, reduce this 
problem to the solution of the Schrodinger equation, 
which can be treated by a number of standard methods. 
However, it is of some interest to formulate a dispersion-
theoretical treatment of potential scattering using only 
on the mass shell quantities, mainly with the idea of 
generalizing to the relativistic problem later. In such an 
approach, the dynamical postulates are the double-
dispersion relation and the unitarity condition, and the 
potential is taken into account as a subtraction in the 
energy variable. Blankenbecler et al.* derived a nonlinear 
integral equation for the double spectral function using 
these conditions, and they also gave an iteration solution 
to their equation. Chew and Frautschi later extended 
this method7 to the relativistic two-particle scattering in 
the strip approximation. An unpleasant feature of this 

approach is the fact that one has to know the number of 
subtractions at infinity in the momentum-transfer vari
able right from the start. The alternative procedure we 
are going to present does not run into this trouble, and 
it also seems to be particularly well suited to locating 
the Regge poles since it stays completely within the 
partial-wave formalism. Our starting points are the 
conditions (a) through (c) of Sec. II, which are equiva
lent to the double-dispersion relation, and the unitarity 
relation for the complex values of angular momentum: 

a>p(sp~\-ie, r) — ap(sp—ie, I) 
= 2i(sp)

l/2ap(sp+ie, l)ap(sp—ie, /), (14) 

where Sp^> 0. We now write the partial-wave amplitude 
in the well-known form: 

Np(sP)l) 
Av{sJ)= — . (15) 

1+Dp(sp,l) 

The function Np has only a left-hand cut in the sp 

plane and Dp has only a right-hand cut. Since Ap is 
bounded in / for s9>0, it is clear that the denominator 
is also bounded in I, and we can normalize it by the 
condition Dp —-> 0 as / —> oo. Then the numerator itself 
satisfies (b). 

The unitarity relation implies that 

DP(sp,l)= — f -J—(synNp{sp'#. (16) 
IT JQ S' — Sp 

The integral in (16), and also several integrals we are 
going to write in what follows, may need one subtraction 
in sp to make them convergent. Since this would intro
duce a trivial modification in our formulas, we are going 
to ignore it. From (16), one can readily derive the well-
known first-order determinantal approximation for the 
denominator by taking the Born term for the numerator: 

i w w ) = — / -Qh+—m 
4spJa*tm \ 2s J 

) = — / dzQi{z) 

r°° dt 
X — 

Ja*t-

Dpv(sP,t)-

'2), 

*{t112) 

(17) 

• 2 5 , ( « - l ) [ 2 ( « - l ) ^ 

where the potential is given by 

rV(r) -ef dk<f>(k) exp[—kr~]. 

To calculate Np and Dp to higher orders, one has to 
use the condition on the left-hand cut given by (c). At 
this point, it simplifies our manipulations considerably 
to assume that both Dp and Np can be continued up to 
the line Re/= —1/2. One can then justify this assump
tion by exhibiting the final answer or, alternatively, one 
can use the results of reference 3. Condition (c) can now 
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be written in a compact form 

&Np(sp,l)=Np(spJ)ADp(sp,l) 

can have. I t turns out that the fact that Np can be 
written as in (19) is closely connected with the analyticity 
properties of the kinematical factor that appears in the 

— Dp(sp,l)ANp(spJ), (18) unitarity relation (14). Since we explicitly show that 

where sp< — a2/^ Re/= —1/2, and 

NP(sp,l) = exp(—iwl)Np(sp+ie, I) 
— exp(iirl)Np(sp—i€71), 

ANp(sp,I) = l/v tan(Tl)ZNp(sp,l)-Np(sp, -I-1)], 

with a similar expression for ADP. 
Equation (18) combined with (16) is already sufficient 

for the derivation of many interesting results. We, 
however, first convert (18) to a nonlinear integral equa
tion which is equivalent to the Schrodinger equation. 
For this purpose, we make the following ansatz about 
the form of Np, 

