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Limits of Error for the Electron Density, Spin Density, and Atomic Form 
Factor in Quantum-Mechanical Calculations* 
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Explicit formulas are given for the limits of error at an arbitrary point in the electron density, spin density, 
and form factor derived from an approximate wave function. In the derivation extensive use is being made of 
some previous results by Kinoshita. The main treatment is preceded by a short discussion of some of the 
more mathematical aspects of the problem, and a simple numerical example is given in the last paragraph. 

1. INTRODUCTION 

TH E properties of an atom in its ground state can 
be calculated from the solution of the time-inde

pendent Schrodinger equation 

where EQ is the lowest eigenvalue of the Hamilton 
operator H and \f/0 is the corresponding eigenfunction 
which depends on the space and spin coordinates of 
the electrons. Unfortunately, however, the Schrodinger 
equation is of such a complicated form that, except for 
the simplest case of the hydrogen atom, it does not 
seem possible to obtain the exact solution. On the other 
hand, there are methods available by which approxi
mations to 0o of varying degree of accuracy can be 
obtained. As more and more refined calculations had 
been made, at least on small atoms* there has been a 
continued interest in deriving limits of error for the 
expectation value of the energy1 and other quantities2 

calculated from an arbitrary trail wave function \p. 
The main purpose of this paper is to show that it is 

possible to derive limits of error for quantities of the 
type 170(a) —7(a) |. where a is an arbitrary point in 
three-dimensional Euclidian space, y0 is the electron 
density derived from the exact solution, and 7 is an 
approximate electron density obtained from a trial 
function 0. This will be achieved in terms of four 
quantities; the exact ground state and first excited state 
energy, the expectation value and the mean square 
deviation of the energy. The derivation is based largely 
on ideas to be found in a paper by Kinoshita.3 Kinoshita 
estimated the error in the relativistic corrections for a 
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(1938); T. Kato, J. Phys. Soc. Japan 4, 334 (1949); A. Froman 
and G. G. Hall, J. Mol. Spectr. 7, 410 (1961); G. L. Caldow and 
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helium atom trial wave function. This required an esti
mate of the error in the electron density at the singu
larities of the potential. I t will be shown here that these 
results can be generalized to apply on one hand to an 
arbitrary point in space and on the other hand to any 
atomic system. From this, one will be able to conclude 
that if a wave function gives good energy and small 
mean square deviation for the energy the electron 
density will be a good approximation to the exact 
density, everywhere, even in those regions of space 
which from the point of view of energy may seem 
unimportant. 

I t is well known that the state vectors which describe 
a quantum-mechanical system are elements of the 
Hilbert space of quadratically integrable functions.4 

These functions form a Hilbert space only if the inte
gration is understood in the sense of Lebesgue (von 
Neumann4). From this it follows that two wave func
tions, which differ on a set of zero measure (e.g., set of 
isolated points), describe the same physical situation. 
Therefore, it may at first sight seem surprising that one 
can meaningfully discuss the value of the electron 
density in a given point. I t will be discussed in the next 
introductory chapter how the ambiguity on a set of zero 
measure can be removed if not only 0 but also H\p 
belongs to the Hilbert space of quadratically integrable 
functions. This requirement seems reasonable both from 
the mathematical and physical standpoint. The pre
paratory mathematical considerations of the next sec
tion are, however, not strictly necessary for the under
standing of the subsequent main discussion. 

2. PRELIMINARY DIGRESSION 

Let us consider an atomic system with N electrons 
and with nuclear charge Z. Let r t and ft denote the 
position and spin coordinates of the ith electron and 
let x» stand for the collection of r* and ft. The Hilbert 
space associated with this system will be denoted by 
LA

2(xh'"XN) defined as the set of all functions 
<£(xi, • • • xjy) which are antisymmetric in the variables 
Xi and satisfy the condition 

(0,0)= / |0(xi,« -xN)\2dr1- -dtNdtv -d£N<cc. (1) 

4 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New Jersey, 
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Since the set of Riemann integrable functions do not 
form a Hilbert space but only a linear vector space, the 
integration over u is in the sense of Lebesgue, whereas 
the integration over the spin variable f t* denotes sum
mation. Two functions which differ on a set of zero 
measure (zero measure in 3iV-dimensional Euclidian 
space5) are to be considered identical. The Hamilton 
operator H is given in the form 

