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The minimum principle for single-channel scattering obtained previously required the introduction of 
channel radii for an incident relative kinetic energy E greater than zero. The channel radii, which greatly 
complicate the numerical calculations, no longer appear in recent formal theories of reactions and they 
need not appear in the minimum principle formulation. By projecting out all of the open-channel com
ponents from the full wave function, it is possible to eliminate the continuum states of the total Hamiltonian 
H originally present below E. The closed-channel Hamiltonian 3C has only a discrete spectrum below the 
inelastic threshold. By appropriately subtracting the contributions from the discrete portion of the spec
trum, 3C can be used to obtain a minimum principle for k cot??, where rj is the phase shift. This minimum 
principle provides a rigorous criterion for determining the parameters in a trial function and for choosing 
among the numerical results obtained with different trial functions. The method requires that one solve 
exactly the static approximation equation, which plays a particular role in uncoupling the closed-channel 
equations from the open-channel equation. Finally, contact is made with the results previously obtained 
at zero energy and a generalized Levinson's theorem is briefly considered. 

1. INTRODUCTION 

IN the minimum principles for scattering theory that 
have recently been developed,1-3 a sharp distinction 

must unfortunately be made between the case for which 
the incident relative kinetic energy, Ef, of the two sys
tems is zero and that for which it is not. For single-
channel scattering at £ '=0 , the minimum principle is 
applicable to the true systems, and the calculations are 
either precisely of the form of the usual variational 
principles or only very slightly more complicated, re
quiring some additional integrations which are no more 
difficult to perform that those that arise in the varia
tional principles. For £ '>0 , the minimum principle is 
applicable only if some of the various potentials are 
truncated and if some potential barriers are erected. 
(The conditions on the potential can be relaxed some
what, but not significantly.) The minimum principle 
will not generally, therefore, be applicable to the true 
problem, but this by itself would not be a serious handi
cap, for the various potentials can be truncated at such 
large distances that the effects of the truncation are 
negligible; the more serious difficulty is that because 
of the erection of the potential barriers the trial function 
must satisfy certain rather artificial boundary condi
tions which can for some problems make the calculations 
extremely difficult. 

* The research reported in this paper has been jointly sponsored 
by the Geophysics Research Directorate of the Air Force Cam
bridge Research Center, Air Research and Development Com
mand, under Contract No. AF 19(604)4555, Project No. 7635, 
Task No. 76361, and the Office of Ordnance Research under 
Contract No. DA-30—69-ORD-2581, Project No. 2360, and the 
Office of Naval Research and the Advanced Research Projects 
Agency under Contract Nonr-285(49), NR 012-109. 

f A preliminary report of the work was given at the New York 
Meeting, Bull. Am. Phys. Soc. 7, 41 (1962). 
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The primary purpose of the present article is to de
velop a minimum principle for single-channel scattering 
for £ ' > 0 which does not require the introduction of 
artificial potentials. Before doing so, it will be useful 
to review briefly the previous work to understand the 
origin of the need for artificial potentials in that work. 
Since the need appears even in the simplest cases, it 
will suffice to consider the zero angular momentum 
scattering of a spinless particle by a short-range static 
potential, V(q). For potential scattering, the incident 
relative kinetic energy E' is, of course, equal to the total 
energy E of the system. 

For £ '=0 , we are interested in the determination of 
a variational bound on the scattering length, A. It is 
simple to prove the identity 

where 

W f f 
—(A—At)= / UtHutdq— / wHwdq, (1.1) 

ft2 d2 

u is the exact solution, ut is the trial function, and 
w=ut—u. Both u and ut vanish at the origin, and they 
behave asymptotically as 

u(q) -> -q+A, ut(q) -> -q+Au 

w(q), therefore, vanishes at the origin and approaches a 
constant asymptotically. If one knows experimentally 
or in any other fashion that the potential cannot support 
a bound state, it is trivial to show that (w,Hw)>0. 
(The bound would be an immediate consequence of the 
Rayleigh-Ritz theorem if w were a quadratically in
tegrate function. It is a very simple matter, using a 
limiting process, to extend the theorem to include the 
class of functions which asymptotically approach a 
constant.) A bound on A, or better, a minimum principle 
for A, follows immediately, then, on dropping the last 
term in Eq. (1.1). 
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The possibility of obtaining a minimum principle for 
A is then in the above case a consequence of the fact 
that the spectrum of H is bounded from below by the 
value zero. If V(q) can support one bound state with an 
eigenfunction <p\ and an eigenvalue Eh then H is not a 
positive definite operator and it is not necessarily true 
that (w,Hw)>0. We can, however, proceed as follows.4 

We seek an operator inequality of the form H>B, 
where B must satisfy the following requirements: 

(1) B must contain only quantities that are actually 
known, as opposed to quantities that are only known 
formally. 

(2) Since the bound is no longer zero, the inequality 
relationship 

(w,Hw) > (w,Bw) 

still involves w9 and we do not have a useful result unless 
we can eliminate w. This can be done if an H appears 
adjacent to each w, for we can then eliminate w by using 
Hw=Hut. 

In summary, then, we seek an inequality of the form 

H>HCH, 

where it must be possible to give C in a usable form; the 
inequality has meaning for functions co(q) with bound
ary conditions ca(0) = 0 and oo (q)—^constant as q—> <x>. 

In seeking such a relation, we begin by defining the 
projection operator III for the compound state <ph which, 
operating on the arbitrary function /(g) , gives 

nif(q)^<Pi(q)J<Pi(qf)f(q'W, 

and noting that it, then, follows that JQT(1 — Hi) is a 
positive definite operator, that is, that 

# > # I I i 

in the space of quadratically integrable functions and 
of functions that approach a constant asymptotically. 
Since 

flU^IIi^EiIl!, 
we can write 

H>HTLiH/Ei, 

which has the prescribed form, but unfortunately <pi 
is practically never known so that wre do not really 
know IIi. To overcome this difficulty, we introduce the 
normalizable function <pu, define Eu as 

Eu== (<Pu,H <pu)/ (<pu,<Pu), 

and define the known projection operator III*, which, 

4 The proof to be outlined is rather more compact though 
entirely equivalent to the original proof of reference 2. There we 
subtracted off approximate bound-state functions from w, whereas 
here we subtract from the operator H. This slightly different 
viewpoint had its origins in a comment by Dr. B. Lippmann. 

operating on the arbitrary function /(g) , gives 

Ultf(q)=<Pit(q)j <Pu(q')f(q'W-

I t can be shown2 that 

H>HUltH/Eu, 

provided only that (puis sufficiently accurate to generate 
a negative Eu. Since the class of functions for which the 
above operator is positive definite includes functions 
which approach a constant asymptotically, we have 
finally 

(w,Hw)> (w,HIluHw)/Elt= | (<plhHut)\*/Elt. 

Since the proof depends upon the Rayleigh-Ritz theorem 
and modifications of that theorem, which are not re
stricted to static potentials, the generalization of the 
above results to single-channel scattering by a compound 
system is trivial. 

The extension to the case for which it is known, ex
perimentally perhaps, that there are precisely N bound 
states is also straightforward. I t is then possible in 
principle and it will not generally be difficult in practice 
to find N orthonormal functions <pnt such that 

(<pnt,H<pmt) = Entdnm; Ent<0; l<n, m<N. 

I t can then be shown that 

N \(<pnhHut)\* 
(w,Hw)> Z , (1.2) 

»=1 Ent 

so that we have a minimum principle for A even when 
an arbitrary but known number of bound states exist. 

Now consider an incident energy greater than zero. 
We again restrict ourselves to the L=0 scattering of a 
spinless particle by a static central potential. The 
starting point now is the Kato identity 

A2 r 
—[k cot(rj~6)-k cot(7?f-6>)]= / u(H-E)utdq, (1.3) 
2/x J 

or 

—Ik cot(ri—6) — k cotfo,—0)] 

= / Ut{H-E)utdq~ / w(H-E)wdq. (1.4) 

u and ut are the exact and trial scattering functions. 
They both vanish at g = 0, while asymptotically they 
behave as 

u-> cos(kq+6) + cot(ri—6) sin(kq+6), 

ut —> CQs(kq+6)+cot(rit — 6) sin(kq+6), 
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where rj and rjt are the exact and trial L = 0 phase shifts, 
respectively, and O<0 ^7r. W is again the difference 
function, defined by w=ut—u. Equation (1.1) is just 
the E = 0 , M O form of Eq. (1.4). 

