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The Regge formula is modified in such a way as to exhibit the "full" contribution of each Regge pole to 
the scattering amplitude. In this modified form both the contribution from each pole and the new back
ground term have the correct cuts in the z plane. In the case where the partial wave amplitude is mero-
morphic in the whole / plane we show that, under certain assumptions, the scattering amplitude can be 
represented by a series sum of contributions from the Regge poles. Each contribution has the correct cut 
in the z plane, and the series converges for all z in the cut plane. An approximation of the scattering ampli
tude at low energies in terms of a few contributions from leading poles is discussed. Finally, it is shown that 
this modified Regge formula leads to a relatively simple bootstrap procedure for constructing the scattering 
amplitude from unitarity and analyticity. 

I. INTRODUCTION 

THE nature of the behavior of the scattering 
amplitude in potential scattering for large values 

of momentum transfer was first given by the work of 
Regge.1 The conjecture has been made that results 
similar to Regge's may also be true in relativistic 
elementary particle scattering where now the mo
mentum transfer of one channel is the total energy in 
the crossed channel.2,3 

Regge's method consisted of examining the analytic 
properties of the partial wave amplitude as a function 
of angular momentum. He showed that the amplitude 
was a meromorphic function of I in the half-plane 
Re/>—J. Using this result and the Watson-Som-
merfeld transformation he was able to modify the 
partial wave series and obtain the representation given 
in Eq. (4) below. This representation consists of two 
terms. The first a background integral which for large 
z vanishes as z~~1/2. The second is a sum of contributions 
from the poles in the angular momentum plane which 
are proportional to Pin{—z) and which determine the 
behavior for large z. The position of the poles ln is 
dependent on the energy. 

One can show that bound states and resonances are 
associated with poles in the angular momentum plane. 
This fact leads to the conjecture that all elementary 
particles and resonances are associated with moving 
poles in the angular momentum plane.2 Following this 
conjecture it would be interesting to consider the 
possibility of approximating the scattering amplitude 
by contributions from a few poles for all z and not just 
large z. 

For any such investigation the Regge representation 
in its usual form is not very useful because one knows 
very little about the so-called background term. 
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Furthermore, the contributions of the poles as given in 
Regge's formula have the cut in the z plane starting at 
the wrong threshold. 

In this paper we modify the Regge formula in such 
a way so as to exhibit the "full" contribution of each 
Regge pole. This contribution is shown to have the 
correct branch point in the z plane. The new background 
term in this modified Regge representation will also 
have the correct threshold in the z plane. 

In the cases where the partial wave amplitude is 
meromorphic in the whole / plane one can push the 
contour of integration for the modified background 
integral to the left and replace it by a series of con
tributions from the left-half plane poles. The new 
representation thus enables us to do what in the original 
form could not be carried out as can be seen from 
Mandelstam's paper on the extension of the Regge 
formula.4 What we finally achieve is a representation 
for the scattering amplitude as a series sum of contri
butions from the Regge poles where the contribution 
from each pole has the right threshold in z. 

In Sec. I l l we discuss the possibility of whether the 
scattering amplitude for low energies can be approxi
mated by the contributions from few leading poles. 
With such an approximation one can try to fit the 
low-energy data with a few poles and thus obtain some 
information about the nonresonant Regge trajectories. 

Finally in Sec. IV we show that the modified form 
of the Regge representation leads to a simplification of 
the unitarity condition. It is also shown that unitarity 
and analyticity lead to a bootstrap procedure for 
calculating the weight function that appears in the new 
background term. This bootstrap procedure is much 
simpler than that connected with the Mandelstam 
representation.5 

Before we get into the details we remark that many 
of the results of this paper can be trivially generalized 
to the relativistic case if one makes the necessary 
assumptions of meromorphy of the partial wave ampli
tude in the angular momentum plane. 

4 S. Mandelstam, Ann. Phys. (N.Y.) 19, 254 (1962). 
5 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B. 

Treiman, Ann. Phys. (N.Y.) 10, 62 (1960). 

