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The response of a physical system to external electromagnetic and gravitational fields, as embodied in the 
electric current and stress tensor conservation laws, is used to derive the equal-time commutation relations 
for charge density and energy density. 

INTRODUCTION 

AMONG the more important physical properties 
in relativistic quantum field theory are the 

conserved local quantities, such as the electric charge 
flux vector jM(#) and the stress tensor T^ix). In order 
to answer questions about the simultaneous measura-
bility of these quantities one needs the commutation 
relations of the operators on a space-like surface or, more 
specifically, at a common time. The physical inde­
pendence of different points on a space-like surface 
guarantees the compatability of any associated localized 
physical properties. That is a general assertion of 
commutability under such circumstances. A complete 
treatment of equal-time commutators has been lacking, 
however. Thus, although it has long been remarked 
that the electric charge density at all spatial points 
obeys 

ofl=aP': [ /W, j ° (^ ) ]=0 , 

a corresponding statement about the energy density 
had not been recorded until it was observed,1 for a 
particular system, that 

**=**': -i[r00(a?),r00(»')] 
= -(7*H*)+^*(*'))3*«(x-x'). 

It is our intention to supply a general basis for this and 
other equal-time commutators. 

The measurement theory of the electric current 
vector and the stress tensor is founded upon the 
specific dynamical nature of these properties as the 
sources of the electromagnetic and gravitational fields, 
respectively. More precisely, wre exploit the reciprocal 
dynamical aspect of j M and T^ whereby they determine 
the response of a system to external electromagnetic 
and gravitational fields. What is characteristic of these 
dynamical agencies, and equivalent to the existence of 
the local conservation laws for the properties of interest, 
is the freedom in description associated with gauge 
and coordinate transformations. 

ELECTRIC CURRENT 

The electric current provides the simpler illustration 
of the method. Let W be the action operator of all 
charge-bearing fields xW, excluding the purely electro-

* Supported by the Air Force Office of Scientific Research 
(ARDC) under contract A. F. 49(638)-589. 

1 J. Schwinger, Phys. Rev. 127, 324 (1962). 

magnetic action term. The vector potential A^x) 
appears as an external quantity in this action operator, 

W= j (dx)£ch(x,A»), 

and the infinitesimal numerical variation 

6AW- •• f (dx)j< > 0)5,4 M0) 

defines the electric current vector. The requirement of 
gauge invariance, applied to the infinitesimal gauge 
transformation 

5.4M(s)==-dM5\0v), 

yields the charge conservation equation 

drfHx) = 0. 

The gravitational potential gM„ replaces A^ in the 
analogous discussion of T^. For that circumstance the 
use of an external field is quite justified by the weak 
dynamical influence of the gravitational field in a 
special relativistic context. This argument does not 
apply to the electromagnetic field, of course, and we 
must remove the implication that a weak-coupling 
treatment of the electromagnetic field is necessarily 
involved. To do that we have only to rephrase our 
procedure by replacing W with the total action operator 

w-f (dx)££eh(x, A(i+Afl') + £em(AliJFflv)'] 

in which A»(x) is an arbitrary numerical external 
potential. Infinitesimal variations of the latter can 
now be used to define the electric current vector while 
incorporating the full dynamical effect of the electro­
magnetic field. 

The charge conservation equation 

d0f(x)=-dkj*(x) 

is an example of a relationship between operators, of 
the type 

d0A(x) = B(x), 

that is maintained for arbitrary values of certain 
parameters—the external potentials, in this example. 
Now, the quantum action principle, 

5(o-i | o-2)= i((Ti 15Wn | o-2), 
406 
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applies, in particular, to infinitesimal alterations in the 
structure of the Lagrange function, as realized by 
variations of numerical parameters. It is a corollary 
of the action principle that 

8(<r1\F(x)\a2) = (*1\8
fF(x)+i f (dx%F(x)8£(x'))+\a2), 

where 8fF(x) refers to an explicit dependence of the 
operator F(x) upon these parameters. To maintain the 
relationship between A{x) and B(x) then requires that 

d0\ 8'A(x)+i / (dx')(A(x)8£(x'))+1 

=8'B(x)+i I (dx')(B(x)8£(x'))+. 

But, the time derivative of the ordered product is 
given by 

d0(A (x)8£(xf))+= (doA (x)8£(x))+ 

+8(x°--xof)[A(x)J8£(x')~], 
and therefore, 

' / 
-i I (dx%A0),5£(>')]| *wo< = dtfi'A(x)-8,B(x). 