N N Z 1 

(2) 

where the notation is self-explanatory. The operator H, 
as it stands, is not yet well defined in the mathematical 
sense. As a start one may define H for functions which 
have second derivatives everywhere. It was shown by 
Kato6 that, provided the original definition of H is not 
too restrictive, there is one and only one self-adjoint 
extension. It is necessary to make this extension in 
order to have a resolution of the identity belonging to 
Hy i.e., a complete set of eigenfunctions. The linear 
vector space on which the self-adjoint extension is 
defined is called the domain of H and it will be denoted 
by DR. DH is a proper subset of LA

2, i.e., DHC.LA
2. AS 

shown by Kato the domain DH consists of all functions 
4>ELLA2 which satisfy the condition 

/ 
EJVlflpi,- •ptf,fi,* • *fiv) |2^Pi*' •dpN<(x>J (3) 

where <£ is the Fourier transform of <£. This may be 
written somewhat loosely in the form 

(K4>,K4>)=\\Kf\\2<«>> (4) 

where K is the kinetic energy operator. It follows from 
condition (3) that if $£/># then H<j>(E<t>A2, that is, 
(H(j>,H<t>) < oo. Following the suggestion of Kinoshita7 

we require that an acceptable trial function \f/ should 
satisfy condition (3), i.e., we require not only \(/^LA

2 

but also H\I/£:LA2. Let us now define the first-order 
density function 7(1*1) as 

> - / -y(ri) = / j ̂ (xi, • • • xN \ Hx% • • * drNd£i • • • d£N, (5) 

which is 1/N times the probability of finding an electron 
with arbitrary spin at the position r. It is a consequence 
of a lemma by Kato6 that if TP&DH, 7(1*1) is essentially 
continuous, i.e., it can be made continuous by changing 
its value on a set of zero measure.8 Here we shall be 

6 J. C. Burkill, The Lebesgue Integral (Cambridge University 
Press, New York, 1951). 

6 T . Kato, Trans. Am. Math. Soc. 70, 195 (1951). 
7 T. Kinoshita, Phys. Rev. 105, 1490 (1957). 
8 Incidentally this result is far from trivial. As it is stated by 

Kato that for N>\ there exist functions which belong to DH and 
are still essentially discontinuous, it apparently does not hold for 
the wave function itself. 

interested to estimate the quantity 170(a)—7(a) |, where 
7ois the exact density and a a fixed point. The ambiguity 
on zero measure can now be removed by the following 
argument: In reality one never measures the electron 
density at a point but only in a small volume, let us say 
AV. It seems, therefore, reasonable to consider instead 
of 170(a)—7(a) I the quantity 

lim 
A7-*0,AFDa 

— f yQ(t)dx f y(t)di 

Because of the essential continuity of 70 and 7, the result 
is independent of the way the limiting procedure is 
carried out and of possible discontinuities on a zero 
measure. This is equivalent to redefining the densities 
so that they become continuous everywhere. In the 
following we shall, thus, be able to assume that the 
densities had been chosen continuous. 

3. LIMITS OF ERROR FOR THE 
ELECTRON DENSITY 

Let ^(ai, * * • ajv) be an approximate atomic wave 
function which satisfies conditions (1) and (3). It can 
always be written in the form 

^( l -u^ 'WH/, (6) 

where ̂ 0 is a ground-state eigenfunction to the Hamilton 
operator H given by Eq. (2) (the ground state may be 
degenerate), / is a function orthogonal to the ground-
state solutions, and rj is a constant which can be chosen 
real and positive. For typographical convenience we 
assume all three functions to be real. The constant rj 
satisfies the inequality9 

^2<(X-£o)/0Ei-£o), (7) 
where X= (H\f/3\f/) and Eo> Ex are the exact ground state 
and first excited state energies. The inequality 

\(l-1*)(Ah,*o)-(Af,f)\ 
<v\(A+,f)+(AM\+v2\(Af,f)\ (8) 

can easily be obtained from Eq. (6) for any linear opera
tor A. If A is self-adjoint and positive definite, the 
identity 4̂ = (^l)1/2(^l)1/2 and Schwartz's inequality 
allows us to put this in the simpler form 

\(l-V2)(A*o,rPo)-(AM)\ 

<2V(fM)vWf)1,2+riV^f). W 
Let us now put A = 8(a— ri), where 5(a—rx) is the 
Dirac 8 function in the point a working on the coordi
nates of electron 1. One thus obtains 

| ( l - ^ )7o (a ) -7 (a ) | 
<2i7[7(a)]^[5(a-r)/ , /]+) ?