To obtain a minimum principle for cot (rj — 6), we 
must now obtain a bound on (w, \_H — E~\w). Un
fortunately, the spectrum of H—E for E ^ O contains 
negative as well as positive eigenvalues, even when 
bound states do not appear. Since the spectrum of H is 
continuous, there will, in fact, be an infinite number of 
negative eigenvalues. Now, whereas we know how to 
"eliminate" a finite number of negative eigenvalues, we 
do not know how to "eliminate'' a continuum of nega
tive eigenvalues. (It is not possible simply to replace 
the summation by an integration.) The procedure that 
was used to bypass this difficulty was to truncate the 
potential and to erect a potential barrier.3 I t was then 
possible to recast the problem into a form which in
volved only a finite domain, that within the barrier; 
not surprisingly, the fact that we are now in a finite 
domain enables one to work with a discrete spectrum 
and it is then possible, at least in principle, to "elimi
nate" the negative eigenvalues. 

As already noted, this barrier can introduce serious 
difficulties. The situation is really not very troublesome 
for potential scattering, but as one generalizes the 
barrier technique from potential scattering to single-
channel scattering by a compound system and, then, to 
multichannel scattering, the difficulties become pro
gressively worse. We have, therefore, to seek some other 
approach. I t is, then, worthy of notice that we have done 
more than was necessary in having truncated the poten
tial and erected a barrier, in that the spectrum was made 
discrete everywhere, though it would have sufficed to 
make the spectrum of H discrete only below E. The 
situation is depicted for potential scattering in Fig. 1. 
Unfortunately, we do not know for potential scattering 
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FIG. 1. Spectra for a static potential. Spectrum (a) is that as
sociated with the original H. Spectrum (b) is that associated with 
the potential truncated at R, and with the problem recast into a 
form that involves only the (finite) interval 0 to R; for R large, 
the negative energy eigenvalues will be very close to those in (a) 
and the positive energy eigenvalues will be very closely spaced. 
It would suffice to have a spectrum of the form (c), but we do not 
know how to obtain such a spectrum for potential scattering. 

how to avail ourselves of the less restrictive condition 
that can be placed upon the modified spectrum. 

Let us, however, examine the situation for the single-
channel scattering of a particle by a compound system. 
The spectrum of H, then, contains discrete eigenvalues 
if there are composite bound states of the incident 
particle plus target which lie below the ground-state 
energy ETQ of the target. In addition, there will be con
tinuous spectra beginning at ETO and at E n , ET2, • • •, 
the excited-state energies of the target system. We 
would have the desired situation in which the spectrum 
of H could contain at most discrete eigenvalues below 
the energy E if it were possible to eliminate the branch 
of the continuous spectrum bounded from below by 
ETO. (See Fig. 2.) 

Now it is in fact possible to eliminate this portion 
of the spectrum by utilizing recent developments in 
the formal theory of the optical potential.5 There are 
two (not unrelated) reasons why these developments 
might be expected to be helpful for our present purposes. 
First, in these treatments the term in the expansion 
of the full scattering wave function that is proportional 
to the target ground-state function is isolated from all 
of the other terms, and is treated quite differently from 
the other terms. Second, channel radii need never be 
introduced in these treatments. (In our previous work on 
single-channel and multichannel scattering by systems,3 

an adaptation of the Wigner-Eisenbud formal theory 
of reactions was used. The truncations that we intro
duced were similar to those that arise in their theory, 
where channel radii do appear.) The optical potential 
formalism has been used previously6,6a to show that one 
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FIG. 2. (a) represents the spectrum of H for a target system 
with energies ETO, ETI, • • •, and an incident particle, (b) represents 
the spectrum of states with angular momentum L=0 of Q3CQ=3C, 
where Q projects out the ground state of the target. The number of 
discrete eigenvalues need not be the same for H and for 3C. The 
point of primary interest is that the continuous spectrum of 3C 
begins at ETI which lies above E by the assumption that we are 
dealing with single-channel scattering processes. 

6 H . Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287 
(1962); L. Fonda and R. G. Newton, iUd. 10, 490 (1960). 

6 Y. Hahn, T. F. O'Malley, and L. Spruch, Phys. Rev. 128, 
932 (1962). 

6a Reference 6 overlooked a paper by I. C. Percival, Phys. Rev. 
119,159 (1960), who arrived, using the box-variational principle, at 
some of the conclusions that were proved in reference 6. Percival's 
approach contains a number of limitations; in particular, it cannot 
allow for the Pauli principle and it assumes that various potentials 
vanish identically beyond some point. 
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can often obtain a lower bound or a few progressively 
better lower bounds on the phase shift. (In that paper 
we restricted ourselves to energies below the first reso
nances. We have subsequently been able to eliminate 
this restriction. This point will be elaborated in a 
future paper.) We are, of course, here interested in 
obtaining a much more useful result, a minimum prin
ciple, that is, a variational bound. 

It follows from the above discussion that we can ob
tain a minimum principle for compound systems that 
does not involve truncation, while being unable to do 
the same for the simpler case of potential scattering. 
The paradox is a spurious one, however, for we shall see 
that the development of the minimum principle for 
single-channel scattering by a compound system re
quires that one first solves a specified static potential 
problem exactly. (The static potential may, in fact, be 
nonlocal but with modern computers that need not 
necessarily be a serious obstacle.) 

In the following section, Sec. 2, the minimum principle 
is derived, and is given by Eq. (2.17). Just as at zero 
energy, the results are found to be conditional, requiring 
a certain number of subtractions be made. The extent 
to which this condition represents a real limitation is 
discussed in Sees. 3 and 4. Appendix A is a slight 
generalization of the minimum principle. A simple and 
quite crude application of the method to the e+H 
problem is given as an example in Appendix B. Further 
comparisons with the previous results at zero energy 
are made in Appendix C. 

2. THE MINIMUM PRINCIPLE 

For the purposes of simplicity, we assume that the 
incident particle is spinless and is distinguishable from 
the target particles, that the target has a total angular 
momentum of zero and is infinitely massive as compared 
to the mass of the incident particle, that there is no net 
Coulomb force between the target and the incident 
particle, and that the incident relative orbital angular 
momentum of the particle is zero. The extensions to 
include various spins, orbital angular momenta, recoil 
and Coulomb effects proceed as in our previous paper6 

and will not be repeated. The effects of the Pauli 
principle are not for present purposes completely con
tained in that paper since a Green's function will appear 
here that did not appear there. The construction of the 
Green's function, which is a matrix, is a tedious but 
rather straightforward matter, and will be discussed in 
detail in a future paper on an application of the mini
mum principle. We will, therefore, no longer concern 
ourselves with the Pauli principle in the present paper. 

We use the same notation as previously.6 r represents 
the target particle coordinates and q the coordinate of 
the incident particle relative to the (fixed) center of 
mass of the target. ^r,-(r) and En represent target 
eigenfunctions and eigenvalues, P is the projection oper

ator onto the target ground state,7 and Q= 1—P projects 
onto the target excited states. It will be assumed that 
X/ZTO and ETO are known, but it need not be assumed that 
the target excited-state wave functions and energies 
are known. 

The problem is to determine the phase shift rj, 
modulo 7r. ̂ (modx) is defined by the equation8 

( # - £ ) * = 0 , (2.1) 

where ^ is regular at the origin and subject to the 
boundary condition 

*(r,q) ~> fTo(r)Zcos(kq+6) 
q—*oo 

+cot(rj-6) sin(kq+e)yq. (2.2) 

k is defined by Wk2/2n=E'=E—ETo, where ETQ is the 
ground-state energy of the target. Since P+Q is the 
unit operator, we have 

( # - £ ) P * = - (H-E)Q*, 

and since PQ=0, we can write 

P(H-E)P*= ~PHQ*, (2.3a) 

Q(H-E)Q*= -QHP*. (2.3b) 

Inversion of the operators then leads to 

1 

1 
Qy= QHP*. (2.4b) 

P%p is the exact static approximation scattering wave 
function defined as that solution of 

P(H-E)P*p=0, (2.5) 

which is regular at the origin and which has the 
asymptotic form 

P*p -> ^ro(r)[cos(^+0) 
q—>oo 

+cot(v
p-6) sm(kq+6)2/q, (2.6) 

where rjp is the static approximation phase shift. It 
will be assumed throughout that Vp is known, having 
been determined numerically on a computer. [Since 
Eq. (2.5) is effectively a one-body Schrodinger equation 
in the coordinate q> this is a relatively simple matter.] 
Substitution of Eqs. (2.4b) and (2.4a) into Eqs. (2.3a) 

7 It should be clear that P operates in the space of the target 
particles, while n used in Sec. 1 operated in the space of all the 
particles. II commutes with the full Hamiltonian #(r,q) while 
P commutes with Hr(t). 

