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error for a given 7(a) tends to zero as a —» 00 whereas 
the error limit converges to a nonvanishing constant. 
Th accuracy of these limits is difficult to assess and 
moreover, since formula (22) holds for all values of a, if 
a given 7(a) is known to be a good approximation to 
70(a) in some regions of space, the actual error in this 
region may be expected to be much less than that given 
by inequality (22). If 7(a) is obtained through the 
variation principle, it is likely to be accurate near the 
singularities of the potential and, consequently, in such 
a case, formula (22) is likely to overestimate consider-

1. INTRODUCTION 

THE possibility of describing particles as members 
of Regge trajectories1,2 in the complex angular 

momentum plane raises the important question whether 
all particles should be represented by these moving 
poles. As an alternative, we can envisage a description 
of certain particles and resonances in terms of "ele
mentary poles"3 of the relevant amplitudes, where these 
poles are not related to the moving poles of the inter
polating partial wave function at all. The two ways of 
representing particles suggest a possibility for making 
a qualitative distinction between "elementary" and 
"composite" particles. Although one may dislike such 
a distinction on "philosophical" grounds, it is of interest 
to see to what extent it may be excluded on the basis of 
the general notions of relativistic dispersion theory as 
well as specific experimental information. In this note 
we will be concerned mainly with strongly interacting 
particles, but the two ways of describing particles may 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 T. Regge, Nuovo Cimento 18, 947 (1960). 
2 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394 

(1961) and 8, 41 (1962); R. Blankenbecler and M. L. Goldberger, 
Phys. Rev. 126, 766 (1962); G. F. Chew, S. C. Frautschi, and S. 
Mandelstam, ibid. 126, 1204 (1962); S. C. Frautschi, M. Gell-
Mann, and F. Zachariasen, ibid. 126, 2204 (1962). 

3 R. Oehme, Phys. Rev. Letters 9, 358 (1962). 

ably the error near the nuclei. All this, however, does 
not impair our general conclusions as stated in the 
introduction. 
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also be of interest in connection with the distinction 
between strong and weak interactions (and perhaps 
electromagnetic interactions). 

In an earlier publication3 we have already described 
how elementary poles can be present in a physical 
partial wave amplitude Fi(s) such that these poles are 
not related to a singularity of the interpolating function 
F(s,\).4 We have also given an argument showing that 
F(s,l) = Fi(s) for / > 1 , and that all particles with spin 
larger than one must be members of pole trajectories in 
the X plane. However, this argument depends upon the 
existence of a Sommerfeld-Watson representation of the 
invariant amplitude F(s,t), or a related representation 
which is valid for t—* °o and for some interval on the 
negative s axis or around s=0. 

It is the purpose of this paper to give a more detailed 
description of elementary poles as compared to Regge 
poles within the framework of relativistic dispersion 
theory, and to give a more general proof for the fact 
that particles with spin larger than one must be manifes
tations of angular momentum trajectories. Further
more, we show that any information to the effect that 
the high-energy limit (t,u—> 00) of the invariant ampli-

4 We define here elementary poles independent of perturbation 
theory. For a definition within the framework of perturbation 
theory, see S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, 
Phys. Rev. 126,2204 (1962); this paper contains further references. 
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tude F(s,t) stays below the power law t1 (or /°) and 
u1 (or u°) for any small interval in s is sufficient to prove 
that particles with spin one (or with spin zero and spin 
one) must be described by moving poles. If one is 
willing to assume the existence of some form of the 
Sommerfeld-Watson representation for t —> oo and some 
s<0, then it follows3 that an elementary pole describing 
a spin-one or a spin-zero particle always gives rise to a 
term Ci(s)tl or C0(s)t° in the asymptotic expansion of 
F(s,t) ,where Ci(s) and CQ(S) are analytic functions 
which cannot vanish in a whole neighborhood. 