NP(sP,l) = - [ Wl+—W*p,0 , (19) 
SpJ a2 \ 2spJ 

(19) is satisfied, we will not go too deeply into this point 
here. Substituting (19) into (16), we get 

Dp(sp,l)= J dzQi(z)Cp(sP)z), 

2 r it 
Cp(sP)z)z 

2 /•" dt f t \1/2 

xJa*t-2sp(z-l)\2(z-l)J 

fp(s,t) 

(20) 

L J a2/4 
ds-

s+t/2(z-l)J 

where 
fp(s,t) 

Bp(spjt)= j ds +$,(*)• 
fa2/4 S+Sp 

Furthermore, comparing (19) with the Born approxi
mation given in (17), we get the following simple con
nection between $p(t) and the function <t> that appears 
in the definition of the potential 

I t can easily be checked that this ansatz satisfies con
dition (b) and also has the required domain of ana
lyticity. I t is, however, not the most general form Np 

r 
4^1/2 

(21) 

We can now rewrite (18) using (19) and (20), 

dz6(-2s(z+l)-ai)Pi(z)Ms,-2s(z+l)) -2"L 
dzA dz26(-2s(z1+l)-a>)Cp(s,z2){lQl(z1+ie)Pl(z2^ 

-CQi(a i -*€)P«(22)-Gi(«2)P«(ai )3Sp( j -*6, -2 j ( l+20)} . ( * < - a 2 / 4 ) (22) 

To convert (22) into an equation involving only the weight functions, the products of Legendre functions on 
the right-hand side of (22) should be combined by means of the spherical harmonic addition formula. For Z i> l , 
one can use the following version of the spherical harmonic addition theorem: 

- / . 
QiizOPiizJ-Pi^Qtiz^ / dz e(z2-Zl)e(Zlz2- ( t f - l ) ^ _ l ) W - a > 

Pi(z) 

(32+Zl2+Z2
2-23Z1Z2-l)1« 

(23) 

For a discussion of this formula and other related formulas we are going to use, we refer the reader to Appendix B. 
In the case — l < Z i < 1, the situation is a little bit complicated, and the fact that Cp(s,z2) is analytic in z2 except for 
a cut running from z2= 1 to z2— — °° for s< — a2/4 is needed. In fact, we can write 

1 r00 

( z - l W - i 

<Tp(s,%) 
dx for s <—a2/4, 

x+z 
where 

2 2 r ds' 
<Tp(s,x)=—6(-2s(l+x)-a*)Z-s(l+x)J/2$p(-2s(l+x))— / {d(-2s(l+x)-a2) 

Xl-s(l+x)J»fp(s', -2s(l+x))-6(2sf(l+x)~a2)(sf(l+x)y^P0\ 2 / ( 1 + * ) ) } . (24) 

For — l < z i < l , we can convert the right-hand side of (22) to the following form by the use of some simple 
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identities14: 

= LHBP
+-Bf-)lPl(-z2--ie)+Pi(-z2+ie)2Pi(z1)+UBP

++Bp-) 
2 sin(irf) 

XLPi(-z2-ie)-Pl(-z2+ie)lPl(z1)- (Bp+-Bp-)Pl(z2)Pl(-zl)^ (25) 

with Bp+=Bp(s+ie, —2s(l+Zi)) and similarly for Bp~. The first terms on the right-hand side of this equation are 
not suitable for the application of the spherical harmonic addition formula. We get them into a suitable form 
using (24): 

I dz2 Cp(s,z2){Pl(-z2-ie)+Pi(-z2+ie)} 

r00 r00 Pi(-Z2-ie)+Pi(-Z2+ie) f00 dx 
= / dz2 I dxaJs.x) ==2w I <rp(s,x)Pi{x), (26) 

h i-i (z2+x)(z2-\y* J_i(*+i)1/2 

r r r Pi(z2) r I 1 -i 
/ dz2 Cp(s,z2)[Pi(—z2—ie) — Pi(—z2+ie)2= —i f dz2 / dx <TP(S,X) 1 . 