429 



430 N . N . K H U R I 

II. EXTENSION OF THE REGGE FORMULA 

Our starting point is the Regge representation of the 
scattering amplitude in potential scattering. Regge1 

showed that for potentials which are superpositions of 
Yukawa potentials; i.e., 

rV(r) = aitie-^dn, (1) 

the partial wave scattering amplitude A(l,s) is mero-
morphic in I in the half-plane Re />—J. Here s is the 
usual energy variable and in this section we are con
cerned only with physical, real and positive values of s. 
Furthermore, Regge proved that as | / | —> oo in the 
half plane A takes the following asymptotic form: 

A(X,*)~(C(*)/\A)*-tf |X| —> oo. (2) 

Here we have used X=Z+J and £ is given by 

cosh£=l+mY2s, (3) 

where m is the lower limit in (1). Using these two 
results and the Watson transform of the partial wave 
expansion, Regge obtained for the scattering amplitude 
f(s,z) the representation 

/(*,*)= 
J —lc 

\d\ Px-ii-z) 
A(\s) 

COSTX 

N /3n(*)Px„-*(-s)2An 

sin7r/„ 
(4) 

where /?» is the residue of A(\,s) at the pole X=Xn 

= ln+h The number of poles for ReX>0 is finite and 
is denoted here by N. 

If one now continues (4) to unphysical or complex 
values of z then each of the two terms in (4) will have a 
cut starting at 2 = 1 . However, it is known that f(s,z) 
has a cut which starts at z=cosh£= l+w 2 / 2 s . 5 Evi
dently, some cancellation must occur between the two 
terms in (4) and we shall seek a representation which 
among other things explicitly exhibits this cancellation. 

For this purpose we note the following representation 
for the Legendre functions Px- i^ ) , 6 

irPx-»(*) 

COS7TX 
A/2 

coshX# 

o (cosh#+z)1/2 
-dx 

V2j_ a (coshx+z) 
-dx. 

1/2 
(5) 

physical z, - K z < + 1 , and integrate by parts to get 

7rAPx-*0) 1 f+QO ex*sinhx 

COSTTX (2)3/2i_00 (cosh*+z)3/2 

This representation holds only in the restricted region 
— | < R e X < J . We limit ourselves for the moment to 

6 Bateman Manuscript Project, Higher Transcendental Func
tions, edited by A. Erdelyi (McGraw-Hill Book Company, Inc., 
New York, 1953), Vol. 1, p. 156, (11). 

-dx. (6) 

The integral in (4) runs along the line ReX=0 and 
hence we can substitute the representation (6) for the 
Legendre function appearing in the integrand. We 
obtain 

f(s,z)-
1 r+°° B(x,s) sinha: 

•v5j_M (coshs-z)3 '2 

+ 2 T T E 

•dx 

«; j3»(*)Pxr - j ( -a )X t 

coS7rXn 

;, (7) 

where now B (x,s) is given by 

1 
B(x,s) = — \ d\e**A(\,s). (8) 

The integral defining B is essentially a Fourier trans
form and it is clear from (2) that it exists for all x. 

For #<£ , one can use (2) and the fact that A (X,s) is 
meromorphic in the right half X plane to express B in 
terms of the right-hand poles of A (\,s). For this purpose 
we write 

B(x,s)^BL(x,s)6(x-0+BB(x,s)6(!;-x). (9) 

For x<£ we can close the contour in (8) in the right 
half plane and obtain 

Bfa) = BBto) = -ZPn(s)e***, * < $ . (10) 

Thus (7) can now be written as 

' BL(X,S) sinhxdx 1 r 
yRJt 

+ 

$ (cosh#— z)m 

1 /•$ eXnX sinhx 
E Pn(s)\ — / -dx 

(coshx—-z)3/2 

2T\JP^^(-Z)-

COSwXn 
(11) 

