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Non-Abelian vector gauge theory is given a first-order Lorentz gauge formulation and then transformed 
into the radiation gauge. The result agrees with the independently constructed radiation gauge theory. There 
is a brief discussion of the axial gauge. 

THE major purpose of this note is to prove the 
formal equivalence between a manifestly co-

variant Lorentz gauge formulation of non-Abelian 
vector gauge field theory and the independently devised 
radiation gauge formulation.1 The Lorentz gauge 
version is analogous to that introduced by Fermi for 
the electromagnetic field, in which a supplementary 
condition on states is used. 

LORENTZ GAUGE 

Let us consider the following scalar Lagrange 
function: 

+lfG»vGlir-Gd^+fak»+£(xP), 
where 

and 

refer to a Dirac field. The notational conventions of 
reference 1 are employed. The response of this Lagrange 
function to the numerical infinitesimal gauge transfor
mation 

and 

(l+i'tSK'fa,, G-*(l+i't8k')G, 

fa-> (l+i't5\')fa+d,iS\, ^ - » (l+i'Tdy)rp, 

is given by 

One should resist the impulse to conclude that the 
Lagrange function would be invariant were the infini
tesimal gauge function to obey 

(dM-t'%')dMSX = 0, 

for this could not be a numerical gauge transformation. 
The Dirac part of the Lagrange function is gauge 
invariant, which implies the differential conservation 
law 

The field equations derived from the action principle 
are 

6V0x=O, 
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1 J. Schwinger, Phys. Rev. 125, 1043 (1962); 127, 324 (1962). 

{a^d^-i'Tfa^+pml^O. 

Note that the Lorentz condition dM#M=0 is an operator 
equation. This is no source of difficulty in a theory 
based on first-order differential equations, as contrasted 
with the more usual procedure employing second-order 
differential equations.2 Apart from the explicit con
struction of Gki in terms of fa and fa, all the field 
equations are equations of motion. This is emphasized 
by the structure of the time derivative term in £, 

-~Gokdocj>k-Gdoct>0+ii^do^ 

which also exhibits the pairs of complementary canoni
cal variables. The nonvanishing equal time commu
tators are 

itfao(x),Gi?l(%')l=Sai>8k
l8(x-xf)y 

WWAM]=«^(x-x'), 
while 

W«M,^(*0}=M(x-x'). 
Infinitesimal numerical gauge transformations are 

generated by the operator 

- / 
G«x= / (dxJlGdodX-dXdoG-Gi'tyo'dX] 

in the sense illustrated by 

The composition law of successive infinitesimal gauge 
transformations is expressed by the group commutation 
property 

— i[G^iyG8\2l—Gs\i2j 
where 

5Xi2= —i (5X1̂ X2). 

The following equal time commutators can be regarded 
as specific implications of this group property: 

and 
LG(x),G(x')l=lG(x),ddG(x')l = 0, 

ZddG(x),ddG(x')l= -Hd&ixysix-x'). 

A particular solution of the commutation equations 
obeyed by the gauge group generators is Gsx^O, for 
all 5X. Hence, there should exist special gauge invariant 

1 C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954). 
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states that obey 
G 5 X*=0 

or 
G(# )¥=0 , <9oG O ) * = 0 . 

Furthermore, this property is not confined to one time. 
I t is a consequence of the extended current conservation 
law and the field equations that 

(dfl-i
iUt>;)d^iG(x) = 0. 

Accordingly, the second, and every higher time deriva
tive of G(x) also vanishes when applied to a gauge 
invariant state, and the latter are characterized by the 
eigenvector equations 

G(ff)tf = 0 

for all space-time points x. I t is these gauge invariant 
states with which we are concerned. Note, incidentally, 
that if ^ is a gauge-invariant state so also is F&, where 
F is a gauge-invariant operator, for 

G s x F* = [G 5 X ,F ]*=0. 