2(5(a-r1)/ , /) . (10) 

Our aim is to maximize the right-hand side of (10) in 
terms of E0, Eh X, and <r, where <r[(#i£,#i/0-X2]1/2. This 

9 C. Eckart, Phys. Rev. 36, 878 (1930). 
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will be achieved in two steps. First, it will be shown that The kinetic energy operator K is invariant under trans-
the unknown expression (<5(a— ti)fj) can be maximized lation by a and therefore 
in terms of (Kf,f) and (Kf9Kf), where K is the kinetic w / \ i _ i / * / \ M 
energy operator. Secondly, the integrals (Kf,f) and I W ( « - r i ) W ) l - K ¥ i M ) l 
(Kf,Kf) on their turn are bounded by an expression 3 v2 r j 1/2 
which contains only the above-mentioned four quan- < \(KfJ)(Kf,Kf)\ . (16) 
tities. Let us, therefore, consider (5(a— ri)/,/). By the T N\ J 
definition of the 5 function . . . . 

Substitution of this into (10) yields 
(«(a-r1)/,y)=(«(r1)f,g), (11) ,.. „ . . , . , 

where l(l->?2)Yo(a)-Y(a)| 
g(r,,fi,x2,---xjV) = /(ri+a,f1,x2,---Xiv), f3V2 | « 

<2[7(a)]1/2 - — v(Kf,fyi2r,\\Kf\\\ 
and 5(r0 is the Dirac 5 at the origin. The identity 17r iV J 

r 3V2 
(*(ri)M)= / a f rOCrfr^v • - x * ) ] 2 ^ +--„(tf/,/)1'2

I7 | |A7||. (17) 
J w N 

1 /* 1 (12) The first part of our aim has now been accomplished. 
= ~~T~ / — Vi2[g(ii,fi,x2,- • -xN)y,T, {Kf,f)m and \\Kf\\ are the only unknown quantities in 

v Tl the right-hand side expression. A straightforward gen-
where dr=dtv dxNd^ • • • #w can be proved by partial eralization of the formulas given by Kinoshita for the 
integration provided h e h u m c a s e g i v e s t h e uPP e r b o u n d s 

# r v(Kfjyn<z(N/2)^v 

— \gM4>iddldUdxr--dxN [ZW1j2/2+(X-£0)+»?2£o]1/2, (18) 
dri* i7||Jfi:/|)<[<T2+X2-(l-,2)£o2]1/2 

exists everywhere except possibly on a set of isolated +amr)(Kf,f)m, 
points. , . , . 

This leads to the inequality w h e r e a 1S a numerical constant given by 

l(*(ri)M)l<-T 
2xl 

'gdr\ 

1 

+ 

a=\AZ2+2Z{Z-l){N-l)+N{N~iy-]. (19) 

If one introduces the notation 

3v2 
f - ( g r a d ^ ) ^ r | ] (13) C = ~ ~ [ Z ( A V 2 ) 1 / ^ + ( Z W , V 2 + ( X - E 0 ) + ^ o ) ^ ] 

The application of some well-known formulas in vector X{[(r2+X2-(l-^)E02]i/2+ a i /2 [ z ( l V / 2 ) 1 /2 9 7 

analysis gives +(^2AY/2+(X-£0)+i72iEo)1/2]}, (20) 

/ 

1 
—gVi2gdr <*WgWg)xlt(i> - W " , (14) 

it will follow from inequalities (17) and (18) that 

I ( l -^ 2 )7o(a)- 7 (a) | <2[7(a)]1/2C1/2+C, (21) 
a n d which leads to the final formula 

/ 

1 
—(gradig)2</r 
r\ 

<(Visg,Vi2g)lf'(g, -Vi>g)v\ |7o(a)-7(a) | < {2C^y(a)J^+C+^y(^}J (22) 
1 — 772 

(See, e.g., Kinoshita, reference 3.) From this and in- w j i e r e Q JS g j v e n b y E q (20). 
equality (13) it follows that W e m a y t h u s c o n c l u d e t h a t t h e e r r o r i n t h e electron 

3 y j , î/2 density 170(a)—7(a) |, in any given point a, is bounded 
I 0(ri)g,g)| < 1 (Kgyg)(Kg,Kg) I , (15) b y a n expression which depends besides 7(a) only on 

w NI ) the quantities X, a, E0, and 77. Inequality (7) provides 
as an upper bound for rj whereas X and a can be calculated 

(—Vi2g,g)= (2/N)(Kg,g) from the wave function \p. As for E0 and Eh one may 
and either use experimental values or else it is possible to 

Vi2g,Vi2g)<WN)(Kg,Kg)- give upper and lower bounds by known methods. 
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I t also follows from formula (21) that if a sequence of 
trial functions converges to the exact solution, i.e., 
| | ^ o - ^ ( w ) | | -+ 0 and if in addition ||(£r-\<">)^<»>|| -> 0, 
the convergence to the electron density is uniform. 