This statement supplies a general foundation for equal-
time commutation relations. Note, incidentally, that 
A(x) cannot depend explicitly upon the parameters 
unless B(x) correspondingly involves the time deriva­
tive of these parameters. In the absence of such a 
dependence, the right-hand side of the above equation 
is just —8fB (x). 

When a number of parameters are involved, the 
explicit dependence upon the parameters is subject to 
certain integrability conditions or reciprocity relations. 
We illustrate this with the continuum of parameters 
constituted by the external potential A^x). The 
calculation of the second variation for a transformation 
function proceeds from the action principle as 

5Vik2) = 5 p | ( ^ ) 5 ^ M W ^ i l i M W k 2 ) l 

• / 

(dx) (&)6All(x)8A,(i>tOl-(*11(j*(x)f(x>))+1 <r2> 

+«?i\l'j'(.x)/6A,W\vfl, 

and the necessary symmetry of this result supplies the 
reciprocity relation 

S'j'WBA.W^B'j'W/BAtix). 

In order to obtain explicit equal-time commutation 
relations for components of the electric current vector, 

we must be somewhat more specific about the depend­
ence of the current upon the external potential. The 
major consideration here is locality. The current usually 
does not involve the potential at relatively space-like 
points, but we only insist here that j»(x) does not refer 
to the potential at neighboring times, which is to say 
that it does not contain the time derivative of the 
potential. That restriction defines a certain class of 
electric charge-bearing physical systems (which may 
well be without exception). The immediate implication 
from the conservation equation is that j°(x) cannot be 
an explicit function of the external potential. The 
reciprocity relation then asserts that 

8fjk (x)/8A o (*') = 8ff (xf)/8A k (x) = 0. 

The equal-time commutation relation supplied by the 
conservation equation for charge now reads 

-if(dx%f(x)jHx^8A^) 

= dk f (dx%8/jk(x)/8Al(x^M^,\ 

and therefore, (x°=x°f) 

[j°(*),j°(*')3=o, 

-iLfixlfixV^d^Pix^Atix^ 

The variational derivatives that appear here are the 
three-dimensional ones defined by 

8fjk (x)/8A, Or') = 8 (x° - x°')8/jk (x)/8A, (V). 

Despite the use of an external potential, these commu­
tators are assertions about an isolated physical system, 
if the potential is set equal to zero after differentiation. 

One should recognize that an explicit dependence of 
the current upon an external potential occurs for all 
physical systems. Let us use the conservation equation 
again, and convert the second commutator into 

U°(*)> -^of(xf)2^-dkdl
,Z8z

fjKx,)/8Ak(x)2y 

which is symmetrical in the two points x and xf. A 
contradiction to the hypothetical vanishing of the 
right-hand member of this equation arises from the 
positiveness exhibited by the vacuum expectation 
value of the left-hand member. Thus, if <p(x) is an 
arbitrary real function, with which one forms the 
Hermitian operator 

JW) = f(dxM*)f(x), 

the equation of motion 

id°f(x) = Lf(x),P°l, 
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combined with the null energy of the vacuum, yields 

j(dx)(dx')<p(x)(lj°(x), -^o/(* ' ) ]>?(s ' ) 

= 2<JW>>0. 

Now it is essential to call upon the relativistic principle 
that any sufficiently localized act must excite the 
vacuum, which implies that functions <p(x) surely exist 
for which the states ( / have an energy expectation 
value greater than zero. It can be showrn that the 
explicit dependence of the current on the potential is 
completely local, 

-8z'jk(x)/8Ai(x') = 8(x-x')jkl(x). 

The expectation value of the symmetrical tensor j k l (x) 
in the invariant vacuum state is of the form 

Accordingly, 

2(JP°J)=C J(dx)lV<p(x)J 

and the constant C must be a positive number, 

0 0 , 

which shows, incidentally, that a positive energy 
expectation value is realized for every nonconstant 
function <p(x). 

STRESS TENSOR 

Through the agency of an external gravitational 
field, the stress-energy-momentum tensor T»v(x) is 
denned by the variational equation 

8gW=j(dx)(-gy^T^gfiVi 

in which 
g=detgM„. 

The role formerly played by gauge invariance is now 
taken over by the requirement of general coordinate 
invariance. The infinitesimal coordinate transformation 

x»=xfi+8xtl(x) 
induces 

8g»v=8xxd\gfiV+g\vdli8x*+gll\dv8xx, 

from which we infer the extended conservation equa­
tions 

^[(-g)1/2gx,r-]=i(-s)1/2:r*'dxg,,,. 