J i J-i J-i (z2+l)1/2Lz2—x+ie z2—x—ieJ 

Substituted into (25), this gives 

[ dz2Cp(syz2){B+ZQl(zl+ie)Pl(z2)~Pl(z1)Ql(z^^ 

dz2 
= f dx\<rp(s,x)\ (B+-Bp-)Pl(z1)Pl(x)-ii(Bp++Bp-) [ 

2sin(7rOAi I l(x+l)1/2 J-X fe+1)1' 

x [ + 1PK2I)PK22)1-^(^ -1) (^P + - -^P- )C P MP Z WPK-2 1 ) ) . (-1<21<1) (27) 

The products of various Legendre functions appearing in the above expression can be combined by means of the 
following addition formula: 

Pi(x)Pi(y) 1 r Pi(z) 
= - / dz {0(y+x)6(z-l) 

sinOr/) IT i_x (z>+x*+f+2xyz-1)1/2 

+ [ l + ^ ( l - 2 ) > ( - ^ - ^ ( 2 + ^ ~ ( ^ - l ) 1 / 2 ( ^ - l ) 1 / 2 ) } . ( « > - l , y > - l , R e i = - J ) . (28) 

This addition theorem also immediately leads to the following formulas : 

P*(*i) 
(zO r r l l 1 

/ dz2Pl(z2)\ + r 
(TTI)J-I Lz2—x+ie z2—x—itA sm(-

Piiz) r / {z-zl)e{z-Zi)-x+V{zyzhx) 1 r00 Pi(z) r / (s-2i)€(z-zi)-x+7(2;,zi^)\ 
- / dz 20(2-1) ln( 1 
TTJ_I V(z,zhx)L \ (z-Zi)e(z—Zi) — x—V(z,zhx)/ 

r £7(z,zi)+zzi+x+ V(z,zhx) z-Zi-x+V(z,z1}x)-]~] 
+4d(l-z)6(z-z1)\n\ €(^+SSl+(2l2-l)i/2(22^1)i/2 ) \1__U, I 

L J7(z,Zi)+«Zi+«— V(z,zhx) z—zi—x— V(z,zhx)JJ 

14 Higher Transcendental Functions, Bateman Manuscript Project (McGraw-Hill Book Company, New York, 1953), Vol. 1, Chap. 3. 

file:///1__U
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Pi(*i ) (21) r dz2 / 1 1 \ 
— / p,fe)( + ) 
(wl) J-1 (1+22)

1/2 \ s 2 -x+ i€ z2-x-ie/ 

2 r™ r00 Pj(z) ( 0(z- l ) / (z-2i)e(z-Zi)-x+I/(z,Zi,£)\ 
= — / dz/ Jy In 
i^J-i A (y+*)(y-l)1/4lF(z,Zi,a?) \ ( z -Z iMz-zO-a -Ffoz i ,* ) / 

:)0(z-«i) f 
In e(# 

z,zi,») L 

0(1 — z)0(z—Zi) r tf(z,zi)+zzi+s+7(z,zi,a;) 
+ 2 In €(o?+zzi+ (zx2-l)1/2(z2-1)1/2) 

F(z,zi,») L *7(z,zi)+zzi+a— F(z,zi,a) 
z—zi—*+F(z,zi,*)"i 0(z- l ) /(z—zi)€(z—zi)+y+V(z, zi, —y)> z-Zi-*+K(z,Zi,*)-| 0 (z- l ) / (z-ZiMz-ZiJ+y+i ' l* , zi, - y K 

z—zi—*—F(Z,ZI,J»)J F(z, zi, — y) \(z—Zi)e(z—Zi)+y— F(z, Zi, —y)/ 

where 

0(1—z)0(z—Zi) r?7(z,Zi)+zzi-y+F(z, zh —y) z-Zi+;y+F(z, zly -y)~\ 
- 2 In 

V(z, zi, ~y) Li7(z,zi)+zzi-y-7(z, Zi, —y) z -Z i+y -F (z , zh —y)J 

* > - l , z i > - l , tf(z,*0=(*i2-OT*-l)1/1, 7(»,zi^)= (z2+zi2+a;2+2a:z1z~l)1/2, (29) 

and the principal branch of the logarithm is to be taken, 
Using (28) and (29), one can now transform the right-hand side of (22) into the form 