So far we have considered only physical z, however 
each term in (11) can be analytically continued in s. 
For the first term one can easily see that the cut will 
start at z=cosh£=l+w2 /2 .y. To avoid the difficulty 
with the f power in the denominator one can integrate 
the first term by parts and obtain 

AM=v2 
/ 

- v 2 . (12) 
BLf(x,s)dx 

s (coshx-z)1'2 (cosh£-z)1/2 

The last expression can now be easily continued in z 
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and has the correct branch point. I t follows now that 
since the second term in (11) is just a finite sum then 
it also must have the correct branch cut in 2. In the 
Appendix we shall show explicitly how the cuts of the 
two terms in the square brackets cancel each other in 
the region 1 < 2 < [ 1 + W 2 / 2 ^ ] . 

I t is tempting at this point to identify each term in 
the summation of (11) as the full contribution to f(s,z) 
of each Regge pole in the right half plane. If we denote 
by R(s,z; An) the contribution of the pole at X=X„, we 
have 

— 
LV2 J-oo (coshx—z) 3/2 

2T\nPxn-i(-z) 

COSTTXT, ] • ReAn>0. (13) 

For large \z\ the second term in (13) is the one that 
dominates. Also near a resonance the second term 
dominates. However, away from resonances or large 
values of | z | the first term, which can be considered as 
the background term of a specific Regge pole, is of 
comparable value as the usual Regge term. For large z 
this background term behaves as | z | ~1/2. 

The association of (13) with the full contribution of 
the nth Regge pole will become more meaningful if we 
can show that BL(OC,S), i.e., the background term in 
(11), is determined by the left-hand singularities of 
A(\,s). That this is the case, we shall demonstrate for 
the case of potentials for which A (\,s) is meromorphic 
in the whole X plane. 

The properties of A(k,s) for ReX<0 are more 
complicated than those in the right half plane. In 
general, it is not true that A(\,s) is meromorphic in 
the half plane ReX<0. However, Mandelstam4 and 
Froissart7 have shown that for a subclass of the po
tentials defined by (1), A(kjS) is actually meromorphic 
in the left half plane. Let us for the moment limit 
ourselves to this subclass. Then one can for x> £ move 
the contour in (8) to the left and get 

N(L) 
£L(*,$) = B(*,{)= E Pn(s)e*«* 

j[ /.—ZrH'oo 

+— / 
2wi J -L-ioo 

d\eXxA(\,s), x>£. (14) 

The sum represents the contributions from the poles 
lying in the strip, — L<ReX<0 . The exponential in 
the integral in (14) is now a decreasing exponential 
and if A (\,s) does not blow up fast as X —> — 00 then 
one can let L-~» 00 and obtain for BL a series repre
sentation in terms of contributions from the left-hand 
poles. 

The exact behavior of A(X,s) as |X| —> 00 in the left 

half plane is not known. However, one can make con
vincing, though not fully rigorous, arguments to show 
it is at least bounded by the Born approximation in 
that region.8 The Born term blows up exponentially 
in the left half plane as X —» — 00. We shall assume 
here that, excluding the neighborhoods of the poles, 
A (\,s) is bounded by an increasing exponential in X as 
J X J —> 00 in the left half X plane. We write 

\A(\j)\<(\C'(s)\/V\MW**™, (15) 

where £ is positive and given by (3). Such a bound 
seems to be consistent at least for pure Yukawa 
potentials. 

When (15) holds one can, for x> £, close the contour 
in (8) to the left and obtain 

BL(x,Z) = B(x,Z) = t.Pn>(s)#»", * > £ , ReXn'<0. (16) 

The convergence of the series in (16) is, of course, 
intimately connected with the validity of the inequality 
(15). At the end of this section we shall show that in 
the case of a pure Yukawa potential and for high 
enough energies this series does indeed converge if 
# > £ and diverges for # < £ . 