8 As opposed to the discussion in Sec. 1, the factor 1/q is retained. 



M I N I M U M P R I N C I P L E F O R S I N G L E - C H A N N E L S C A T T E R I N G 385 

and (2.3b), respectively, leads to the results 

P\H+HQ QH-E\P*=0, (2.7a) 
L Q(E-H)Q J 

Q[H+HP PH~E\Q*=-QHP*P. (2.7b) 
L P(E-H)P J 

Equations (2.7a) and (2.7b) are uncoupled, that is, 
independent equations, each equivalent to the original 
Schrodinger equation. Equation (2.7a), which was the 
basis for the determination of a bound of the phase 
shift itself,6 is not used in the present paper where we 
see a variational bound on cot (rj—6). 

For later convenience, we define the symbols 

*=e[ H+HP-
P(E-H)P 

-PH-E]Q, 
0 J 

and 
x=QV, 

a=-QHPVp; 

we can, then, rewrite Eq. (2.7b) as 

Kx—a. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Since ^fp is known, a is also known. It should be noted 
that the Green's function in K and, therefore, that K 
itself is known; thus, with 

£r(r,q) = F r ( r )+r (q )+F( r ,q ) , 

with HT the target Hamiltonian and F(r,q) the interac
tion between the incident particle and the target par
ticles, we have since 

HTP=PHT=ETQP, 
that 

[ P ( £ - # ) P ] - i = {PlEf-T(q)- Foo(^)]}-1, 

where 

Voo(q) = J ̂ro(r)F(r,q)^ro(r)<fr. 

We are, thus, dealing with the known Green's function 
for scattering by the static potential Voo(q), that is, 
taking into account the boundary conditions on the wave 
functions, 

[ P ( £ - # ) P ] - i = - (2ix/^¥k)luTee
p(q<)uiries

p(q>) 
-cottf-e^^iqJu^iq^lP, 

where g< and q> are the smaller and larger, respectively, 
of q and q'. uTeg

p and Wirreg
P are solutions of the Schrod

inger equation with the potential Vo0(q) and with the 
asymptotic forms 

«regP(?) -> $iHkq+VP)/q, 

?(«) Ui„egi'(q) —» C0$(kq+7)P)/q. 
q—*x> 

The second term in the definition of the Green's function 
above is included to make it asymptotically proportional 
to sin(&g+0) as is required. uTeg

P(q) is, of course, the 
function that appears as the factor of ^TO(*) in ^fp. 

It follows from a comparison of Eqs. (2.7a) and (2.2) 
with Eqs. (2.5) and (2.6), and by use of the monotonicity 
theorem, that rj>vp if Q(E—H)Q is a negative definite 
operator. This is the bound discussed previously.6 The 
minimum principle that we are presently concerned with 
will be developed not for rj but for cot(r?—0). In seeking 
an explicit expression for cot (17—0), we will avoid the 
use of any of the equations which contain the operator 
[Q(E—H)Q~]~l, for while this operator is perfectly well 
defined, it cannot actually be written down in a usable 
form. The most convenient pair of equations to consider 
is Eq. (2.3a) and Eq. (2.5). We proceed canonically by 
multiplying Eq. (2.5) by ^ , Eq. (2.3a) by ^ p , subtract
ing, integrating over the full space, applying Green's 
theorem, and using the boundary conditions as given 
by Eqs. (2.2) and (2.6) to arrive at an expression of 
standard form, 

47r(ft2/2M)[> cotfo-0)-fc cot(77P-0)] 
= (**J>HQ*)=(QHP*p,Q*)=-(a,x), (2.12) 

where in the last step we used the notation defined by 
Eqs. (2.9) and (2.10). Since we are seeking a minimum 
principle, it is natural to attempt to find a form for 
the quantity of interest, k cot (rj~ 6), which involves 
the unknown elements in a quadratic form, the bound 
following if the operator appears with the unknown 
element on either side and if the operator can be shown 
to be negative or positive definite. More precisely, we 
want the error in ^ to appear quadratically, so that the 
term to be bounded will only be of second order. The 
above remarks make it clear that we should seek a 
variational formulation of the expression for k cot (rj—6) 
in which the second-order error term is given explicitly. 
We can easily do this by appealing to the abstract 
formulation of Marcuvitz9 of the linear form of the 
variational principle of Lippmann and Schwinger.10 

Thus, if Kx—a, where K and a are given but x is not 
and where K is a symmetric operator, and if we wish to 
determine X= (#,#), where the inner product does not 
involve complex conjugation, we have a variational 
expression [X] for X given by 

\~[\2 = 2(xha)-(xt,Kxt), 

where xt=x+dx. For present purposes, where we are 
explicitly interested in the second-order term, we write 
the identity 

X=2 (xt,a) - (xhKxt) + (dx,K8x). 

It is then obvious that, whereas we have only a varia
tional principle for an arbitrary (symmetric) K, we 

9L. Spruch, in Lectures in Theoretical Physics, Boulder, 1961 
[Interscience Publishers, Inc., New York (to be published)], 
Vol. 4. 

10 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950). 
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have a minimum principle for K a non-negative oper
ator. Identifying xt with the trial function <2^t(r,q), 
which vanishes faster than 1/q as q —> °o y and identify
ing 5x with the error term 

we have our basic formula 

(2.13) 

Aw(¥/2ix)lk c o t f o - 0 ) - * cot(r)p-d)~} 

= 2(Q*hHPZp)+(Q*t, LW-K]Q*t) 
-{Q%\JZ-E]QSI, (2.14) 

where 

3C(£,0) 
1 

L P(E-H)P J 
-PH Q=K+EQ. (2.15) 

As was our intention, the situation at this stage is 
very similar to the situation for zero incident kinetic 
energy. Since the term containing [_P{E—H)P~]~l is a 
potential term which vanishes for large separations, the 
continuous spectrum of 3C is bounded from below by 
ETi, the energy of the first excited state of the target. 
E is, of course, less than En. The operator X may 
or may not have discrete eigenvalues below ETI. If there 
are no such discrete eigenvalues below E, we can simply 
drop the last term in Eq. (2.14) and we remain with a 
bound on k cot (77-0). If there are 9l^=9d^(E,0) such 
discrete (real)11 eigenvalues Sn

Q=Sn
Q{Efi) below E, 

with eigenfunctions &n
Q=$n

Q(E,6), the effects of the 
discrete states must be "subtracted out" in a fashion 
similar to that used in "subtracting out" the effects of 
the discrete bound states for zero incident kinetic 
energy. Our result, then, is the following: 

If, for a fixed energy £ , there exist DlQ eigenvalues 
Srfl <E of 3C, where 3e=3C(E,0) is defined by Eq. (2.15), 
and if one can find 9flQ orthonormal functions $nt

Q(x,q) 
such that 

(#»*«,0<*m«<0 = $ntQBnm, $ntQ < £ , 1 < » , M < 9 l « , 

then, since K=3C—EQ, 
*« | ($ n , « ,£Q) | 2 

(0$2, [3C-£](X2)= (Q,KQ)> £ 

Since 
»-i 6nfl-E 

KQ=KVt-K*=K*t+QHPVp 

11 The operator 5C0 of Fonda and Newton [see reference 5, 
Eqs. (2.9) and (2.10)3 *s n ° t the same as our 5C, even for a partial 
wave decomposition. The difference lies in the meaning of 
£P(E—H)P~\~l. For one thing, our Green's function contains an 
arbitrary 0. More significantly, we have used standing waves, 
whereas it is customary in studies of the formal theory of reactions 
to use outgoing waves. 3C0 is not, then, Hermitian, and the eigen
values of 3Ca are complex, with the imaginary component related to 
the width; the case for which an eigenvalue of 3Ca is real is, then, a 
very special one and corresponds to a bound state of infinite 
lifetime (zero width) embedded in the continuum. Our 5C, on the 
contrary, is Hermitian and its eigenvalues are real; for a partial 
wave decomposition and for 6=ir/2, the eigenvalues of 5C are the 
real parts of the eigenvalues of 3C0. 