£ dzPi(z)n(s,z), 

and since the left-hand side of (22) is already of this form and the equation is to hold for a range of values of /, 
the corresponding weight functions in the integrals over Pi{z) must be equal. This is the required equation between 
the weight functions, and to present it in a compact form, we define the following set of functions: 

r e(v-x)d(xv- (x2- l ^ V - l)1/2-z) 
Ki(z,x,y) = ] dv _ ^ — , (*>1). 

(v+y) (v2- l)1/2(z2+t>2+*2- 2i>zx-1)1/2 

1 

(v+y)(v-l)l/2(z2+v2+x2-2vzx-l)l/2' 

1 [0(z—1) / z-x-y+V(z,xj)\ 

K2(z,x,y)= I dv——— ^ _ _ —-— ^7^, ( — K x < l ) . 

r - 1 [0 (z - l ) / z-x-y+V(z,xj)\ 
Kz(z,x,y)= / dv ml ) 

J1 (v+y)(v—iy/2[V(z,x,y) \ z—x—y—V(z,x,y)/ 

6{\-z)6{z-x) r U(z,x)+zx+y+V(z,x,y) 
+ 2 In €(3/+zx+(z2-l)1/2(^2-l)1/2) (30) 

V(z,x,y) L U(z,x)+zx+y— V(z,x,y) 

z—x—y+V(z,x,y)~] 0(z—1) fz—x+v+V(z, x, — v) 
X-

0(l-z)0(z-*) 
-2 In 

-| 0(z—l) /z—x-j-v-i-V{z,x,—v)\ 

J V(z, x, —v) \z— x+v— V(z, x, —v)J z—x—y—V(z,x,y)J V(z,x,—v) \z— x-\-v— V(z, x, — v) 

U(z,x)+zx—v+V(z, x, — v)z—x+v+V(z, x, —v) 

7(z, x, —v) LU{z,x)+zx~-v— V(z, x, — v) z—x+v— V(z,x, —v). 

1 e(x+y)d(z~i)+ii+e(i-z)2e(-x-y)e(z+xy-(f-iy/2(x2-i)1/2) 
iC4(«,*,y)= . ( - 1 < * < 1 ) . 

(y+1)1/2 (z2+x2+f+2xzy-1)1/2 

The first three functions listed can be evaluated in terms of elliptic functions, but we see no advantage in doing 
so here. Equation (22) can now be written as follows 

-2*ir*p(-*, - & ( * + l ) ) 

= J dzt0(-2*(l+z1)-a
2)J ^<rP(s,y) j # p - ( s , z ^ ^ 

-he{z-l)K2{z,zhy)\-—Kt(z,zhy)Hp+(s9zd), (31) 
J 2x J 
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where 

ffp-(*,ziHB,(H-f€, - 2 5 ( l + * i ) ) - S p ( $ - w , -2s{\-\-z1))=-2Trie{-2s{\+zl)-a^p(-si —2^(1+20), 

iff,+($,si) = B,(H-*€, - 2 j ( l + a 1 ) ) + 5 p ( 5 - i € , - 2 * ( l + * i ) ) 

r ds' r / 4 s + a 2 \ 1 / 2 1 
= 2 , f ( - 2 5 ( l + * i ) ) + 2 / * , (* ' , - 2 s ( l + 2 l ) ) - M s , - 2 s ( l + 2 l ) ) 