2. ANALYTIC INTERPOLATION OF PARTIAL-
WAVE AMPLITUDES 

In order to simplify the discussion, we consider the 
scattering of spin-zero particles with equal mass /*, but 
we do not consider them as identical particles. In a 
channel where s is the energy variable, the invariant 
amplitude F(s,t) is related to the cm. amplitude by 

rc.m.(^)=(2M)Ffei). (i) 
We define the physical partial-wave amplitude by 

1 r+1 

Ft(s) = - / dcostf P;(cos#)FC?,/(cos#)) (2) 

so that 

F(s,t)=£(2l+l)Fl(s)Pl(l+——\ (3) 
i-o \ 2q2(s)J 

where 4=q2(s) = s—4ju2. The existence of a dispersion 
relation for F(s,t) at fixed values of s with a finite num
ber of subtractions implies that there is a number N 
such that for 1>N 

1 f* 1 / v \ 

irJV0 2q2 \ 2q*J 

XlAt(s,v)+(-l)lAu(s,v)l. (4) 

Here At(s,t) and Au{s,u) are the absorptive parts of 
F{s,t) in the / and the u channel, respectively, and vQ>0 
is sufficiently small for the integral to include possible 
single-particle contributions in these channels. We can 
also define the interpolating function 

1 r°° 1 / v \ 
F±(s,\) = - dv—Qdl+—)A±(s9v)9 (5) 

TJVU 2q2 \ 2qV 
where 

A±(s,v) = A t(s,v)±A u(s,v). (6) 

The expression (5) represents an analytic function of 
the two complex variables X and s for ReX>A7 and s in 
the cut plane. It is a unique interpolation of the partial-
wave amplitudes Fi(s) such that for5 1>N 

F±(s, X=I) = Fi(s) for 1= even/odd. (7) 
5 See, for example, V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 

41, 1962 (1961) [translation: Soviet Phys.—TETP 14, 1395 
(1962)]. 

Let us now assume that there is no natural boundary 
in the X plane, at least for ReX> — §. Then we can con
tinue the function F±(s,\) into the region ReX<iV, and 
for X=/, /= even/odd it uniquely defines amplitudes 
F±(s,l). However, a priori these amplitudes are not 
identical to the actual partial wave amplitudes Fi(s) as 
defined in Eq. (2). We note that neither the representa
tion (5) for F±(s,\) nor the expression (4) for Fi(s) is 
known to be valid for 1<N. However, for real K O w e 
have an asymptotic bound on F(s,t) for t—> <*> and 
u __> oo which is given by6 

lim | F(s,t) | <const /(In/)2, (8) 
t->00 

and a corresponding one for u —•> oo. Hence the repre
sentation (4) of Fi(s) is valid for l> 1 and real s<0 and 
coincides with the definition (2) of the partial wave 
amplitude. From the double dispersion relation for 
F(s,t) we know that the Fi(s) are always real analytic 
functions of s except for poles and branch points, and 
in this way the functions Fi(s) are defined also for real 
s<0. 

In the domain Re\>N, the function F±(s,\) is de
fined by the representation (5) as a regular function in 
X. As a function of s it has singularities at the same 
points as the Ft(s) for 1>N. The position of these singu
larities is independent of X, but their character may de
pend upon X. If we now continue F±(s,\) into the region 
ReX<iV, we will encounter ^-dependent singularities in 
the X plane which correspond to singular surfaces 
\=f(s)y where f(s) is a real analytic function. These 
surfaces manifest themselves in the s plane as moving 
singularities s= <p(\). As ReX increases, the singular 
points s= <p(\) disappear from the physical sheet, poles 
through the two-particle threshold, branch points (if 
they exist at all) through many-particle thresholds, 
etc.7 There cannot be any nonmoving singularities in 
the s plane for ReX^Af except those which are also 
present for Re\>N, because a fixed singular point 
would have to disappear suddenly as ReX increases 
above N, and such behavior for F±(s,\) is not possible. 
This result follows from the continuity theorem for 
analytic functions of two or more complex variables; it 
has been obtained first by Oehme and Tiktopoulos.8 

After this brief survey of the analytic properties of 
F±(SX)> w e consider now the representation (5) for real 
s<0. Just as in the case of integer /, it follows from the 
bound (8) that A±(s,v) is bounded by z>(ln v)2 for v—» oo 
and consequently, because of Q\(l+v/2q2)^v~x~1

J the 
function F±(s,\) is regular for Re X>1 for all s on the 
negative real axis. Since both representations (4) and (5) 
are valid for real s<0, and because (4) actually repre-

6 M . Froissart, Phys. Rev. 123, 1053 (1961). 
7 R. Oehme, in Proceedings of the 1962 Annual International 

Conference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962), p. 564; J. L. Challifour and R. J. Eden, 
(unpublished); V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 42, 
1260 (1962) [translation: Soviet Phys.—JETP 15, 873 (1962)]. 