The energy density operator of the system is given by 

e^^T^-^L^k-m^G^-k^-^dkG, 

in which T°°(x) is the gauge invariant operator 

7w=i/a[(G»O2+i(G«)«]-4^.[aHdifc-tT0fcO+/3w>. 
Similarly, the momentum density is 

0 ° , = r.-faiidi-iHtOGV-k^-tfdjtG, 

where 

n = y ^ l . G M - i ^ . ( d * - i T ^ ) * + i 3 4 ^ * ^ 

is gauge invariant. I t is not difficult to verify the 
fundamental equal-time commutators 

-C^(*)^(^]=-(®°*(*)+©°*(*'))W(x--x') 
and 

-ilTm(x)1T^(xf)^-(T0k(x)+T(ik(xf))dkd(x-xf). 

The latter is the reduced version of the ©°° commutation 
relation for gauge invariant states. This follows from 

(@oo_ roo)^= = 0 j (&>k-Fk)y = Q 

and the remark that T°°^r is also a gauge invariant 
state, so that 

000 (aOe°°(*')*= P W P M t . 
The equation of motion and Lorentz transformation 
properties of any gauge invariant operator F can be 
calculated from T00, for gauge invariant states, since 

This remark does not apply to any field operator, 
however, since none of these is gauge invariant, in a 
non-Abelian gauge theory. 
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RADIATION GAUGE 

The energy operator constructed from ©°° is a linear 
functional of the complementary field variables G and 
<t>°. If no restrictions are imposed on the vector space, 
the energy spectrum ranges continuously from + oo to 
— oo, since these variables can be subjected to arbitrary 
linear displacements. That freedom of translation must 
be suppressed to form a subspace of physically ad
missible states, and this is accomplished by considering 
only the gauge-invariant states. But such states, as 
eigenvectors of operators with continuous spectra, have 
no finite norm. Only by eliminating the field variables 
that are superfluous in the physical subspace can 
vectors of finite norm be obtained. 

I t is convenient for that purpose to decompose the 
complementary fields <j>k (x) and G0* (x) into longitudinal 
and transverse parts, as in 

M*) = 4k(x)L+<l>k(x)T, ^ W L = ^ X W , dk<t>k(x)T=0. 

The canonical commutators decompose correspondingly, 

i\j>k (*) r ,G° '(* ' ) r :h ( W « ( x - x ' ) ) r 

= 5k
l8(x-xf)-dkd

l'(4w\x-xf\)-\ 

We also adopt a partial representation of the gauge 
invariant states, which is labeled at a particular time 
by the eigenvalues of <t>°(x) and <t>k(x)L. The comple
mentary variables are represented by three-dimensional 
functional differential operators 

Ga(x) - > i(8Z/8<t>a0(xyi Ga»
k(x)L - > i(b*/b<t>ka W ) . 

Thus, the supplementary condition G(x)^ = 0 becomes 
the wave functional equation 

(V«*a°(*) ' )*=0, 

and SF is independent of the eigenvalues </>o
0(#)'. 

The introduction of three-dimensional vector nota
tion (Gok —> G) permits us to write doG as 

- (V-i'tf) • G+k°= (V-i'tf) • L, 

where L(x) is a longitudinal vector, 

This is presented in a symbolic notation, with ^^ 
defined by 

- (V-^^ (x ) ' ) -V3D 0 (x ,x r ) = 5 (x-xO. 

I t is taken for granted in this work that 3D$ exists and 
is unique. With the aid of the equal-time commutator 

-il(v-iHt{xyyux)A{x')-] 
= -Cv-i't*(xyy8(x-x'), 

we find that 

C(V-*^(*) ' ) -L(*) , (V ' -» ' /# ( .V) , ) -L(* ' ) ] 
= -'t(V-iH4(xy)-L(Xy8(.x-x') 

- ( V - ^ W ) - [ L ( x ) , L ( x ' ) ] - ( - V ' - ^ ( x ' ) ' ) , 
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where the last differential operator acts to the left. A 
comparison with the commutation relations obeyed by 
ddG shows that they are replaced by 

[L(*),L(*')]=0, 

which facilitates the use of the second supplementary 
condition in the form 

L(*)* = 0. 