I t is to be noted that these arguments can easily be 
generalized to apply to a molecular system. The only 
difference in the final formula would be that now 
Z—Hi~*inZu where n is the number of atoms in the 
system. 

A final remark on the spin density should perhaps 
be made. The spin density at a point a may be defined as 

7(a)8Pin= / 8(ri—a)^*(xi,- • -x^) 

Szi\p{xi,- - 'XN)dxv - -dxN, 

where the spin matrix SZy works only on the spin co
ordinates of electron 1. Since | |S,| | = J, it can be shown 
by using Schwartz's inequality that 

|7o(a)sPiu—r(a)s 

1 
< - •{2[7(a)]^2Ci/2+C+r727(a)}, (23) 

"2 1 — 77 

where 7(a) is again the total electron density and C is 
given by (20). The spin density plays an important role 
in the discussion of the hyperfine interaction and the 
above formula might be of use for testing the reliability 
of very accurate calculations. 

4. LIMITS OF ERROR FOR ATOMIC 
FORM FACTORS 

The form factor is defined, apart from an unimportant 
numerical factor, as the Fourier transform of the elec
tron density.10 Let, therefore, fo(k) and f(k) denote the 
Fourier transforms of 7o(r) and 7(1-). The substitution 
^ = [ l / (27r) 3 / 2 >- i k ' r i in inequality (8) leads to 

l ( l - ^ ) y o ( k ) - y ( k ) | < 
(2x)3 

+ / eik'ri\ \pfdr 
(2x) 

/ e~iktyfdT 

<-
2n [\n\f\dr+~^~ [fdr. 

; J (2TT)3/2 J {2ir)WJ ' (2TT)3 

As \J/ and / are normalized, Schwartz's inequality gives 

1 
| ( l - ^ | f 0 ( k ) - 7 ( k ) | < (2V+v2\ 

(2*) 3/2 

10 See, e.g., R. E. Peierls, Quantum Theory of Solids (Clarendon 
Press, Oxford, 1955). 

No. of 
param

eters 

6 
18 
38 

TABLE I. Calculated values of (C)ll\ C, and 
T̂ max for helium atom wave functions.* 

- X 

2.903 24 
2.903 715 
2.903 722 

<r2 

0.016 90 
0.000 922 
0.000 115 

>?2max 2 ( C ' ) 1 / 2 

0.000 485 0.40 
0.000 013 0.060 
0.000 004 0.032 

a 
0.040 
0.000 906 
0.000 256 

* The values of —X and <r8 were taken from Table II in reference 7. 

which can also be written in the form 

if„(k)-f(k)j 
1 r 1 

< — — ( 
l-7,2L(27r)3'2 

-(2„+„*)+„*[f(k)| . (24) 

Moreover, since 

lf(k)| 
(2TT) 3 ' 2 J 

we have 

y(r)di= , 
"(27r)3'2./ (2x)3'2 

[fo(k)-f(k)|<-
" ( 2 T ) 3 / 2 1 - J / 

(25) 

The last two inequalities might be useful for estimating 
the accuracy of the form factors used in crystallography. 

5. NUMERICAL EXAMPLE 

Here we shall illustrate the use of formula (22) by 
applying it to the helium atom. For helium Z= 2, N= 2 
and so we have 

lYo(a)-7(a) | 

1 
< -{2(C01 / 2[T(a)]1 / 2+C'+^m a x2T(a)}, (26) 

where 

3 1 
C < C ' = { 2 w + [ ( 4 + £ 0 ) w 2 + ( X - £ o ) ] 1 / 2 } 

2xV2" 

X { [ < r 2 + A 2 - ( l - w
2 ) £ o 2 ] 1 / 2 

+ ( 4 4 ) ' / 2 [ 2 , m a x + ( ( 4 + £ o ) w 2 + ( A - £ 0 ) ) 1 / 2 ] } 
as 

0 < 7 ?
2 < 7 ? m a x

2 = ( X - £ 0 ) / ( £ l - £ o ) . 