8 R. Oehme and G. Tiktopoulos, Phys. Letters 2, 86 (1962). 
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sents the physical amplitude (2), it follows that Eq. (7) 
is valid for l> 1 and s<0. But the equality of F±(s,l) and 
Fi(s) in a real neighborhood is sufficient to guarantee 
that F±(s,l) = Fi(s)y 1= even/odd, 1>1 for all s. Even 
though these amplitudes have branch points on the 
negative real s axis, we can always find an interval where 
they can be analytically contined through the cut into 
another Riemann sheet, and such an interval may serve 
as a real neighborhood. 

3. MOVING POLES 

In the previous section we have seen that the inter
polating function F±(s,\), which is uniquely determined 
by the partial wave amplitudes Fi(s) with / larger than 
some finite integer A7, actually coincides with the 
physical amplitudes for all X=Z>1. Consequently the 
invariant amplitude F(s,t) is determined by the function 
F±(s,\) apart from an expression of the form 

+ lF1(s)-F^s,l)-]P1(l+l/2q*) = a(s)+b(s)t. (9) 

To what extent does this result imply that all stable 
particles and resonances with spin larger than one are 
manifestations of angular momentum trajectories corre
sponding to moving singularities s= <p(\) in the physical 
s plane or in a secondary Riemann sheet? We have seen 
that F±(sX) has no X-independent singularities in s 
which are not also present in the limit of large Re X.8 

This result applies to single-particle poles in the physical 
sheet of the s plane as well as to resonance poles in a 
secondary sheet. For instance, the poles F±(s9\) in the 
sheet reached through the cut 4:fi2<s<Si (e.g., Si= 16/x2 

for 7T7T scattering) are due to zeros of 

S±(s1\)=l+2ip(s)F±(s,\), (10) 
where 

PM = [(*-4M2)A]1 / 2 , 

We see that any X-independent pole of F±(s,\) would be 
present in all physical amplitudes Fi(s) for l>\. I t 
would correspond to a situation where we have an 
infinite number of particles with the same mass and the 
spin values 1=2,3, • • •. This is absurd, at least as far as 
stable particles and measurable resonances are con
cerned; hence we conclude that all particles with 1>1 
must be members of trajectories s= <p(\) or \=a(s). 

The next question is whether these trajectories de
scribing particles and resonances are simple pole tra
jectories \==a(s) such that 

F(s,\)~R(s)/la(s)-\l+-.; (11) 

for X —> a(s). As an alternative, we may think of a pole 
term with a superimposed branch point of varying 
character which reduces to a simple pole for X=/, like, 
for instance, 

R(s) 
(1 2) 

with a{s=m\l))=l, fi(s=m2(l)) = 0, and R e 0 ( * ) > - 1 . 
However, by expanding a(s) and 0(s) around s=m2(l), 
we find an expression of the form 

O ' C O - t f " 1 e x p { | > 2 ( 0 - s ] m [ > 2 ( 0 - s ] } , 

which is not an isolated pole in the s plane. Also, a 
singularity of F(s,\) like (12), which is not a simple pole, 
cannot disappear from the physical sheet of the s plane 
through an elastic threshold. We conclude, therefore, 
that the particles with / > 1 should be described by 
simple moving poles. 

So far we have only discussed the single-particle 
singularities, but it should not be forgotten that the 
unitarity condition requires the existence of many 
particle states which give rise to branch lines of Fi(s) 
and F±(s,\) like s>4m2(l), s>[fn(l)+nj, etc. These 
cuts will be discussed in a later section. 