Ja'/iS+s'L \a 2—4s7 J 

Equation (31) is a nonlinear integral equation in \pP 

alone, since <rp is expressible in terms of \pp through (24), 
and $ p is given in terms of the potential in (21). We can 
obtain a solution for \pp in the form of a power series in 
g2 if we start with ^ p

( 0 ) = 0 as the zeroth term and iterate 
(31) successively. If this iteration converges, it must 
yield the correct solution, since it is known that there 
exists a unique solution to the potential scattering 
problem. I t can be shown that the formal power series 
obtained in this manner converges by comparing the 
N/D decomposition with the Jost decomposition, and 
then using the known results about the expandability of 
the Jost functions in terms of the coupling constant.10 

Since we are unable to prove this directly, we will not 
dwell on this point further, and from now on we restrict 
ourselves to a term-by-term discussion of the solution. 
To illustrate the method, we exhibit the lowest order 
contribution to \(/Py which is proportional to g4: 

* „ « ( - * , - 2 5 ( 2 + 1 ) ) 

) 
dz16(-2s(z1+l)-a2) 

1 r00 

-L X dye(-2s(y+l)-a2)t-s(l+y)J< 

Xh(~Ml+zi))h(-~2s(l+y))Kz(z,zljy). (32) 

I t is of some interest to compare the method presented 
here with that given in reference 6. Both methods are 
dispersion theoretical and deal exclusively with quanti
ties on the mass shell. The nonlinear integral equation 
given in (31) looks more complicated than the corre
sponding equation of 6, but the procedure given here 
has the advantage of working directly with partial 
waves and avoiding the problem of subtractions in the 
momentum-transfer variable. I t may also be noted that 
the approximation procedure given here satisfies the 
unitarity relation and has the correct domain of ana-
lyticity in momentum transfer at each step of the ap
proximation. Of course, the domain of analyticity in the 
energy variable at each step is not, in general, the cor
rect domain. 

IV. THE RELATIVISTIC PROBLEM 

This section is devoted to a treatment of the rela-
tivistic problem in analogy with the nonrelativistic one. 
The statement of the problem is as follows: Determine 
the relativistic scattering amplitude fr(sritr) whose ab
sorptive part Ar(sr,t) has a known discontinuity across 
the left-hand energy cut, which we denote by V(sr,t) 
= Ar(sr+i€> t)—Ar{sr—iti t) where sr< —\m2 and 
/>4w 2 , and JT(sT)t) satisfies the Mandelstam represen
tation and the elastic unitarity condition in the s chan
nel: 

ar{sr-\-i€, l)—ar(sr—i€, I) 

- « ar(sr+i€, l)ar{sr—iei /) . 

(sr>4m2). (33) 

This problem clearly has no unique solution unless 
one is also given the arbitrary subtractions in the s and t 
variables. For the sake of simplicity, we assume that 
there are no such subtractions; if they are present, it is 
quite easy to take them into account. We now carry out 
the N/D decomposition in much the same way as we did 
before. 

, x Nr(Sr,Q 
ar(5 r , /) = -

= 2 / - v 

l+DT(Sr,Q 

Nr(sr,l)= / dtBr(sr,t)Ql[\+ ). 
sT—4m2 Jim' \ sr—4m2/ 

Dr(Sr,l)= f dzCr{Sr,z)Ql{z), 

Br(sr,t) = 

(34) 

ds-
Ms,0 

(35) 

S + Sr 

1 r 0 0 r™ f t \1/2 

CrM = — / dt dsl ) 
W w Jo \2m2(z-l)+tJ 

1 
X-

2m2(z-l)+tJ 

-. (36) 
2 * + ( s - l ) ( 4 m 2 - j r ) s+4m2+2t/(z-l) 

For sr<0, Cr(sr,z) is analytic in the z plane cut from 
1 to — 00, and it can be written in the form 