by Eqs. (2.13), (2.8), and (2.7b), we have, inserting a 
minus sign, 

3^ I ($nt«, K*t+QHP<bp) |2 

- (Sl,KQ) < - L . (2.16) 
*-i Snt

Q-E 

The use of this inequality in Eq. (2.14) gives us the 
sought for variational bound on k cot (77—6) 

4*1 — P cot(rj~6)-k cot(77P-0)] 

<2(Q*hQHP*p)+(Q*h P C ~ £ ] W 

^Q \($ntQ, [3£-EQ2*t+QHP*p)\2 

+ Z1 L- (2.17) 
»-l E-Snfi 

Just as for zero incident energy, it is possible to recast 
the above result into a more appropriate form.2,9'12 To 
begin with, one shows that Eq. (2.17) is entirely equiva
lent to a variational principle in which the trial function 
contains terms proportional to the functions $nt

Q> 
Secondly, the functions, $nt

Q need not be constructed 
explicitly. Rather, one can introduce trial functions 
with an increasing number of terms whose coefficients 
are determined variationally. With the introduction 
of each term, one sees whether the variational estimate 
of k cot (rj—6) increases or decreases as compared to the 
previous result. I t can be shown that the estimate will 
increase 9lQ times, after which it can only decrease. 
This procedure is equivalent to the construction of the 

As a way of picturing how a Kohn-type variational 
calculation of the type just described converges to the 
exact value of cot (17—0), it is most convenient to think 
of the successive improvements in the trial function as 
being continuous rather than discrete. [This would 
happen, for example, if one were to introduce an ex
ponential parameter into each term in order to span the 
gap, and if this parameter were varied in such a way 
that the estimate of cot(r)—6) always moved in a 
downward direction.] The approximation to cot (rj—d), 
which begins at cot(??p—0), will then decrease continu
ously, apart from dlQ increases which occur when the 
cotangent function has one of its usual discontinuities, 
as our approximation to the phase shift increases con
tinuously from 7}p toward the exact 77. This picture will 
be discussed further in the following section. 

One general remark about the procedure that we have 
introduced is in order at this time. As contrasted to the 
zero incident energy case, ^ p plays a fundamental role. 
I t would be preferable to be able to avoid this, for we 
then immediately require the use of a computer, but 
it does not appear possible to do so because of the es
sential way in which ^ p appears in the basic equations 
upon which the formalism is based. 

12 T. Ohmura, Phys. Rev. 124. 130 (1961). 
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3. POTENTIALITIES OF THE MINIMUM PRINCIPLE— 
THE ZERO-ENERGY CASE 

The results of Sec. 2 represent a rigorous variational 
bound on k cot(7j—6) (a) if and only if the number 9lQ 

of eigenvalues of 3C which lie below E is known exactly, 
and (b) if and only if one can find a trial function which 
effectively subtracts out the contributions of the as
sociated 9lQ eigenfunctions. Point (b) is a limitation in 
practice but if 9lQ is known it will often not be a serious 
limitation and we will not consider this point further. 
Point (a), on the other hand, is a limitation in principle 
since 9lQ will rarely be known exactly, and it might seem 
that the advantages of our approach over a standard 
variational approach are more formal than real, but 
this is not the case. While a minimum principle which 
did not contain any elements of uncertainty whatever 
would only too obviously be preferable, we would like 
to discuss why the present approach will often have, 
from the practical point of view, most of the advantages 
associated with such an ideal minimum principle. 

A consideration of the zero-energy problem will 
throw some light on this question since a comparable 
problem has previously been met at zero energy. We 
shall see that for E'=Q, and for Ef close to zero, the 
number 9lQ is a rough measure of the failure of the static 
potential as an approximation to the actual interaction 
[see Eq. (3.18)]. The experimental evidence of reso
nances can also provide information about 9lQ, but we 
will not discuss this point. 

We will first establish the connection between the 
present results when specialized to E'=0 and the results 
previously obtained at E'=0. The connection should 
be made if only for general interest, but it will also 
enable us to develop some insight into the question of 
the number of eigenvalues of 3C below E for small 
incident kinetic energies. 

Let ^ft be the E ' = 0 trial function in the formulation 
of the present paper, and let $rt be the £ ' = 0 trial func
tion in the previous formulations.1,2 The connection 
between the two formulations is then made by choosing, 
for a given ^rt} 

1 
%t=Q*t+P*r-\ PHQ*t. (3.1) 

P(ETo-H)P 

Before proving the connection, we would like to 
motivate the above choice somewhat. For one thing, 
the exact wave function SP satisfies 

*=Q*+P¥=Q¥+P*P+ 
P(ETQ-H)P 

PHQ*, (3.2) 

where the second form follows from Eq. (2.4a), so that 
the choice is certainly not an unreasonable one. Sec
ondly, one knows that it is possible to connect the 
Lippmann-Schwinger variational form, which contains 
Green's functions, with the Kohn-Hulthen variational 
form, which contains only differential operators. There, 

where the exact function ^ satisfies 

*=<|>+GF*, (3.20 

with $> and G representing the wave function and the 
Green's function when the interaction between the 
incident particle and the target is neglected, one 
establishes the connection by choosing the Kohn-
Hulthen trial function SFfKH, for a fixed Lippmann-
Schwinger trial function tytLs, to be 

¥«KH = S + G 7 ¥ « , S . (3.10 

Since the present minimum principle formulation in
volves a Green's function, [P(ETO—H)P']~1, whereas 
the previous formulation did not, the choice of ^ as 
given in Eq. (3.1) is, then, a very natural one. I t should, 
however, be remarked that, whereas the connection 
between variational principles neglects second-order 
terms, the connection between minimum principles 
that is our present concern does not. 

To explicitly exhibit the connection, we start with 

M*Y2M)(^ -£«)= (*«,#*«)- (S,ff2), (3.3) 
where the inner product is now over the full space 
(hence the factor 4x), and where 

$t-+4'To(r)(-q+It)/q as g ->oo . (3.4) 

(The above result is the readily derived generalization1 

to the scattering by a compound system of the results 
for the special case of potential scattering discussed in 
Sec. 1.) This is to be compared to the limit as Er —•> 0 
of the results of Sec. 2. The form of the limit obtained 
depends upon the choice of 0. To obtain the desired form 
we can choose any value of 0 other than 0 = 0 ; it is 
simplest to choose B=\ir. Dividing by k2 and letting 
k2 -> 0, we find13 from Eqs. (2.14), (2.2), and (2.6), that 

(^h2/2n){A-Ap) 

= 2(?hQHP*p)+(Q*t, [ r c o - E r o ] e * 0 
- (WCXo-JEroDQO), (3.5) 

where 

X o =3CCE=£ro,0^O) 

=Q\H+HP 
L P(ET0-H)P 

PH\Q, (3.6) 

and where \I>P and Ap are the £ ' = 0 scattering wave 
function and its associated scattering length in the 
static approximation. ^ p is normalized as 

>*To(T)(-q+Ap)/q as g -> oo, (3.7) yt 

13 In the notation that follows, we will not bother to distinguish 
between & = 0 functions that are the limits of k>0 functions, 
such as Ui„egp, and functions such as Uree

p which contain a factor 
of 1/k in the definition of their k = 0 limit, that is, functions de
fined as 

°(g;k)/k. 
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and 

IP{ET,-H)P~]~1 

= (-2M/47r^)P#reg
p(q<)wirregP(q>), (3.8) 

where the regular and irregular functions are solutions of 

P(H-ETO)PUP=0, (3.9) 

which satisfy 

and 
\q)-^(-q+Ap)/q as g-> *>, 

(q) —» \/q as q —> °o. 

(The term in the Green's function proportional to the 
product of regular functions vanishes as k —> 0.) 