The longitudinal variables can be eliminated from 
the physical quantities T00 and T°k. This is carried out 
in several stages. Evidently, 

G * = ( G r + G L ) ¥ = G i ¥ 
with 

but this does not suffice to eliminate GL from 

G 0 w ( * ) . G ^ ( x ) * = | [ G ^ 

for example. We must also include a commutator term: 

G0w,.G*w^=Gi0w.G*m^+J[G0,n-Gi0wi, G*m]¥. 

Now 

and 

so that 

[G°-(x)-Gi0w(o;), Gk
m(x)~]* 

= -ti(tdm$>4>(x,x)}Gk
m(x)% 

where 
dm3D0(x,x)= limdw£>^(x,x'). 

This gives the replacement 

G 0 m .G\^ = G2
0w.G*m^ 

with 
G2(*) = Gi(*)-J trOV©,(x,x)). 

The analogous elimination process for T00 involves 

(G0k)*$r= (Gi°*)^+[G^G^*> 
and 

[(?*W,Gi°* ( * ) > = -tr(tf*©*(x,x))GiV*)¥-

The result can be written as 

[GD*(o;)]8* = [G20*(*)-itr/d*lD*(x,x)] 
X[G2°*(a;)+§ tr/djfc2>,(x,x)>. 

The second supplementary condition supplies the 
dependence of ^ upon the longitudinal field eigenvalues 
$u through the integrable functional differential 
equation, 

Kh/HL(x)f)- V / (dx')£>*(x,x') 

X[ (V / - f^ (* ' ) , ) -G r (*0 -* 0 (* / ) ]U = O, 

H W I N G E R 

in which 
*(x)=*(x)T+i(x)L'. 

We shall write the solution as 

where the operator F obeys the initial conditions 

F(0) = 1, 

and | )i is independent of the longitudinal eigenvalues. 
The isolation of all $v dependence in the operator V 
is characteristic of any gauge invariant state and, 
therefore, applies also to P 0 ^ and T0*^. Thus, 

l^(d>L')^=V(ct>L,)Tm(0)\ )x 

which states, in effect, that $L can be set equal to 
zero in T00 and Tok after GL has been eliminated. 

The transformation to the subspace of physical 
states, and the radiation gauge, has now been made. 
One problem remains, however. The operator G2 is not 
Hermitian. Indeed, 

G 2 - G 2 t = - [ l + V ^ ( V - ^ ^ ) ] - t r / V ^ ( x , x ) , 

which can be exhibited in the structure of G2 by writing 

G2=[1 + V D , ( V - * V ) ] : ( G r - J tr iVE^-VSM0 . 

The non-Hermitian term is removed by the transfor
mation 

I > i = e x p [ M ^ ) ] | >, 

where v($) is defined for arbitrary ^ by 

8zv/8<f>ka(x)= —trUadk£><t>(x,x), 

provided these are integrable differential equations. 
The required integrability conditions are valid, 

[Vty»(*0IV«**a(*)> 
= -tr/ad*£>0(x,x%d/£)0(x',x) 

= Lh/d<l>ka(x)Xh/S<t>lb(x')lv. 

The outcome of this last stage is the replacement of G2 
with the Hermitian operator 

G=[l+VaD^(V-i'/f)]:G r-V3D#*P. 

The final results for the Hermitian energy and 
momentum density operators are 

roo=i/2(G-J tr/V£>0)(G+i tr/VSD,) 
+ l / » ( G « ) 2 - ^ . ( « - ( V - i T f )+6fn)t 

and 

T>k=f&l'Gki-\i1,. (dk-iiT4>k')4>+hdl\&vktl', 

in complete agreement with the independent radiation 
gauge treatment. 