Cr(s,z) -L dx-
<rr(s,x) 

x+z 
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where 
Ms'A 1 /•« /.« / / x1'2 

TT2 J w Jo W ( z + 1 ) - / / [ 2 / - (x+ l ) (4m 2 - . ) ] [ ^+4m 2 -2 / / (x+ l ) ] 

1 r00 ds' fs—4w2\1/2 / x+1 \ 
/ 0 ( - (H- l ) ( s -4m 2 ) -8w 2 ) ( ) Ms', (*-4w2) 

2TTJ0 S'+S \ s J \ 2 I 

1 /•« ds' As'+4mV2 / s + 1 \ 
+ — / e((x+l)(s'+4m2)-Stn2)( ) *rU', (s'+4fn*)). (37) 

2* Jo *'+* \ s' J \ 2 / 

Equations (34), (35), and (36) clearly satisfy conditions (a') and (b') of Sec. II, and it remains to satisfy (c'). 
Exactly as before, we define the functions JVr($r,/) = exp(—iTl)Nr(sr+ie} I) — exp(ivI)Nr(sr—u, I), ANr(sril) 
= (1/TT) tm(wl)ZNr(sr,l)—Nr(sr, —Z— 1)], and also assume that the functions in question can be continued to the 
line Re/= —1/2. It is not clear that this assumption is justified in a relativistic theory, but we may hope that our 
final results are not critically dependent on this assumption. The following equation, valid on the line Re/= —1/2, 
expresses the whole content of condition (c'): 

A#r(sr,Z)=iVV(*r,/)A^ (38) 

where sr<0 and 
4 0(-.yr-4m2) r00 / It 4 0(-,? r-4m2) r™ / 2t \ 

Usril)= / dtP{ - 1 )V(srit). 
T AnP — Sr Jim} \ Sr — ^m2/ 

The rest of this section is devoted to converting (43) into an equation between weight functions. First consider 
the term NrADr— ANrDr. This term can be written out in a form similar to (25), and instead of (26), we now have, 

/ dz2 Cr(s>Z2)[Pi(—Z2—ie)—Pi(—Z2+ie)2 = 2ni J dx Pi(x)<Tr(s,x), 

/ dz2Cr(s)z2)ZPi(-Z2-ie)+Pi(-Z2+ie)~]l= / dz2 dx(Tr{s,x)Pi{z2)\ 1 . 
Ji J-i J-i Lz2—x+ie z2—x—ieJ 

(39) 

We use (28) and the first part of (29) to combine the products of Legendre functions into integrals of a single 
Legendre function. Next we consider the term [l+Z>r(,y,Z)][l+Z>r(s, — I— 1)]. By a straightforward manipulation, 
it can be put in the following form: 

tl+Dr(s,l)3Zl+Dr(st - / - ! ) ] 

= 1- / dz2Cr(siz2)lPi(-z2-ie)+Pi(-z2+ie)2-\ / / dz2dz2 Cr{s,z2)Cr(s,z2) 
(TI)JI 4sin2(7rOA Ji 2 sin (A 

X { - P i f e ) P i ( * 0 + i [ i M - * » - ^ (40) 

Equation (38) can be transformed into an integral over a single Legendre function exactly as before by the use 
of (39) and (28). Finally, the product L(s,/)[l+Z}r(sJ/)][l+i9r(.?, — /— 1)] can be written in the same fashion 
using (28) once more. To be able to write the result in a compact form, we define the following functions: 

f €(v-x)d(xv-(x2-l)ll2(v2-iyi2-z) 1 f [-Uizrf-xz-y+V&xj)-
Mi(z,x,y) = 

r00 €{v-x)d(xv-{x'-l)l"{vl-l)^-z) 1 f rU(z,x)~-xz-y+V(z,x,yn 
s,x,y)= / dv = <d(x—z) In 

Ji (v+y)(z2+i?+x2—2vzx—1)1/2 V(z,x,y) I LU(z,x)—xz—y— V(z,x,y)J 
rl+x—z+y+ V(z9x,y)~i rU(z,x)+xz+y+ V(z,x,y)-\) 