Substituting (14) or (16) in (11) one can now 
identify the contribution of a left-hand Regge pole to 
f(s,z) as 

R(s,z',\n) = 
Pn(s) r00 eXnZsinh# 

V2 i € (coshx-2)3/2 
dx\ ReXn<0. (17) 

This again has the correct cut in the 2 plane. I t is also 
easy to check by using (6) that in the strip — J<ReX n 

< + § the representations (13) and (17) are identical. 
In fact, R(s,z; X) as given in (17) defines a function of 
X which is regular in the half-plane ReX<J. The Eq. 
(13) provides an analytic continuation of R(s,z;\) to 
the right half plane, and R(s,z;\) is thus an entire 
function of X. The function R does not, to the best of 
our knowledge, have a simple representation in terms 
of Legendre functions, although its integral repre
sentation (17) is very similar to that of the Legendre 
functions the only difference being in the limits of 
integration. 

For potentials for which (15) holds the scattering 
amplitude can thus be written as 

/CvO=Z^O?,z,x«). (18) 

' M. Froissart, J. Math. Phys. 3, 922 (1962). 

Here the sum extends over all the poles in the right 
and left half plane. For ReXn>0, R is given by (13), 
and for ReXn<0, R is given by (17). The series in (18) 
will converge for all physical Sy^O and all z in the cut 
plane. 

8 See, for example, B. R. Desai and R. G. Newton (to be 
published). 
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We now take the partial wave projection of R(s,z; X„) 
to obtain the contribution of the nth pole to the Ith 
partial wave. We write 

1 r+l 

r(X,*;Xn)=- / P^(z)R(s,z;\n)dz. (19) 
2 J - i 

Here X is half-integral. The integral above can be easily 
performed if one uses the inverse of the representation 
(6), namely, 

sinhx r+ic0 ery* 
= -*V3 / \'dk' Px'-*(-») • (20) 

(cosha:— z)3/2 J„t00 C0S7rX' 

The partial wave projection turns out to be the same 
for (13) and for (17) and is independent of whether 
ReXn is greater than or less than zero. The result of the 
integration gives 

f(X,5;X„)=-/3nW<r(x-x-)V(X»-X), X=l+h (21) 

This result can be obtained directly when (15) holds by 
applying the Cauchy theorem to the function F(\s) 
=^l(X,s)ex* and taking an arbitrarily large circle for 
the contour. However, (21) will still hold for the right-
hand poles even if (15) does not hold. 

It is interesting to note that r(X,$; Xn) has the same 
analytic properties in s as the full partial wave ampli
tude for physical L Namely, it is analytic in the cut 
5 plane with the cuts on the real axis. The right-hand 
cut extends from zero to infinity and the left-hand one 
from — oo to — m2/4. The left-hand cut is due to 
£=co$hr1(l+?n2/2s). In general, fin(s) and \n(s) have 
only right-hand cuts. 

Another property of r(\9s; X») is that, for the ReXn> 0 
poles, it has the correct threshold behavior as s—»0. 
It is known that for ReX„>0, pn(s)^sln{0) as s—*0, 
where /n=X„—|.9 Substituting this in (21) and using 
(3), we can easily check that r(\,s;\n)^sl as s —->0. 
This threshold behavior is of course the same as that 
of A (\s) for integer I, J=X—|. 

Finally, we make a few remarks about the high-
energy behavior for the case of pure Yukawa potentials. 
In general A (X,s) approaches the Born approximation 
as \s\ —» oo for ReX>0. For pure Yukawa potentials 
the Regge trajectories, X»($), approach as \s\ —> oo the 
trajectories of the corresponding Coulomb potentials, 
and we have 

l imX n (s)=-*+£, » = 1 , 2, 3, •••. (22) 
8->Q0 

For a simple Yukawa potential, —ge~mr/r, A (\,s) takes 
the following asymptotic form for ReX>0, 

g / m\ 
A(\s)~-Q^ 1+— , M->oo . (23) 

2s \ 2s J 
9 V. N. Gribov and I. Ya Pomeranchuk, Phys. Rev. Letters 9, 

238 (1962). 