Taking the asymptotic forms Eqs. (3.4) and (3.7), 
it follows from Eqs. (3.1) and (3.8) and from the fact 
that i£ro(rKeg

p(q)=*p that 

At=Ap+(2v/4*W)(¥t,QHP*p). (3.10) 

We substitute Eq. (3.1) into Eq. (3.3), use Eq. (3.10), 
and use the relation 

([ p*p+ 
i 

P(ETo-H)P 
PHQH, \, (H-ETO) 

X P * p + 

'(["p*'-

P(En-H)P 

1 

•]) 
],(-)pz7e*<), •PHQ?tU-)PHQ*t 

P(ETQ-H)P 

which follows from the fact that the square bracket 
effectively contains a factor of P and from the subse
quent use of Eq. (3.9). We, then, find that Eq. (3.3) 
becomes identical with Eq. (3.5), but with the last term 
replaced by (0, (#—£ro)12), that is, we have 

(2, [ f f -E r o ]3 )= (QO, [5Co~£roQ](30). (3.11) 

This relationship can also be established directly; by 
subtracting Eq. (3.2) from Eq. (3.1), and using 

0 = ^ - ^ , QQsQVt-Q*, 
we obtain 

then with P, we find Q&=Qtt and 

Pfi = [P(ETo-H)P~\-lPHQ% 

the relation between P12 and Q12 clearly exhibiting the 
lack of arbitrariness of 0. If then H—ETQ has a given 
number of negative eigenvalues, it does not follow that 
there exists that number of negative eigenvalues in the 
restricted space of functions of the form of 12. 

There are, nevertheless, properties of 3Co which do 
follow from Eq. (3.11). Thus, assume that it is known 
in any way, experimentally in general, that there are no 
composite bound states of the target and the incident 
particle, that is, that iV=0. This result is entirely 
equivalent to the statement that H—ETO is a non-nega
tive operator in the space of functions which decay or 
approach ^ro(r)/q as q—-> <x>. H—ETO is, then, a fortiori 
a non-negative operator in the restricted space of func
tions of the form of 12. Finally then, we see that 
3Co—ETOQ is a non-negative operator if there are no 
composite bound states of the target and incident 
particle. 

Now let us assume that it is known that (a) there are 
N such composite bound states and (b) that there are 
Np composite bound states in the static approximation; 
in other words, H—ETO has N negative eigenvalues and 
T(q)+Voo(q) has Np negative eigenvalues. From (a) 
wre expect, in practice, to be able to construct N 
orthogonal functions $nf for which 

( $ w « , [ j y - E r o ] $ n e ) = {Ent-ETo)bmn, 

£nt~ET0 <0, 1< m,n <N, (3.13) 

and we then have 

- N \($nt,ZH-ETol*t)\2 

(12, ZH-ETO1&)> £ 1 — ~ (3.14) 

It is a one line proof, using Eqs. (3.1) and (3.9), to 
show that 

P [ # - £ r o ] * < = 0 ; 

we can, therefore, insert a Q before [H—Ero^t in Eq. 
(3.14). Using Eqs. (3.11) and (3.1), we arrive at the 
bound 

Q=QQ-
P(ETQ-H)P 

PHQti, (3.12) (°> [WQ-ETOQJI) 

from which Eq. (3.11) can readily be shown to follow. 
Having found the connection between the two forms 

exhibited by Eq. (3.11), we would now like to exploit 
this connection and any knowledge that we may have of 
the properties of H to prove some properties of 3Co. To 
begin with, it does not follow from Eq. (3.11) that 
5Co~ ET(Q has as many negative eigenvalues as does 
H—ETO. One reason is that 12 is not an arbitrary func
tion, even apart from the usual boundary conditions, 
but is restricted by Eq. (3.12); thus, for example, 
operating from the left on Eq. (3.12) first with Q and 

N \($nt,lW0--EToQ?L*t+QHP*P)\Z 
> £ = • (3.15) 

»-i Ent—Ero 

It follows from (b), and from the proof in Appendix D, 
that it is always possible to choose N p of the $n« to 
satisfy $„< = P$n«. Since 3C0=(?3Co, the terms in the 
sum in Eq. (3.15) containing these particular l>nf 

vanish, leaving only N—Np subtraction terms. It 
almost follows at this point, by comparing Eq. (3.15) 
with Eq. (2.16) with E set equal to ETQ in the latter, 
that 3lQ is at most equal to N—Np, since a bound on 
(Q|3C—Ero|8) can be obtained with N—Np terms. The 
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identification of the two equations, however, is not 
yet complete, since the Ent—Em which appear in Eq. 
(3.15) are defined quite differently from the Snt

Q—ETo 
which appear in Eq. (2.16). Thus, from Eq. (3.13), we 
have 

Ent-ET0= ($»«, [H-ET*3nt), 

whereas the §nt
Q—ETQ were defined by 

To complete the identification, we make use of the re
sult, proved in Appendix D, that not only can one find 
Np of the N functions 3>„< which satisfy P$n t=$„t, 
but that the remaining N—Np of the $n* can be chosen 
to satisfy a relationship of the form of Eq. (3.12). In 
particular, we choose the remaining 3>nt to be of the 
form 

1 
*»«=0*.«g+ PHQQnfi. (3.16) 

P(ETo-H)P 
(The $nt are not then normalized, nor need they be for 
our present purposes.) It is, then, easily verified that 

($»«, lH-ETo3mt)= (PntQ, P C o - E T f Q j p n t f i ) , ( 3 . 1 7 ) 

where n and m take on N—Np values. Setting n=m, 
we have 

Snt
Q—ETQ=Ent—ETO, 

so that the denominators of Eqs. (3.15) and (2.16) are 
the same. The numerators of these two equations are 
also the same, since it is only Q&nt which effectively ap
pears in Eq. (3.15), and from Eq. (3.16), Q$nt=Q$ntQ. 
The identification of the two equations may be regarded 
as providing a construction at E '=0 of the required 
subtraction functions, $nt

Q, whose number is now seen 
to be N-Np, i.e., 

°flQ(E'=0) = N-Np. (3.18) 

In addition to what this tells us about the zero-energy 
case itself,14 Eq. (3.18) will also be true for sufficiently 
small energies, and should give a good idea of the number 
of subtractions to be performed at small energies. 

A Generalization of Levinson's Theorem 

Returning to zero energy, we shall now show that 
Eq. (3.18) together with the absolute definition of the 
phase shift implied at the end of Sec. 2 makes possible 
a generalization of Levinson's theorem to scattering by 
a compound system, in the sense of relating the value of 
the phase shift at zero energy to the number of bound 
states. 

The basic equations, such as Eqs. (2.1) and (2.2), 
define the phase shift TJ only to within an arbitrary 
multiple of w. It is only when some procedure is adopted 
to remove this arbitrariness that we can formulate a 

14 Some further comments on the zero energy case itself are 
contained in Appendix C. 

generalization of Levinson's theorem. [The alternative 
of considering the difference rj(0) —17(00) will not be 
considered here.] The application of the minimum 
principle itself, as described at the end of Sec. 2, actually 
specifies r) uniquely once a unique definition of the static 
phase shift r\p has been adopted. (For our purpose it 
will not matter what this definition is, since we shall be 
concerned only with the difference r}—r)p.) The process 
of introducing successive terms to our trial function was 
regarded as a continuous one (in a realizable way) and 
the approximation to the phase shift itself, determined 
at any stage of the calculation, was taken to be a con
tinuous (and consequently a monotonically increasing) 
function of the accuracy of the trial function. In the 
limit, as the number of terms in the trial function is 
increased indefinitely, the limiting value of the ap
proximate phase shift is taken to define the exact 
phase shift 17 absolutely, that is, it specifies the multiple 
of 7r in rj. It seems that this procedure for specifying the 
phase shift is equivalent to varying the optical potential 
continuously between the static potential and its full 
value, that is, to "turning on" the second term in Eq. 
(2.7a) continuously. Since, as pointed out in reference 6, 
this term represents an attractive interaction, the phase 
shift would increase monotonically from the already 
determined rjp to its final value, t\. 

In the course of this analysis, the number of subtrac
tion terms needed, 3lQ, was seen to correspond to the 
number of times that 6 (mod ir) appears between ijp 

and rj so defined. Now as the energy, E', approaches 
zero, both rjp and rj approach multiples of x. Taking 
d?*Q, the above interpretation of 3lQ implies that t\ will 
be greater than t\p in this limit by an amount 3lQw. 
But combining this with Eq. (3.18) for 3lQ we have the 
result 

V-V
P=(N-NP)T (3.19) 

at E '=0. This is the sought for generalization of Levin-
son's theorem for compound systems. 

Some general comments should now be made. First, 
while the most natural definition of rjp would be one 
which includes the effects of the Pauli principle, the 
validity of Eq. (3.19) is independent of the absolute 
definition of ijp. The only effect of the Pauli principle 
with regard to our generalized Levinson's theorem 
will then be the influence it exerts in the determination 
of the number N of the true bound states. 