Alternative forms are 

and 

^[(-g)1/2r"*]= - ( - g ^ r ^ i v 

H W I N G E R 

where, of course, 

As a first application, consider an infinitesimal 
deviation, 8gflv(x), from the Minkowski metric. The 
extended conservation equations can then be presented 
as 

dxT^=-%8gudvT^, 
where 

T>= (-g)ll2T^-g^8guT^+T^8gugVK. 

Let us also observe that 

dx(x^T^-xvT^)=-i8gXK(x^dv-xvd^T^+T^-T^ 
in which 

An integration over all three-dimensional space removes 
the space derivative terms and yields 

dof (<Zx)T \=- [\dx)±8gXKdvT^ 

do] (dx) (o ;MT^s,T\ ) 

= - f (dx)B8gu(x,dv-xvd,)T^-T,v+TVfiJ 

These forms lead immediately to commutation relations 
between the components of the stress tensor and the 
generators of the special relativistic infinitesimal 
coordinate transformations, 

Pv= \{dx)T>v, J,v= J (dx)(x,TQ
v-xP

rP,)i 

namely, 

and 

These commutators, representing the transformation 
properties of the stress tensor, produce, through 
integration, the commutation relations of the ten 
infinitesimal generators of the inhomogeneous Lorentz 
group. In this way special relativistic kinematics 
emerges from gravitational dynamics. 

To obtain more detailed information, let us choose 
the special gravitational field 

gki=8ki, go*=0, — goo(x)^l, 

so that properties of the energy density can be inferred 
by variation of goo(V). The extended conservation 
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equations are 

do[(-gw)T™2=-dki(~goo)T»kl+iT<>kdkgoo 

and 

do[(-goo)1/22™] = -d*[(-goo)1/22™] 
+U-goo)ll2r»dkgOQ, 

where each form is chosen to avoid the explicit appear­
ance of dogoQ. We confine our attention to the class of 
physical systems which are such that Tkl does not 
contain explicitly the time derivative of goo, although 
it may be an explicit function of goo at the same time.2 

It can be concluded that neither (—goojT00 nor 
(~goo)1,2T°k are explicit functions of goo for this dis­
tinguished class of material system, which is to say 
that these local quantities are the same functions of 
the fundamental dynamical variables as in the absence 
of an external gravitational field. The equation of 

2 In fact, Tkl must be an explicit local function of the second 
spatial derivatives of goo-

I. INTRODUCTION 

IT is the purpose of this article to explore the physical 
consequences of the correlation bond graphs intro­

duced by two of us in a previous article.1 In the latter, 
it was shown that the free energy could be expressed 
in terms of graphs which strongly resembled the graphs 
of Bloch and Dominicis2 plus graphs which arose 
because of correlations in the single-particle state 

* Supported in part by the U. S. Office of Naval Research. 
f john Simon Guggenheim Memorial Fellow, 1962. Present 

address: University Libre de Bruxelles, Brussels, Belgium. 
J Present address: Universite Libre de Bruxelles, Brussels, 

Belgium. 
1 R. Brout and F. Englert, Phys. Rev. 120, 1519 (1960) (here­

after referred to as I). 
2 C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459 (1958). 

motion for (—goo) 7™ now implies the equal-time 
commutator 

-iU-gooT*>)(x), J(dxO(-gooTW)(x')8(~goo(x')y^ 

==-dkt(-goo)ll2T°k(xM-goo(x)r*3 

-(-gooyi2V>*(x)dk5(-gm(x)yi\ 

where, it is noted, there is no explicit dependence upon 
gco(#), which indicates the consistency of the physical 
restriction. On setting — goo=l, we obtain 

This derivation of the energy density commutator 
condition, for a class of physical systems, supplies a 
simple and general basis for what may well be con­
sidered the most fundamental equation of relativistic 
quantum field theory. 

populations, n(k). These correlations arise because of 
the restraint in the trace to a summation over states 
with fixed number of particles. 

In the limit as the number of particles goes to infinity, 
it was found that the only correlation graphs which 
arise are those which are simply connected. In this 
article, we exploit this property to show that the 
elimination of correlation bonds by summation (which 
is possible because of the rule of simple connectivity) 
results in a renormalization of the populations (n(k))0. 
In the limit of zero temperature, one then recovers for 
the energy a series of terms which involves the re-
normalized (n(k)). This series is precisely the usually 
adiabatic series of Goldstone.3 It is, thus, shown that 

3 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
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It is shown that the class of correlation graphs which arise in the calculation of thermodynamic properties 
in the canonical ensemble can be summed to give renormalized single-particle populations. In the limit of 
zero temperature the perturbation expansion of the energy then reduces to the adiabatic expansion of Gold­
stone about the correct model state. Arguments for the consistency of the expansion are developed for the 
case of the nonspherical Fermi surface. 