The Legendre function Q\-$ has the following expansion 

Qi(v) = ~e-la t LP»-i(v)<r»"/n+r\, cosha = r?. (24) 
n = l 

Substituting this in (23), and comparing the result 
with the sum of the contributions (21) to a given partial 
amplitude, we get 

0n(s)^{-g/2s)Pn.l{\-Vmy2s), M->oo . (25) 

This asymptotic behavior of the residues fin gives us 
a consistency check on (15) for high energies. From 
(22) and (25) one can easily see that the series (16) 
will converge absolutely for high energies as long as 
#>£, and the series will diverge for x<£. The con
vergence of (16) for x>% is as we have mentioned 
earlier directly connected with the validity of the 
conjecture (15) on the asymptotic behavior of A (\,s) 
as ReX —•> — oo. 

m. APPROXIMATION OF SCATTERING AMPLITUDE 
BY CONTRIBUTIONS FROM LEADING POLES 

The technique of using complex angular momenta 
was first applied by Sommerfeld to the problem of the 
scattering of radio waves by the earth. In that problem 
the partial wave series was converted into a series sum 
of contributions from complex angular momentum 
poles. The latter series turned out to converge much 
faster than the original partial wave expansion. The 
question arises whether a similar situation holds for the 
series (18). Of course, it is well known that for large \z\ 
one term dominates in (18) and that is the one with the 
largest ReXn. It is also true that if we have a resonance, 
i.e., a pole ln(sR) with Re/n near an integer and Im/„ 
small, then as S—>SR the contribution from the pole 
giving the resonance dominates. We shall investigate 
below whether the results of the previous section can 
lead to an approximation of f(s,z) by one or several 
terms of the series (18) for any z and s lying in a low-
energy domain. 

The basis of such an approximation is the repre
sentation (17). The presence of the exponential in the 
integrand of (17) leads us to the conclusion that each 
Regge pole with ReX„«0 gives a small contribution to 
f(s,z) in the domain where £> 1. This will be true if the 
residues pn(s) do not grow as ReXn becomes large and 
negative. Let us for the moment assume that the ftn's 
do not grow for large Xn. In fact, reference (8) contains 
plausible arguments which show that the /Vs decrease 
fast as Xn becomes large in the left half plane. We shall 
return to a discussion of the j3n's at the end of this 
section. 

Under these assumptions about the pn
y$, we can see 

that in the series (18), for £>1, we have to take the 
poles in the right half plane and only those left-hand 
poles near the imaginary axis to get a good approxi
mation to the amplitude. 
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TABLE I. Location of the leading Regge poles at low energies 
for a pure Yukawa potential.8 

5 = 0.01 5=0.5 

ReXi 0.6 0.5 
ReX2 - 0 . 4 - 0 . 8 
ReX3 - 1 . 0 - 1 . 5 
ReX4 - 1 . 5 - 2 . 6 
ReX5 - 2 . 5 - 2 . 9 
ReX6 - 2 . 1 - 3 . 7 

a See reference 10. 

The usefulness of this approximation will depend on 
the distribution of the poles near the imaginary axis 
for $ > 1. At first sight it might look that this procedure 
is doomed since £ is given by 

t=ln{(l+tn2/2s)+t(l+m2/2s)2-lji*}. 

This means that £ becomes large only for very small s. 
It is known that as s —> 0 there are an infinite number 
of poles near the line Re\=0.9 However, these poles 
fall away rapidly from ReX=0 as s starts to increase 
from zero, and for pure Yukawa potentials there is a 
domain in 5 with £>1 and with the poles well away 
from ReX=0. 

Let us take a specific example of a Yukawa potential 
with w = l , V(r) = ~ge~~r/r. Ahmadzadeh, Burke, and 
Tate10 have computed the first six Regge trajectories 
for this potential for several values of the coupling 
constant g. As in (22) the poles were identified by their 
high-energy limits. 