Second, regarding the possiblity of bound states 
in the continuum, the definition of the phase shift 
adopted above seems to be equivalent to assuming it 
to be a continuous function of the (optical) potential 
strength. It then follows, as mentioned in reference 6, 
Appendix, that in the remote case there should be a 
bound state imbedded in the continuum, the phase 
shift thus defined would, as a function of energy, become 
discontinuous at that energy, but Levinson's theorem 
would not be affected. 

Finally, it should be noted that generalizations of 
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Levinson's theorem have been given previously.15 Since 
these generalizations consider phase shifts at £ ' = 0 and 
at E'= oo, they involve the complicated energy domain 
in which multichannel processes are possible, and the 
proofs, therefore, necessarily contain statements about 
the eigenphase shifts. Some of these proofs pertain to 
more general situations than those which we have 
considered in that they allow for production processes 
for example, but they do involve some approximations. 

4. POTENTIALITIES OF THE MINIMUM PRINCIPLE— 
THE GENERAL CASE 

At energies sufficiently close to zero, we have seen 
that the number of subtractions, 9lQ, will be known 
exactly if only we know the number of bound states for 
the true as well as the static problem; hence our bound 
on tam? can be made completely rigorous. We would 
now like to face up to the more interesting question 
as to how to proceed in the general case. The natural 
procedure is to introduce trial scattering functions ^t 

with one, then two, etc., terms, which might include 
nonlinear as well as linear variational parameters, and 
to proceed as described at the end of Sec. 2, seeking the 
minimum value of k cot (77—0) for each form of SŜ . We 
would obtain a bound on k cot(r\—B) for the number of 
parameters "sufficiently large," but if the number of 
eigenvalues 91^ of 3C below E is not known there is no 
way of actually specifying what "sufficiently large" is 
to be taken to mean. To put it bluntly, a rigorous bound 
on k cot(rf—0) cannot be obtained. It is, nevertheless, 
possible to deduce completely rigorous and useful conse
quences from the minimum principle. When combined 
with some qualitative ideas, it should, in fact, often be 
possible not only to obtain good estimates of k cot (77—0) 
but to be reasonably certain that the estimates are, in 
fact, good. 

Thus, let us assume that we use a trial function of 
the form 

j 

*«= D Q&(r,q), 
J-0 

where the gj may contain nonlinear parameters. For any 
fixed / , we would vary the parameters so as to cause 
k cot (17—0) to be as small as possible. I t is possible, in 
principle, to pass down through — 00 2d<3 times, but of 
course we do not know what 9iQ is. I t may be possible in 
practice to pass through — 00 by varying the nonlinear 
parameters, but it is not necessary actually to do so. 
The passage is signaled if there is a sudden upward 
jump in k cot (17—0) as we add an additional term, and 
represents the fact that the trial function now effectively 
contains one more trial bound state function $nt

Q which 
gives an expectation value of 3C below £ , and that this 
state has been "subtracted out." The addition of one 

16 R. G. Newton, J. Math. Phys. 1, 319 (1960); M. T. Vaughn, 
R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258 (1961); 
L. F. Cook, Jr., and B. W. Lee, ibid. 127, 283 (1962). 

term can at most account for one such state, so that we 
must have / at least equal to dlQ, if we are to have ac
counted for all such states. (The number of terms re
quired to have accounted for all such states may be 
significantly reduced if we allow the nonlinear param
eters to vary, though there must be at least 9lQ terms.) 
From this stage on, the estimate of k cot (77—0) can only 
decrease. 

If then a number of different calculations have been 
performed, with different gj and with different / , and 
we wish to judge which of the results is "best," or if 
we ourselves are performing the calculations and wish 
to determine the "best" possible values of the param
eters, the objective and rigorous criterion for "best" is 
the following. The "best" result is the one for which the 
number of passages through — <*> is the greatest; if the 
number of passages for a number of calculations is the 
same, the "best" result is the lowest one. I t should 
clearly be understood that the "best" result as just 
defined is not necessarily the one that is closest to the 
true value. 

The above results can be pictured as the observation 
of a race in which the path is the curve of y—cotx 
versus x. (We here choose 0 = 0 for convenience.) The 
starting point of the race for all runners is at x=rjp. 
When a runner reaches a position x which is a multiple 
of 7r, at which time he is at y= — <x>, he is moved in-
finitesimally to the right and then reappears at y— + <*>. 
At some unknown point x0, yo=cot#o on the path there 
is an invisible marker. [This marker will appear on the 
(3lQ+l)th branch of the curve, but 9£Q is not known 
either.] For some reason the runners can never get 
beyond the marker. The objective of the observer is to 
make the "best" possible estimate of the value of 
yo=cot#o. He would clearly only be concerned with the 
position of the runner who is furthest along. I t is, of 
course, quite possible that some other runners might 
be closer to y0 than the front runner but that would be 
entirely accidental. 

As contrasted to ordinary variational calculation, we 
then have an objective way of judging different results, 
and a particular "direction" in which to proceed if we 
ourselves are doing the calculation. We have not given 
an objective way of deciding when we are close to the 
true answer. That decision must be made in some quali
tative way. For one thing, it should generally be possible 
to estimate 9lQ to within perhaps one. For another, if 
the runner is approaching the finish line, his motion is 
necessarily quite slow and will generally be rather 
smooth. The converse is, of course, not necesssarily 
true. If a particular class of functions have been omitted 
in the choice of trial functions, the slow and regular 
motion could signify no more than convergence to the 
wrong limit. 

Though there is no new physical content involved, 
the above results can be stated much more succinctly 
in terms of phase shifts. If we let r}M be the phase shift 
determined at any stage of the variational calculation 
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in the manner just described (beginning with rjp when 
0^1 = 0), we have that rjM<V' I t is assumed in this dis
cussion that the multiples of w in the definition of the 
phase shift are accounted for (TJM and rj can actually 
remain arbitrary to within the same multiple of 7r). 
This is, of course, precisely the advantage of talking in 
terms of phase shifts, for one then knows automatically 
which branch of the cotx vs x curve one is on. The ques
tion of the determination of the appropriate multiple of 
IT is discussed in some detail in references 1 and 6.16 In 
references 1 and 16, the definition of the phase shift 
involves a comparison of the projected wave function 
with the free wave function. We have subsequently 
realized that this definition leads to a phase shift which 
is a discontinuous function of the potential strengths 
and of the energy when there is a resonance and perhaps 
under certain other conditions. In reference 6, therefore, 
where continuity in the potential strengths is assumed 
throughout the paper, the definition involving the 
projected wave function should not be used. The main 
result of that paper, however, that the phase shift 
increases as additional states are introduced, is still 
valid, although the application in practice will now be 
slightly more difficult. The question of the definition 
of the phase shift will be elaborated upon in a future 
paper. 
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APPENDIX A 

In the development of the bound on rj, it was shown 
that 

rj>v
p if Q(H-E)Q>0, (Al) 

where the latter inequality is to be understood to mean 
that the operator is positive definite. More generally, 
one can define the target operators P * and Q*, where P * 
includes not only the ground state but some of the 
excited states, and where Q* includes some but not 
necessarily all of the excited states not included in P*, 
so that P * contains P , Q* is contained in Q, and 
P*Q*=0, but we need not have P*+<2* equal to the 
unit operator; P * and Q* must, however, be projection 
operators. 

^ * + Q * > ^ * if Q*(H~E)Q*>0, (A2) 

which includes Eq. (Al) as a special case. 
I t is a trivial matter to derive a minimum principle 

which involves P * and Q* rather than P and Qy and 
which includes the choice P*=P and Q*= Q as a special 

16 See also, A. Temkin, J. Math. Phys. 2, 336 (1961). 

case. In general, there is no point to this generalized 
form of the minimum principle, for if P * includes m 
states, one has to solve m coupled differential (or 
integro-differential) equations as the starting point of 
the calculation, rather than simply the one differential 
(or integro-differential) equation that arises in the P 
or static approximation. This is bad enough, but then 
in all the subsequent calculations that involve the trial 
function tyt, the work will be much more laborious. In 
fact, the great virtue of the minimum principle as op
posed to the bound is precisely that the excited states 
do not have to be introduced one at a time; rather, some 
arbitrary functions containing variational parameters 
are to be introduced, where the functions contain the 
excited states in some perhaps complicated way, and 
the variational parameters are chosen to minimize 
cot (TJ—6), the contributions of the various excited 
states being thereby adjusted to produce the best results 
for the specified form of tyt. The above remarks are rele
vant with regard to the determination of numerical 
values. From a heuristic point of view, however, it is 
desirable to consider the generalization to P * and Q*, 
and we will now proceed to do so. 