4. ELEMENTARY POLES 

Particles and resonances with spin zero and one may, 
of course, also be described by pole trajectories in the 
X plane, but on the basis of the bound (8) alone we 
cannot exclude the possibility that the partial wave 
amplitudes F0(s) and Fi(s) have poles which are not 
present in F±(s,\) and vice versa. We call these poles 
of Foti(s) "elementary poles" in distinction from the 
moving poles or Regge poles of the interpolating func
tion F±(s,\). Because of the possible existence of these 
elementary poles, it is of special interest to study the 
functions 

AFQ(s) = Fo(s)-F+(s,0), 

AFI (* ) = F I ( J ) - F - ( * , 1 ) . 

In the physical sheet of the s plane they are regular 
functions except for poles and cuts on the real axis. 
They have, however, no left-hand branch points. In 
order to prove this we consider the representation (5) 
for F±(s,\), Re\>N and compute the discontinuity for 
real s<0. From the dispersion relation of the absorptive 
part A±(s,v) and the well-known discontinuity of Q\(z) 
we find 

1 
- disc[q~2\s+iO)F±(s+iO, X)]5<o 
2i 

1 r4"2-* 1 / v \ 
= - / dv P x - 1 )A±(s-iO,v) 

2 AM2 2q2(-q2Y \ 2qV 

1 rv+M 1 / v \ 
+ _ / dv e / ! ) 

w Jv_{8) 2q2(-q^ \ 2q*(s+i0)J 

X [ > f « ( V - 5 - z ; , v)±Ptu(v, V - j - t O ] , (14) 

where 

*±(5)=Kv-.o±ii>(H-v):irt, (is) 
and the second term in Eq. (14) contributes only for 
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s< — 8M2. For reasons of simplicity, we have taken 
v0=4:fi2 corresponding to TT scattering. Since in Eq. (14) 
the limits of integration are finite, it represents the 
discontinuity as a meromorphic function of X which, in 
the finite plane, has only the poles of Q\ at X=—w, 
n= 1, 2, • • •. The corresponding discontinuity of Fi(s) 
can be obtained from Eq. (4). The resulting representa
tions are valid for all / and we find 

disc AF0,i(s+iO) 18<0=0. (16) 

Note that the second term in Eq. (14) plus the contribu
tion from Im A±(s—iO, v) in the first term vanish for 
X=Z and even/odd values of /. 

We see that the differences AF0,i are analytic except 
for poles and cuts along the positive real axis. Suppose 
there is an interval 4p,2<s<Si where F(s,t) satisfies the 
elastic unitarity condition. Then we also have the con
tinued unitarity equation 

dkcF±(s+iO, \) = 2ip(s+iO)F±(s+iO, \)F±(s-iO, X) 

for 4:fjL2<s<Si, and hence in this region the difference 
(13) can be written in the form 

AFQtl(s) = p(s)[sm80,i(s)eiSQ^8) 

- s i n S ^ j O , ! ) ^ 0 ^ ] , (17) 

with real phase shifts 8i(s) and d(s,l). From Eq. (17) we 
see that AFQ,I(S) cannot be just a pole term like 

AF0(s) = g2m2/(m2-s), 

because then Im AFo(s-\-iO) = 0. This implies 8o(s) 
= zL8(s,0) and hence Fo(s) = ±:F(sfi). The lower sign 
is absurd because it leads to Im Fo=0 for 4 M 2 < S < ^ ; 
we, therefore, find that g 2=0. Hence AFoti(s) must be 
of the form 

1 r00 ImAF0 , i ( /+tf)) 
AF0,i(s) = ~ dsf

 ; , (18) 
x J so s — <y 

where we have ignored a possible s-wave subtraction 
and where So>0 is sufficiently small to take into account 
single-particle poles. 

I t is of interest to note that the branch points 
associated with an elementary pole of F0ti(s) must also 
be present in F±(s,\), although the pole itself is not 
present in F+(s,Q) or F_(s,l). Suppose FQ(s) has a pole 
at s=m2<4fx2. Then all the partial wave amplitudes 
Fi(s) have branch lines s>(m+n)2, s>4tn2, etc., and 
since for l>l, F±(s,l) = Fi(s), / = even/odd, the inter
polating function F±(s,\) must also have these branch 
lines. Of course, the weights along the cuts may be 
different for FQ(s) and F+(s,Q). 