AXIAL GAUGE 

There is an alternative to the radiation gauge in 
which the decomposition into longitudinal and trans-
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verse components is replaced by one into components where 
parallel and perpendicular to a fixed axis. We describe Cx

 f V Cx Cx \ f 

the latter as the axial gauge.3 An entirely analogous / dx J^)-2[ + m J{x) 
elimination procedure can be used. Let the axis be 
labeled as the third direction. We write 

= f dx'ie(x-%')f(x')-
J —oo 

A = -r°34-r <* " "~^ j t h e a x i a l g a u g e m^ s t b — 
A -u -+-Cri plete, however. As xz approaches infinity in either 

- ( V - « # ' ) • G+&°= (dz-i'tyz^A, 
w This description of the axial gauge must be incom-

while G refers to the components perpendicular to the f00 

axis. The equal-time commutation relations for doG T(*i*2)= / ^ [ ^ - ( V - f ' / ^ O - G 1 ] ^ ^ ) 

J —oo 

a ^ 0 3 — FLO / -t JL>\ rLl direction, the operator G03 attains the limits 

( a 3 - ^ 3 ( x ) ' ) % ( x , x ' ) = S (x -x ' ) , w h e r e ^ - ± ° ° : G - ( * ) - ± * T ( * i f t ) , 

while G1 refers to the components perpendicular to the 
axis. The equal-
are satisfied with 

VA( ^ A ( 'Y\—ti *s n o t n e c e s s a r % z e r o - That the resulting nonconver-
L U ) V )J— i gence of the total energy is not merely a matter of an 

and the second supplementary condition becomes additive constant can be seen from the derived equation 
N of motion, 

A W* = °- cMx= - / 2 G X - (V-i'tf )i.0°, 
The consequences of eliminating G03 are given by where 

G03.G*3*=G2
03.G*3* 

with 
G 2

w M = Giw(*)+§tr«D,(x,x) 
A r°° 

( G » ) « * = [ G , « + J t r i ! D , X G , « - i W S D 1 > . = W dx,'g{x3-x,%tfi-{V-iH^)-G^{xlXixs') 
J —00 

The elimination of 4>z is accomplished by a n c | 

/

OO 

dxz" ie(*i-*s") W - * t ' ) 
-OO 

P ( « E / « * 8 ( * ) , ) - G I W ( O ; ) ] F ( 0 » , ) = O, F ( 0 ) = 1 = - i | * 8 - * 8 ' | + « . 

and the net effect in T00 and 7™ is to set <£3'=0. At Furthermore, an element of gauge arbitrariness remains, 
this point the axial gauge becomes algebraically characterized by infinitesimal gauge functions 8\ that 
simpler than the radiation gauge, for are independent of #3. Thus, 

0 3 = 0 : d3£>3(x,x') = <5(x-x') 0a(*) -><t>z(x)+(dz-i(UI>z(xy)d\(x1X2) = 0. 

and SD3 is just an integration operation, which is quite Both of the operators T°° and T°k are invariant under 
independent of the internal variables. Therefore, such two-dimensional gauge transformations; and the 

. generators of these transformations are just the 
<f>z=0: tr/£>3(x,x) = 0, operators T(x&s), as illustrated by 

and the axial gauge is characterized by the direct ~ ^ ( * ) ^ ] = - ( V - ^ W O ^ M , 
substitution in T00 and T°k of the conditions 

fa(x) = 0, A = = / dxidx2 E 5Xa(xiX2)To(^iX2), 

/•*« so that 
G03(*)= / ^ ' [ ^ - ( V - ^ ^ O - G ^ C x ! ^ / ) , [2noo(*),T(inV)]=[ro*(*),T(*iW)]=0. 

y±oo '±oo 

^ The algebraic advantages of this gauge were pointed out by F u r t h e r consideration of these points will be required 
R. L. Arnowitt and S. I. Fickler, Phys. Rev. 127, 1821 (1962). before the axial gauge can be used effectively. 