In the domain 0.01<5<0.5, £ is larger than unity 
and 1.3<£<4.6, where the upper limit goes with the 
lower value of 5. We consider the case g=2, and tabu
late the results of reference 10 for ReXn at 5=0.01 
and 5=0.5. For n>6 the trajectories will lie farther to 
the left. One sees from Table I that already at 5=0.01 
the poles have moved away from the line ReX=0. It is 
evident from (17) that the contributions for n>4 would 
be small compared to the contributions from the first 
three poles. For example the contribution of X4 at 5=0.5 
will be proportional to a factor e-4-5. 

In the region 0.01<5<0.5 we can thus write the 
following approximation 

f(sA^£R(stz;\n). (18') 
n=»l 

Here R is given by (13) if ReXn>0 and by (17) if 
ReXn<0. 

A similar approximation holds for the other two 
values of g calculated in reference (10), g=0.05 and 
g=5. For the weak coupling case one pole contribution 
suffices. On the other hand, for the stronger coupling, 
g=S, the situation is worse and one might need an 
extra term in (18') to keep the same accuracy. For the 

A. Ahmadzadeh, P. G. Burke, and C. Tate (to be published). 

strong coupling cases we could conclude that a one pole 
approximation would not be valid. 

An actual calculation of the residues j3n(s) for the 
trajectories computed in reference 10 would be 
necessary before one could make a more definite 
statement on the number of terms needed in (18'). If 
it turns out that for certain energies a few terms are 
enough, we would then have a basis for experimentally 
determining some properties of the trajectories that 
are not associated with any resonance. 

If an approximation like (18') holds for any physical 
scattering process, then one can by comparing with the 
data perform a pole fit at different energies instead of 
the usual partial wave analysis. Such a pole analysis 
would be more difficult than the partial wave analysis, 
would require better data, and probably would not 
lead to unique results. However, it might still give us 
some information on the existence and position of the 
invisible trajectories which do not demonstrate their 
presence by producing resonances at some energy or 
dominating the amplitude for asymptotic values of the 
energy in the crossed channel. 

Finally, we discuss the behavior of (3n (s) for small 5. 
Again the region near the threshold might seem to be a 
danger zone because of the centrifugal barrier. As s —» 0, 
A(\,s)^sx~K This is true for physical X and it is also 
true for all ReX>0. From this one can conclude that if 
ReXn>0, /3n(5)~5Xn(0)-* as 5 -» 0. If this same threshold 
behavior holds when ReXn(0)<0, then we would be in 
trouble for then /3n(s) will start growing as 5—»0 for 
the left-hand poles. However, this is not the case and 
in fact, for ReX<0, A(\s) cannot blow up like 5x~i 

near threshold. 
It is easy to see from the unitarity condition for 

A(\s), given in Eq. (28) below, that for real X 
and excluding the neighborhoods of the poles, | s*A (\s) \ 
< 1 . This inequality holds for all real X where A (\,s) is 
regular and for all real 5>0. Thus |^4(X,5)| never 
increases faster than 5~* as 5 —> 0, no matter whether 
X is positive or negative. This is most likely true for 
complex X also, and f3n(s) will have the corresponding 
threshold behavior. 

We stress that in our proposed approximation we 
have anyway to take 5 sufficiently large to allow the 
trajectories that go to ReX=0 as 5—»0 to move away 
appreciably from that line. 

IV. AN ITERATION SCHEME FOR CONSTRUCTING THE 
WEIGHT FUNCTION B(x,s) FROM UNITARITY 

AND ANALYTICITY 

We consider again the case of potentials satisfying 
(1). We shall show in this section that unitarity gives 
us an iterative procedure for calculating the weight 
function B(x,s). The nonlinear equation that one 
obtains is much simpler than the corresponding equation 
for the weight function of the Mandelstam repre
sentation.5 

For large enough 5 all the Regge poles move to the 
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left and the representation (7) becomes 

1 r+°° B(x,s) 
f(s,z) = — / 

y/2J^ ( cosh^-2 ) 3 / 2 

Here we have 

sinhxdx. (26) 

B(xJs) = BL(x,s), x>£ 
= 0, x<£. 