Table I lists the values of C , VZ(C')1/2 and 7?max
2 for 

a set of wave functions containing 6, 18, and 38 
variational parameters, respectively. For the exact 
ground state and first excited state energies EQ= 
— 2.903 725 a.u. (atomic units) and Ei^ — 2.146 a.u. 
were used (reference 3). 

The figures in Table I indicate that for those regions 
of a in which 7(a) is appreciable it is the 2(C)1/2[7(a)]1/2 

term which is the most important in the inequality. The 

file:///pfdr
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error for a given 7(a) tends to zero as a —» 00 whereas 
the error limit converges to a nonvanishing constant. 
Th accuracy of these limits is difficult to assess and 
moreover, since formula (22) holds for all values of a, if 
a given 7(a) is known to be a good approximation to 
70(a) in some regions of space, the actual error in this 
region may be expected to be much less than that given 
by inequality (22). If 7(a) is obtained through the 
variation principle, it is likely to be accurate near the 
singularities of the potential and, consequently, in such 
a case, formula (22) is likely to overestimate consider-

1. INTRODUCTION 

THE possibility of describing particles as members 
of Regge trajectories1,2 in the complex angular 

momentum plane raises the important question whether 
all particles should be represented by these moving 
poles. As an alternative, we can envisage a description 
of certain particles and resonances in terms of "ele
mentary poles"3 of the relevant amplitudes, where these 
poles are not related to the moving poles of the inter
polating partial wave function at all. The two ways of 
representing particles suggest a possibility for making 
a qualitative distinction between "elementary" and 
"composite" particles. Although one may dislike such 
a distinction on "philosophical" grounds, it is of interest 
to see to what extent it may be excluded on the basis of 
the general notions of relativistic dispersion theory as 
well as specific experimental information. In this note 
we will be concerned mainly with strongly interacting 
particles, but the two ways of describing particles may 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 T. Regge, Nuovo Cimento 18, 947 (1960). 
2 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394 

(1961) and 8, 41 (1962); R. Blankenbecler and M. L. Goldberger, 
Phys. Rev. 126, 766 (1962); G. F. Chew, S. C. Frautschi, and S. 
Mandelstam, ibid. 126, 1204 (1962); S. C. Frautschi, M. Gell-
Mann, and F. Zachariasen, ibid. 126, 2204 (1962). 

3 R. Oehme, Phys. Rev. Letters 9, 358 (1962). 

ably the error near the nuclei. All this, however, does 
not impair our general conclusions as stated in the 
introduction. 
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also be of interest in connection with the distinction 
between strong and weak interactions (and perhaps 
electromagnetic interactions). 

In an earlier publication3 we have already described 
how elementary poles can be present in a physical 
partial wave amplitude Fi(s) such that these poles are 
not related to a singularity of the interpolating function 
F(s,\).4 We have also given an argument showing that 
F(s,l) = Fi(s) for / > 1 , and that all particles with spin 
larger than one must be members of pole trajectories in 
the X plane. However, this argument depends upon the 
existence of a Sommerfeld-Watson representation of the 
invariant amplitude F(s,t), or a related representation 
which is valid for t—* °o and for some interval on the 
negative s axis or around s=0. 

It is the purpose of this paper to give a more detailed 
description of elementary poles as compared to Regge 
poles within the framework of relativistic dispersion 
theory, and to give a more general proof for the fact 
that particles with spin larger than one must be manifes
tations of angular momentum trajectories. Further
more, we show that any information to the effect that 
the high-energy limit (t,u—> 00) of the invariant ampli-

4 We define here elementary poles independent of perturbation 
theory. For a definition within the framework of perturbation 
theory, see S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, 
Phys. Rev. 126,2204 (1962); this paper contains further references. 
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Elementary poles are introduced as poles of physical partial wave amplitudes Fi(s) which are not present 
in the analytic interpolating function F(s,\). It is shown that Fi(s) = F(s,l) for l>\, and that all particles 
with spin larger than one must be members of Regge trajectories; only bosons are considered explicitly. 
Additional restrictions are discussed which would make it possible to eliminate elementary poles also for 
spin one and zero. The possibility that the physical s-wave amplitude F0 (s) is not determined by the inter
polation function F+(s,Q) could be used to avoid the ghost associated with the vacuum trajectory. The 
problem of branch-point trajectories is discussed briefly. 