The existence of branch points in F±(s,\) which are 
associated with elementary poles already shows that 
these pole terms are not simply free parameters; they 
are, in fact, intimately related to other parameters of 
the amplitude F(s,t). For instance, we can easily see 
that the interpolating functions G±(/,X) of the partial 

wave amplitudes with l> 1 in the t channel determine 
F(s,t) up to an expression of the form 

[Go( / ) -G + (< ,0)]+[Gi(0-G- . ( / , l ) ] 
XPi(l+u/2q2(t)) = c(t)+d(t)s, (19) 

where w=4iu
2— s—t is the momentum transfer in the 

/ channel. Comparing Eqs. (19) and (9), we see that 
G±(t,\) determines the poles and branch points of 
AF 0 i i ( j ) . 

5. BRANCH POINTS 

In the same way as elementary poles generate branch 
lines describing many-particle states which involve one 
or more of the particles represented by such poles, we 
expect that particles described by moving poles give 
also rise to branch lines. The essential difference between 
moving poles and elementary poles is not apparent in 
the dispersion relations for the amplitude F(s,t) itself, 
but only when we consider the behavior of these poles 
as a function of the angular momentum variable X. 
The variation of X tests the behavior of the particle 
mass under changes of the strength of the centrifugal po
tential. The situation is quite different for branch points, 
because even though one or more Regge-type particles 
are present in a state with two or more particles, the 
continuous variation of the total angular momentum 
may well be completely taken up by the orbital angular 
momentum which is due to the relative motion of the 
particles. If this is the case, then the position of the 
corresponding branch point of F± (s,X) in the s plane is 
independent of X and only its character changes with 
the angular momentum variable. For instance, a 
branch point due to two spin-zero particles with mass 
w(0) and \x gives rise to a term proportional to &2X+1(.?), 
where k(s) is the momentum in the c m . system of 
both particles. Even though w2(0) is a member of 
a family of poles s=m2(\) of F+(s,\), say, the branch 
point remains at 5 = [ W ( 0 ) + M ] 2 for all X is the con
tinuous variation is completely taken up by the orbital 
angular momentum. Evidently the complete ampli
tude F(s,t) has a branch point at j = [ w ( 0 ) + / x ] 2 

and so have all physical partial wave amplitudes Fi(s). 
In the representation (4) of Fi(s), this branch point is 
contained in the absorptive parts At,u(s,v) for v—> oo. 
But then it must also be present in F±(s,X) on the basis 
of the corresponding formula (5) for ReX>Af, and, as 
a X-independent singularity in the s plane, it certainly 
will not vanish suddenly as we continue to ReX<A\ 
We conclude, therefore, that the interpolating function 
F±(s,\) has all the branch points required by the 
unitarity condition for the amplitudes Fi(s) as non-
moving singularities, whether they correspond to inter
mediate states involving Regge-type particles or parti
cles described by elementary poles. The only question is 
whether, in the first case, there can be moving branch 
points in addition to those discussed above. On a 
previous occasion we have already pointed out8,9 how 

9 R, Oehme, reference 7, and Nuovo Cimento (to be published). 
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such moving branch points could, in principle, be 
generated by Regge-pole correlations in intermediate 
states with three or more particles. They would, of 
course, give rise to branch point trajectories in the 
complex angular momentum plane. I t is clear that these 
trajectories can only be associated with inelastic inter
mediate states of the amplitude in the .? channel, be
cause, as we have pointed out before, a moving branch 
point s=sc(X) in the physical sheet of the 5 plane must 
disappear from the physical sheet for sufficiently large 
values of Re X, and it cannot do so through an elastic 
branch point.7 [Moving singularities can never dis
appear through left-hand branch points of ^(^,X).7,8] 
For example, take the continuation of F±(s,\) through 
the elastic cut 4fjL2<s<Si; we have10 

F±K(s,\)==F±(s,\)/tl+2ip(s)F±(sm (20) 

and if F±u(s,\) has a branch point at s=sc(K), then 
also F±(sy\) has one. This argument can be generalized 
to other two-particle channels with particles of fixed 
spin. 