The second equality follows from the fact that we are 
considering s large enough so that all the poles are on 
the left. 

A representation similar to (26) holds in every order 
of perturbation theory for all values of s>0. If we 
write / „ and Bn for the nth Born terms of / and B, 
respectively, we get 

1 r™ Bn(xys) 
fn(s,z) — — 1 sinh#<&c. (27) 

v 2 j * (cosh*-*)3 '2 

For any n and physical s, fn(s,z) vanishes at least as 
fast as z~l as z —-» 00.5 This leads to the conclusion that 
An(\s), the 72th Born approximation of the partial 
wave amplitude, is analytic for ReA>0, and has no 
poles in the right half plane. 

We now write down the unitarity condition for 
B(x,s). To do that we have to recall the unitary 
condition for A (\,s), 

A ( M -A* (XV) = 2isl'2A (\,s)A* (XV) • (28) 

Noting that B(x,s) as denned in (8) is essentially a 
Fourier transform of A (X,s), we get 

ImB(x}s) = s .1/2 B(x',s)B*(x-x',s)dx'. (29) 

This last equation is the unitarity relation for B. I t can 
as we shall see below be used to effect a bootstrap 
procedure for the calculation of B from the first-order 
Bi. Before we can do that, however, we have to discuss 
the analytic properties of B in s in order to obtain a 
way for calculating B from ImB in each successive 
order. 

For s large enough so that all the Regge poles are in 
the left half plane, the partial wave amplitude for 
ReX>0 can be written as 

1 r00 / / ' \ dt' 
A(\,s) = - G * - * ( l + - U > ( * / ) — . (30) 

7T J m? \ 2sJ IS 

Here D(s,t) is the discontinuity of f(s,t) across the cut 
in the t plane with z — \+t/2s. Substituting this in (8), 
we obtain after performing the X integration 

1 r"»dt' D(s,t') 

V2TT Jm* 2s ( cosh*- l - t ' /2s )W 

X ^ ( c o s h * - l J. (31) 

Here we have used the following integral: 

1 
— / e^Qx-^z)d\ 
2wi J -in 

1 
-0(coshx-z). (32) 

y/2 (coshx-z)1'2 

From (31) one can see that for a fixed x, B is not analytic 
in 5, since the 6 function depends on s. However, by a 
simple change of variables one can get a closely related 
function which is regular in the cut s plane. Let us 
introduce the new variable y given by 

y=2^(cosh . r - l ) , (33) 
and write 

b(y,s) = B(cosh-l(l+y/2s), s). (34) 

Substituting in (31), we obtain 

dt' 
b(y.. 

1 r* 
y,s)=~- / 

D(s/) 

(2sy> (y-n 1/2 
(35) 

For any finite y>m2 the integral above converges, and 
this representation for b(y,s) holds for all s. It is well 
known that D(s,t) is analytic in the cut 5 plane for 
fixed t>m2 and has only a right-hand cut. Thus, for 
any finite y>m2, we can analytically continue (35) in s 
and b(y,s) would be regular in the cut plane with only 
a right-hand cut starting at s—0. The discontinuity of 
the function b(y,s) across the cut in the s plane is not 
related to the imaginary part but to the real part of 
D(s,t). This is due to the factor s112 in the integrand. 
In order to obtain a useful dispersion relation for our 
iteration procedure we have to define 

b(y,s) = s^b(yis). (36) 

T h e function b now satisfies t he following simple 
dispersion relat ion 

1 r™Tmb(y,s') 
b(%s) = b1(y)+~ / rds\ (37) 

IT Jo s'—s—ie 

where b\ is the first Born t e rm for b and is given by 

- 1 /•» ( 7 ( v ? ) 1 
bi(y) = — / dt' 

2 Jm» (y-t'\ {y-tyi*2s/t' 
(38) 

Here <J is the weight function of the superposition of 
Yukawa potentials defined in (1). We have used the 
fact that lim)s|_+00D(5,/)=— war(\/t)/2\/L 