+6(x-z) In +ln , (x> 1). 
Ll+x—z+y— V(z,x,y)J LU(z,x)+xz+y— V(z,xyy)A J 

20(s-l) r z-x-y+V(z,x,y)~] 46(l-z)6(z-x) 
M2(z,x,y)=: In H 

V(z>x,y) L z—x—y— V(z,x,y)A V(z,xfy) 

[ U (ZjXj-t-zx-j-y-t V iz.x.y) z—x—y-\- V(z,x.y)~\ 
e(y+zx+(z2-iyi*(x2-iyi2) - — I (_1< X <1) . 

U(z,x)+zx+y— V(z,x,y) z—x—y— V(z,x,y)J 
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d(x+y)6(z-l)+ll+d(\-z)']d(-x-y)e(z+xy-(f-l)^(x2-iy'2) 
Mz(z,x,y) = , (-K*<1). 

(z2+x2+f+2xyz-l)1'2 

r0 0 1 1 rl+z—x+y+V{z,x,y)-\ 
M,(z,xyy) = / dv = In , ( - K » < 1 ) 

Ji (v+y)(z2+v2+x2-2vzx-l)li2 V(z9x,y) Ll+z-x+y-V&xj)! 

«00 »00 /.00 

M$(zyx,yyy
f) = I dw I du I dv — 

J\ J\ J\ (v-

1 1 

+y)(tf+u2+x2+2vux-iyi2 (w+y')(u2+z2+w2+2uzw~l)112 (41) 

1+u—x+y+V (u,x,y)-] rl+z—u+y'+V(z,u,y')~ r* 1 rl+u—x+y+V(u,x,y)'i r l + s — i 
= I du In In 

J\ V(u,x,y)V(z,uyy') Ll-\-u—x+y—V(u,x,y)J L l + s — t 

dw I du j 
00 /.OC , . 0 0 

dv 

u+y'—V(z,u,y')J 

x-

(v2+u2+x2+2vxu-l)112 

d(z-\)e(u+w)+[\+e(i-z)y(-u-w)e(z+uw-
(u2+z2+w2+2uzw-iy2 

1 1 1 
X T r / MW2(u,x,y)M2(z,uy)-2Tr2[d(u--l)+2d(l-u) 

_v—y—t€W—y' — ie v—y-f-tew—yf-\-ie.J J_i 

Xd(u-x)d(y+ux+(u2-\yi2(x2-\yi2^ 

,x,y,y')= / < Mi(z,x,y,y')= / ^ 
(^+a?+;y2+2iw:y-l)1 '2 

d(z-l)e(v+yf) + ll+e(l~z)2e(-v-yy(z+vyf-(v2-iyi2(yf2-iy^) 

(z2+v2+y,2+2zvyf-\yi2 

where the functions U and F are denned as in (29). Equation (38) now reduces to the following: 

/ 4m2—s \ 

-2Ti+rU (2+1) J 

= f dz1e((Am2-s)(z1+l)-Sm2) f dyar(syy)ld(z-l)M1(zJz1j)Hr~(syz1)+lM2(z,zhy) 

4 
XHr-{s,zl)+\TriMz{z,zhy)Hr

+{syzl)-^M^zyzhy)Hr{s,Zi)'] 0 ( - s - 4 m 2 ) 
IT 

f / 4 m 2 - s \ 1 /•*> r ( 4 m 2 - s \ 
X\VU (2+1) J — / dz1d((4m2-s)(l+z1)-Sm2) dy *r(s,y)V\s, ( z i + l ) J 

i r r r / 4m 2 -* \ 
XM2(z,zhy)+- / dzJ dy dyf 0 ( ( 4 m 2 - s ) ( l + 2 l ) - 8 m 2 ) W s, ( l + 2 l ) Wr(*,yK(*,y') 