We do not want to pursue here the question of the 
actual existence of the moving branch points. Their 
appearance is perhaps unlikely in view of the fact that 
F±(s,\) must have branch points at all the physical 
thresholds like s=[m(/)-f-/i]2, etc., for all values of X, 
these thresholds being, of course, in secondary Riemann 
sheets if they involve unstable particles. However, 
there may be causes for the existence of moving branch 
points other than those discussed here. From the dis
cussion in reference 9 we find that, at least as far as 
three-particle intermediate states with two-particle 
correlations are concerned, the continuation of the in
elastic unitarity condition which leads to a unique 
interpolating function F±(s,\) seems to be the one where 
the spin of the correlated pair remains quantized. This 
implies that the continuous angular momentum varia
tion is taken up by the kinetic angular momentum of the 
third particle relative to the correlated system. 

6. CONCLUDING REMARKS 

In Sec. 2 we used the Froissart bound for F(s,t) in the 
/ and the u channel in order to show that all particles 
with spin larger than one must be described by pole 
trajectories in the complex X plane, but we could not 
exclude the possible existence of elementary poles of 
F(s,t) with 1=0, 1 which are not present in F±(s,\). We 
may ask whether a further restriction of elementary 

10 R. Oehme, Phys. Rev. 121, 1840 (1961). 

poles is possible on the basis of additional information 
about the high-energy limits of the amplitude. For 
instance, suppose we know from experiments that for 
some interval on the negative s axis the asymptotic 
form of F(s,t) for t, u—> oo behaves better than t, u to 
the first power. Then we can use our method in order 
to prove that Fi(s) = F„(s,l), and hence there can be 
no elementary poles with 1=1. In the same way we can 
exclude elementary poles with spin zero and spin one if 
we know that F(s,f) vanishes for t, u—> oo and some 
interval in s. 

Present experiments11 on high-energy p-p scattering 
indicate that the corresponding amplitude vanishes 
faster than tl and perhaps even iP for larger negative 
values of the momentum transfer variable s. If the same 
is true for £-p-scattering, and if these experiments 
really determine the leading term in the asymptotic 
expansion of F(s,t), then we could argue that the o) and 
the p meson, and perhaps also the pion, are to be de
scribed by pole trajectories. As we have pointed out in 
the introduction and in reference 3, the ^-scat ter ing 
experiments themselves are already sufficient if we 
assume the validity of some type of a Sommerfeld-
Watson representation for t—> oo. The difficulty with 
this representation is due to the fact that we do not 
know the behavior of F±(s,\) for X=>X r±ioo with 
X r < l . 

We would like to add a remark concerning the use of 
the possibility that the physical amplitude FQ(s) is not 
determined by the interpolating function F+(s,\) for 
X = 0. If F+(s,\) has a vacuum pole trajectory \=a0(s) 
such that a0(m2(0)) = 0 for some w2(0)<0, then it is 
quite possible that this pole of F+ (sfi) is not present in 
the physical amplitude Fo(s) and hence does not give 
rise to any ghost problem.12 On the other hand, if aQ(s) 
crosses the integer two such that a0(w2(2)) = 2 for some 
point s=m2(2) in the second Riemann sheet,13 then the 
arguments given in this paper show that the physical 
<2-wave amplitude F2(s) must have a resonance pole. 

We would like to thank Peter Freund for helpful 
discussions. 

11 W. F. Baker, E. W. Jenkins, A. L. Read, G. Cocconi, V. T. 
Cocconi, and J. Orear, Phys. Rev. Letters 9, 221 (1962). This 
paper contains further references. 

12 Another possible solution of this ghost problem has been pro
posed by M. Gell-Mann, in Proceedings of the 1962 Annual In
ternational Conference on High-Energy Physics at CERN, edited 
by T. Prentki (CERN, Geneva, 1962). 

13 C. Lovelace, Nuovo Cimento 25, 730 (1962); V. N. Gribov, 
Zh. Eksperim. i Teor. Fiz. 41, 667 (1961) [translation: Soviet 
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