Equations (37) and (29) are enough to define our 
bootstrap procedure and to determine the scattering 
amplitude completely. Returning to the original vari
ables we get from (38) for B (x,s) in first order 

- 1 rw dt' o-(VO 

2 ./m. (2/') (2/')1/2 2 s (coshx- l - /y2s ) 1 / 2 

X0( cosh#-
2sJ 

(39) 
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I t is evident that Bi(x,s) = 0 for %<%. Substituting Bi 
into the unitarity equation (29), we immediately see 
that lmB2(x,s) = 0 for x<2%. We can now use (34), 
(36), and (37) to get 232(#,s). I t turns out that 
B2(xys) = 0 for #<cosrr_1(l+2m2/.y). Thus in the region 
£ < x < £ i , where cosh£i= l + 2 w 2 / s , B(x,s) is identical 
with the first Born term Bi(x,s). Similarly we can show 
that in the region £<x<£2, where cosh£2= l+9w 2 /2s , 
only Bi(x,s) and B2(x,s) contribute. Thus in general 
for x<£n, cosh£n= l + ( ^ + i ) 2 w 2 / 2 s , B(x,s) is given 
exactly by the sum of the first n Born terms. 

The above iteration scheme for B (x,s) has two 
advantages over the iteration procedure for the 
Mandelstam weight function. First, the integral 
equation (29) is much simpler than the one in the 
Mandelstam case and contains only one integration. 
Secondly, the function B(x,s) is more directly related 
to the Regge poles than p(s,t). 
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APPENDIX 

We shall show here that R(s,z; X) has no branch cut 
in the region l<z<cosh£ , for the case R e \ > 0 . We 
have from (13) 

R(s9z;\) = P(s) 
1 r* e*x sinha; 

7. y/2 7_oo (coshx—z)3 
-dx 

27rXPx_|(-z)-

C0S7TX 
(Al) 

We want to show that 

AR(s,z; \) = —[R(S} z+ie; \)-R(s, z-u; X)] = 0; 
2i 

l<z<cosh£ . (A2) 

Let us take the second term first. The discontinuity in 

the Legendre function is given by 

1 
- [ P x - | ( - z - i 6 ) - P X - i ( - z + ^ ) ] = coS7rXPx_|(z). (A3) 
2% 

Therefore for the second term we have 

A 

r Px-§(-z)l 
/3(2TTX) \ = 2T\I3PX-I(Z); * > 1 . (A4) 

L cos7rX J 

We now use the following integral representation for 
P^(z),"iorz>l, 

V2 /.cosh-** coshXz 
Px-x( 2 )=— / dx. 

T Jo (z—coshx)1/2 
(A5) 

This gives for the discontinuity of the second term for 
* > 1 

|8(2TX> 
2 V * ( - * ) -

C0S7TX 

/•cosh i« COShXtf 

= (2)3^X / dx. (A6) 
Jo (z—coshx)1/2 

Before we continue the first term to unphysical z we 
have to do an integration by parts and write 

P ft eXa!sinh^ 

/ 
I(s,z\\)= / dx 

\ 5 7_oo (coshx-z)3 /2 

fH 
=^2p-

(cosh£-z)1/2 

Now for l<2<cosh£ we have 

\£/3x( 
J —oo 

zdx 

(cosh#—z)1/2 
(A7) 

A / = - v 2 0 X 
-a ^ 

p\x 

-dx 
1/2 cosh#): 

ra coshXo; 
= — (2)3^2/3X / ——, cosha=2. (A8) 

r° a 
K 
Jo ( s -

1/2 cosh#) 

This is identical with (A6) except for the sign, and 
hence (A2) is valid. In continuing the square roots in 
(A7) we have used (cosh#— js=R*e)1/2==Fz(z— cosh#)1/2 

in the region where z>cosh#. This choice of branch is 
determined by the fact that the representations (5) 
and (A5) should satisfy the relation (A3). 

11 See reference 6, same page, formula (8). 