XlM,(zJzhyy)-Mb(z,zljy)-2T2M7(z,zljyy)-]\, (42) 

where s<0 and 

4m2—s \ / 4m2— s 
H ' 

( ^ml—s \ ( $tn2—s \ 
r~(s,zl) = Brls+ie, (l+zOj-BJs-ie, ( l+2fi)j 

-s, ( l+Zi )V 
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/ 4ctn2—s \ ( 4tn2—s \ 
Hr+M^Brls+ie, (l+*i) J + B r U - w , — — (l+«i) J 

r00 ds' ( / 4w2—s \ / s\112 / im2~s \1 

-1!. ^ l * v - — ( 1 + , , ) ) - b ) *(-*•—(1+si))l-
Relation (40) can be iterated to yield a series solution 

in powers of the jump across the left-hand cut. In 
analogy to the nonrelativistic case, we may hope that 
this iteration procedure yields convergent results in 
general. 
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APPENDIX A 

Here we want to investigate the region of convergence 
of (11). To this end, we use the asymptotic bound (7) 
for Pi(zr) and (b') for ar(srJ). Let us take lm($ r)^0, 
since the case of negative Im(sr) can also be treated 
similarly. As usual, [sin(7r/)]_1 is the convergence factor, 
and the integral converges for all sr and zr for which the 
following inequality is satisfied: 

- | a rg[ Z r +( 2 r
2 - l ) 1 / 2 ] |+arg[ Z o +W-l) 1 / 2 ]>0 , (A1) 

where ZQ=l+Sm2/(sr— 4?n2). To derive this result, we 
notice that for / —> — i<x>, the second part of (b') implies 
that exp(—iirl)ar(srJ) is bounded, and since the factor 
Pi(zr)/sm(Tl) is always bounded, there is no divergence 
difficulty for any zr or sr. For l—> +i<x>, the first part 
(b') combined with (7) easily leads to (Al). For 
I im^O, arg[zo+(so2—1)1/2]^0, and it can easily be 
verified by simple algebra or a geometrical construction 
that | arg[>r+ (z2-1)1'2] | jg | arg[>o+ (*0

2-1)1/2] I if 
2o—1^2r—1^0. This implies that (11) converges for 
OStr^m2. 

APPENDIX B 

In this section, we derive several versions of the 
spherical harmonic addition theorem we have been 
using. The fundamental relations we need are14 

sinOrJ) r00 Pi(x) 
Pi(z) = / dx . (Bl) 

1 r2* 
Pi(zi)Pi(z2) = — / d<{> 

2w Jo 

XP i(2lS2-(2i2- l)1 /2(22
2- l)1 / 2COS0). 

(* i>l , s ,> l ) . (B2) 

Substituting (Bl) into the right-hand side of (B2), 
and carrying out the integration over 0, we easily get, 

sin(7r0 
Pi(zi)Pi(z2)= 

7T 

r Pi(x) 
X dx . (B3) 

J i (x2+zl
2+z2

2+2xz1z2-iyi2 

This formula, originally valid for z{> 1 and z2> 1, can 
be analytically continued to other values of Z\ and z2 

for which the denominator does not vanish. For real z\ 
and z2> —1, this imposes the restriction z2>— Z\ and 
we get the first part of (28). For — 1 <Zi< 1 andz2<—zh 

we must first suitably deform the contour of integration 
in the x plane so as to continue z% to values less than —z\ 
without meeting singularities, and fold back the contour 
on the real axis, after the continuation is done. This 
process yields us the extra term in the second formula 
in (28). Finally, to obtain (23), we use the identity: 

QiizjPiizJ-Pt^Q^z,) 

1 TT 
= -——lPi(zx)Pi(-z2-ie) 

2 sm(7r/) 

-Pi(*2)Pi(-«i - i€)] . (*i>l, *,>1). (B4) 

Evaluating the right-hand side of (B4) using (B3), 
we get (23). 