Starting with the equations satisfied by ^ p * and by 
>J/P*_|_Q*^ w e a r r i V e at an equation of the form of Eqs. 
(2.14), with rj replaced by r}p*+Q* and with P replaced 
by P*, both as an operator and as a superscript, with Q 
replaced by ()*, and with ^ in Eq. (2.1) replaced by 

yp*+Q*. If then 

3C*-()*E 

~Q*[H+HP* P * # - £ ] ( ) * > 0 , (A3) 

L P*(£-tf)P* J 
we obtain an upper bound on the left-hand side of the 
analog of Eq. (2.14) by dropping the last line. If the 
inequality (A3) is not satisfied, we proceed with the 
subtractions in the usual way. We then have the gen
eralization of Eq. (2.17). If finally we choose Q*tyt=0, 
we have if the inequality (A3) is satisfied that 

cot (v
p*+®*- 0) < cot(rip*-d). (A4) 

I t should be noted that there are conditions on 0 that 
follow from the fact that the Green's function in Eq. 
(A3) is 6 dependent. 

Equations (A3) and (A4) are, of course, analogous to 
Eq. (A2), the difference between the conditions given 
by Eqs. (Al) and (A3) being a reflection of the fact 
that we are obtaining bounds on the one hand on <qp*+Q* 
and on the other on a trigonometric function of rqpir+Qir. 

I t should be noted that it follows from the above 
derivation that the best bound that can be obtained on 
QQt{f)—d) from a trial function which includes only the 
m target states included in P * is the value cot(??p*—6) 
obtained from an exact (numerical) solution of the set 
of m coupled differential equations defined by P*. 
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APPENDIX B—AN EXAMPLE 

A fairly serious calculation of some low energy L = 0 
and 1 scattering phase shifts for the scattering of posi
trons by hydrogen atoms is now in progress,17 in which 
the target can be excited to superpositions of excited 
5 states, of p states, and of d states, where the super
positions are not broken down into states with specified 
principle quantum numbers, that is, into eigenstates of 
HT. The calculation has not yet been completed and we 
will, therefore, not discuss the results here other than to 
say that they are very encouraging. We would, however, 
like to record the results obtained for £ = 0 and for an 
incident energy of 3.4 eV (&ao=0.5) by using the mini
mum principle in a very simple but very inefficient way, 
with the static approximation solved numerically and 
with Q* being the very restrictive operator which pro
jects onto the hydrogen 2s state; we then expect to 
get a bound on the ls-2s approximation. Q^t was taken 
to be the 2s function of r multiplied by Ce~aq, giving us 
one linear and one nonlinear variational parameter. Let 
us make the reasonable but unproved assumption that, 
(for0=7r/2and£=3.4eV) 

Q*[H+HP PH-E\Q*>0, 
L P(E-H)P J 

in the space of total orbital angular momentum zero, 
with H the total Hamiltonian of an electron and a posi
tron in the field of a proton. It then follows from the 
discussion in Appendix A that the result obtained should 
be better than the Is approximation (tam?p= —0.2696), 
but not as good as the ls-2s approximation (tarn?1*-1-2* 
= — 0.2602).18 It is very satisfying that with our quite 
simple trial function we find, using a=0.5, that 
ta,nr)l8+u> — 0.2612, which accounts for nearly 90% of 
the difference. We would like to comment on a recent 
paper by Rotenberg19 on e+H scattering in which phase 
shifts are obtained that considerably exceed those of 
Schwartz.20 Rotenberg expands in a complete set of 
functions, Sturmian functions, different from those 
used in the usual close coupling approach. We want to 
observe that our proof6 that for Q*(E—H)Q*<0 in the 
close coupling approach the phase shift approaches the 
exact value monotonically is not valid in the Sturmian 
approach. 

APPENDIX C—THE ZERO INCIDENT ENERGY CASE 

While the primary purpose of the present paper is to 
extend the minimum principle to nonzero incident 
energies without having to alter the potentials, the 
question naturally arises as to whether the zero incident 

17 For a preliminary report on this work, see Bull. Am. Phys. 
Soc. 7, 492 (1962). 

18 K. Smith and P. G. Burke, Phys. Rev. 123, 174 (1961). 
19 M. Rotenberg, Am. Phys. (N. Y.) 19, 262 (1962). See also 

A. Temkin, Proc. Phys. Soc. (London) A80, 1277 (1962). 
20 C. Schwartz, Phys. Rev. 124, 1468 (1961). 

energy limit of the present formulation is an improve
ment over the previous formulation. For Np—N, the 
answer is that in a formal sense it is an improvement, 
but that from the practical point of view it will almost 
always be preferable to perform the calculations using 
the previous formulation. The comparison between the 
old (a) and the new (fi) minimum principle formulations 
is almost exactly the same as the comparison between 
the Kohn-Hulthen (a) and the Lippmann-Schwinger 
(j(3) variational principle formulations. In both cases 
formulation 0 is better in the sense that it generally 
gives a better answer for a given trial function; as can 
be seen from Eqs. (3.1) and 3.1'), the trial function for 
formulation a that gives the same answer as does formu
lation 0 is an iteration of the trial function of formula
tion /3. Nevertheless, since a does not involve a Green's 
function while 0 does, it will generally be preferable to 
use a rather than 0 since one can perform the necessary 
integrations for trial functions of a that are so much 
more complicated than those for which the integrations 
can be performed for /3 that the initial advantages of 
0 are more than offset. 

There are, nevertheless, some additional remarks 
that should be made about the zero incident energy 
limit of the present minimum principle formulation. 
Thus, from the discussion in Sec. 3 and Eq. (3.16) we 
obtain the quite pretty result that 

3Co-ETdQ>0 if NP=N. (CI) 

It is obviously not true that H-ETQ>0 if NP=N, 
unless N=0. In the new formulation, therefore, one can 
obtain a bound on A for an arbitrary tyt without having 
to perform any subtractions. Unfortunately, in order 
to know that NP=N, one would have to construct 
N orthonormal trial functions for which the expectation 
value of PHP—ETOP is negative. 

The inequality (CI) can be qualitatively understood 
quite simply. If NP=N, the static approximation is a 
very good one, or, equivalently, excitation from the 
ground state is not too important. The mathematical 
equivalent of the above remark is the statement that 
QHP and V are small. But, neglecting only terms of 
second order in QHP, we have 

Wo-ETdQ~Q(H-ETo)Q. 

Since QTQ>0 and since QHTQ>ETI, we then expect 
that 

Wo-ETdQ> (ETI-ETO)Q+QVQ. 

The remark that QVQ is small since V is small concludes 
the qualitative argument. 

We would like finally to record a small generalization 
of a result obtained previously. It has been shown21 

that 
A<AP if NP=N. (C2) 

21 L. Spruch and L. Rosenberg, Nucl. Phys. 17, 30 (1960). 
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This also follows from Eq. (3.15). If Np is less than N, 
it may be possible to account for the additional N—Np 

states by including some excited states of the target, 
that is, by replacing P by P* . Since the entire formalism 
remains valid under this replacement, we obtain 

A<AP* if NP*=N, (C3) 

where Np* and Ap* are, of course, the number of nega
tive eigenvalues and the scattering length associated 
with P*(H-ETQ)P*. If NP=N, in which case we 
automatically also have NP*=N, Eq. (C3) simply 
represents an improvement upon Eq. (C2) rather than 
an extension which is applicable to new situations. 

APPENDIX D 

From the assumption that there exist Np bound states 
in the static approximation, it follows that one can 
choose Np functions of the form 

^(i) = p ^ a ) ( D 1 ) 

which satisfy Eq. (3.13) with N replaced by Np. I t is 
not immediately clear, however, once one has chosen 
Np such functions that it is always possible to find 
N—Np additional functions such that the entire set 
of N functions satisfies (3.13). We will now show that 
not only is this always possible, but that the N—Np 

additional functions can even be chosen to be of the 
particular form 

1 
^o» = ( M + PHQf. (D2) 

P(ETO-H)P 

To begin with, we note that the totality of functions 
^ ( 1 ) and \f/i2) form a complete set of functions in the 
space of functions which are regular and which vanish 
at least as rapidly as 1/q as q —» oo. Secondly, we notice 
that 

(*<», [ # - £ r o > < 2 ) ) = ( * W , [ F - £ r o > ( 1 ) ) = 0. 

If then we place all the functions of form ^ ( 1 ) before 
those of form \f/{2\ the matrix of H—ETQ reduces to 
block diagonal form; more precisely, we find 

(H-ETQ) = ( ), (D3) 

where the superscript indicates the class of functions 
with respect to which the submatrix is constructed. 

A useful consequence of this is that, for a finite H 
matrix, the determinant may be written 

Det(ff-jEro) = Det(J7<1>-£ r o)-Det(fl r«>-£ro). (D4) 

Now we know that the operator H—ETQ has N nega

tive eigenvalues and that Ha)—ETo has Np, since there 
are N bound states and Np static bound states. What 
we would like to know is how many negative eigenvalues 
the submatrix Hm—ETO has. We will show that it has 
exactly N—Np of them, as might have been suspected. 
The method of proceeding will be to take the functions 
one at a time and consider first the 1X1 matrix, then 
the 2X2 and so on. At each stage, we will look at the 
determinant, T>et(H—ETO) and use the theorem that 
a change in sign of the determinant as an additional 
function is introduced is equivalent to the introduction 
of an additional negative eigenvalue to the matrix. Since 
the operator H—ETQ has N exact negative eigenvalues, 
and our set of ^ ( 1 ) ,s and ^ ( 2 ) ,s is complete, exactly N 
such changes in sign will eventually be observed, as 
functions are added one at a time. 

We begin by introducing only functions of the type 
^ ( 1 ) until the changes in sign of the determinant indicate 
that Np approximate negative eigenvalues of H—ETQ 
(which is the same as H^1)—ETQ at this stage) have 
been introduced. Since H^1)—ETQ has only Np exact 
negative eigenvalues, from this point on introducing 
any number of additional \f/il) functions cannot cause 
Det (# ( 1 ) —E T Q) to change sign again. Now since 
Det(H—ETO) must ultimately change sign N times, 
it follows from Eq. (D4) that the remaining N—Np 

changes in sign must come from Det(2J(2) —ETO). There
fore, the infinite submatrix H{2)—ETQ has exactly N—Np 

negative eigenvalues, which is the desired result. 

To complete the proof in the form required in the 
text, one further thing should be shown. So far, it has 
been seen that it is possible to find A7P approximate 
negative eigenvalues of H—ETQ of the form ^ ( 1 ) and 
also N—Np of the form i/^2). If N such functions have 
been constructed, one simply repeats the procedure of 
the last paragraph with these A" functions and, thus, finds 
that Det(£T—ETQ) changes sign N times, and hence 
that these N functions taken together generate N nega
tive eigenvalues. 

In the light of the foregoing procedure, the reduction 
of the original Hamiltonian, H, by means of the func
tions ^ ( 1 ) and \p(2) into the form Eq. (D3), a certain 
insight can be gained into the minimum principle as 
derived in Sec. 2, where we begin with the Schrodinger 
equation (2.1) and proceed through Eqs. (2.5) and 
(2.7b) to the final result, Eq. (2.17). First, it has been 
pointed out already that the submatrix Ha)—E in 
Eq. (D3) is equivalent to the static Hamiltonian of 
Eq. (2.5). (The present discussion will not be confined 
to the zero-energy problem.) Further, if one looks at 
Eq. (3.17) where the J>n« were all functions of the form 
^ ( 2 ) , it will be seen that this equation states that our 
submatrix, Hi2)—E, is equal, element by element, to 
the matrix 30,—EQ. That is, the operator 30,—EQ which 
is used in the minimum principle corresponds to the 
submatrix, Hi2)—E of the original Hamiltonian, based 
on functions of the class ^ ( 2 ) . What was done in Sec. 2 



394 H A H N , O ' M A L L E Y , A N D S P R U C H 

can then be summed up in this way. The Hamiltonian 
matrix was effectively reduced to the form Eq. (D3). 
The first submatrix, H{l)—E corresponds to a simple 
operator, and represents a problem which can be solved 
exactly. The second submatrix, H^-E (&-EQ), 

A. INTRODUCTION 

THE breakup of an unstable particle into three or 
more fragments is an important process in many 

areas of physics and chemistry: high-energy particles, 
compound nuclei, and highly excited molecules provide 
a variety of examples. The inverse process of three-
body collision can also be important in chemical re
actions and in the nuclear reactions of stellar interiors. 
The lifetime of the unstable particle or collision complex 
is one of its principal characteristics. I t is the purpose 
of this note to examine some general features of such 
lifetimes when three-body processes are present. 

For a two-body collision in the simplest case (elastic 
scattering, classical nonrelativistic mechanics, forces of 
range shorter than Coulomb), the collision lifetime is 
conveniently defined as the limit, as R —> °o, of the 
difference between the time the particles spend within 
a distance R of each other in the actual collision and the 
time they would have spent there in a hypothetical 
trajectory without any interaction1,2: 

Qci = limR^lt(R)-to(Rn (1) 

This definition can be readily translated to quantum 
mechanics, and leads to the result that the collision 
lifetime is proportional to the energy derivative of the 
phase shift, and thus also to the statistical density of 

* This work was supported principally by the National Science 
Foundation and in part by the National Aeronautics and Space 
Administration. 

1 F. T. Smith, Phys. Rev. 118, 349 (1960), referred to below as 
"LM"; also 119, 2098(E) (1960). See also A. Krzywicki and J. 
Szymanski, Progr. Theoret. Phys. (Kyoto) 23, 376 (1960). 

2 Such a definition is implicit in L. Eisenbud, dissertation, 
Princeton, June, 1948 (unpublished) and E. P. Wigner, Phys. 
Rev. 98, 145 (1955). 

though more complicated, has the property that its 
spectrum is discrete below the inelastic threshold, and 
so it can readily be bounded. Consequently, in terms of 
an exact solution of H{1) and a bound on H ( 2 ) a bound is 
found on k cot(r)—6). 

available states; for isolated resonances and slowly 
decaying states, there is a simple relation between the 
collision lifetime, the width of the resonance, and the 
characteristic decay time of the state.3 The definition 
is also easily extended to inelastic collisions—in the 
quantal case there results the lifetime matrix Q related 
to the energy derivative of the scattering matrix S.1 

Classically, the lifetime for an inelastic collision is 
defined by subtracting from the actual collision dura
tion that of a hypothetical trajectory with two portions, 
the asymptotic incoming and outgoing paths extended 
as straight lines to their respective points of closest 
approach. 

The development of a new description for three-body 
and many-body collisions4 was initially motivated by a 
desire to include these processes in the formulation of 
the lifetime matrix. This note will carry out that 
program explicitly. 

In treating three-body and (A7+l)-body events, it is 
most helpful to use a center-of-mass coordinate system 
normalized so that all internal coordinates involve a 
common reduced mass /u(3) or /i(Ar+1) such that 

M(3)2=IIt=i3wl-/Zt=i3Wt, 

W+i)"=Ui~i»+hni/T.i-iN+1mi- (2) 

The internal coordinates characterize a space of 3A7 

3 T. Ohmura has pointed out an error of a factor of 2 in LM. 
The decay time rm is f the average value Q near the resonance 
and J the value Qmax at the resonance; physically this is reason
able since the average collision lifetime Q involves two passages 
through a barrier, while the decay time rm involves only one. [See 
also the Appendix in F. T. Smith, J. Chem. Phys. 36, 248 (1962).] 

4 F . T. Smith, Phys. Rev. 120, 1058 (1960), referred to below 
as "GAM"; See also L. M. Delves, Nucl. Phys. 9, 391 (1958-
1959). 
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Collision lifetimes and the lifetime matrix are expressly formulated so as to include three-body and many-
body collision and breakup processes. The many-body states are expressed in the generalized angular 
momentum representation, in which the principal radial coordinate is proportional to the square root of 
the trace of the inertia tensor for the iV-body configuration. The physical significance of the (energy-de
pendent) three-body collision lifetime Q(Z)(E) is clarified by considering the special case where the three-
body breakup occurs by way of a metastable two-body intermediate. If the metastable occurs with an in
ternal energy Em and a decay time rm, and the process creating it has a collision lifetime Qm{E—Em), the 
connection with Q<3> is: Q^(E) = Q^(E-Em)+TmEm/E. This result holds both classically and quantally. 


