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A general method is given to calculate the crossing relations for arbitrary processes which is based on the 
transformation properties of the amplitudes and analytic continuation only. The helicity amplitudes as well 
as the so called R and M amplitudes are considered and some simple examples are worked out. 

ONE of the most important practical elements of 
dynamical calculations which makes use of the 

analytical properties of the scattering amplitudes is the 
crossing symmetry.1 It relates various amplitudes, for 
example helicity amplitudes, in one channel to those in 
other channels, or more generally to other processes in 
which one or more or all incoming and outgoing particles 
have been interchanged. Roughly speaking, the proc
esses in crossed channels provide forces for the process 
in the original channel. For example, forces responsible 
for the binding of two particles may be attributed to 
the exchange of other particles in crossed channels. As 
is well known, the crossing relations generalize Pauli 
exchange principle. 

The crossing matrices for simple cases such as w—N, 
N—N processes are well known.2,3 It is desirable to 
calculate explicitly the crossing matrices for higher 
spin processes, in particular in connection with the 
new resonances in strong interactions. It is the purpose 
of this work to show how to calculate the crossing 
relations within the framework of the so called S-matrix 
theory, based solely on the transformation properties 
of the amplitudes and analytic continuation and to 
present a method valid for arbitrary processes with 
arbitrary spin values. 

The crossing relations for arbitrary values of isotopic 
spin have been already worked out within the same 
approach.4 The spin case discussed below is more com
plicated because spin transformations are coupled to 
those of momenta. 

We use two-component spinors throughout which 
brings considerable simplification. Some useful relations 
used in the following calculations are summarized in 
the Appendix. 

II 

We consider for simplicity of writing a two-body 
reaction process a+b—>c+d, although the formulas 
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1 For a general discussion of the role of crossing symmetry, see 
G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 
Benjamin, Inc., New York, 1962). 

2 For T-N problem, see, for example, S. C. Frautschi and J. D. 
Walecka, Phys. Rev. 120, 1486 (1960). 

8 For N-N problem, see M. L. Goldberger, M. T. Grisaru, S. W. 
MacDowell, and D. Y. Wong, Phys. Rev. 120, 2250 (I960). 

4 A. O. Barut and B.C. Unal, Nuovo Cimento (to be published). 

are such that they are immediately generalized to arbi
trary processes. The amplitudes R (R=S—I), are 
invariant under the inhomogeneous Lorentz transforma
tions and satisfy for massive particles the following 
equation5,6: 

=J)W8
(fl')»«(i4,)3)«4<54),l*(^,) 

Here, mz and m^ are the spin indices (the third com
ponent of the spin) of the outgoing particles kz and k$ 
of spins Sz and S± (—Sz<rriz<Sz etc.) and m\ and m4 
are those of the incoming particles ki and k% We have 
taken, by convention, the incoming particles and out
going antipartides to transform with 2)* and the out
going particles and incoming an tipar ticks with J), the 
irreducible representations of the rotation group associ
ated with the spin in the rest frame; A is a homogeneous 
Lorentz transformation. The 2 by 2 unitary matrix 

A'^B-^pAB^i (2) 

corresponds to a special Lorentz transformation, a 
rotation, which takes the momentum in the rest frame, 
p, first into q=hrxk^ then into k, the physical mo
mentum and then back to p\ Af is an element of the 
so-called little group of the vector p. With p= (ra,0,0,0) 
we have 

B^p=(k»<rJm)li*U, (3) 

where U is any unitary operator corresponding to a 
rotation. If one of the particles has zero mass, the corre
sponding 3) term in Eq. (1) is replaced by a factor of 
exp(iSV), where 5 is the helicity of the particle with 
two states ± 5 . 

For general processes simply more 3) factors are 
added in Eq. (1). 

The spin of the particle is associated with the rotation 
group in the rest frame. The choice U=l in Eq. (3) 
corresponds to measuring the third component of the 
spin with respect to a fixed z axis. We denote the corre
sponding amplitudes the R amplitudes. If we make a 
rotation to bring the z axis in the direction of the motion 

5 A. O. Barut, Phys. Rev. 127, 3 (1962). 
6 A. O. Barut, I. Muzinich, and D. N. Williams, Phys. Rev. (to 

be published). 
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of the particle by choosing 

U=exp(%i(Ts<p) exp(|wr20) exp(^<r3<p), (4) 

where <p and 6 are the angles of the spatial part of k, 
we obtain the H (helicity) amplitudes. 

i n 

The crossing relations for these R or H amplitudes 
are obtained as follows. Suppose we interchange one 
outgoing particle with one incoming one, m% and w/ .We 
obtain from the original amplitude Rmzmiml'm2

f{kzk^kik2) 
the amplitude 

(-&1&4, —&3&2). (5 ) 

For the R functions, transforming with ® ( S ) , the 
primed indices are equivalent to upper indices. There
fore, using the lowering and raising spinor operators 
(see Appendix) 

(°) 
<T)(s)(C~1)mn= (—l)s+m5m~n* 

we can write the amplitude (5) in the form 

or 
(_ 1 )^+^3+m 1 -^_ m i m 4 _ m 3 W 2 , (_^^ 4 . -ktkt). (8) 

The R function in (7) refers to an amplitude for a 
process in which particles kiy k± are outgoing and &3, k% 
are incoming. The crossing relation is then 

X-R„lOT4m3'm2'( — &1&4, —&3&2). (9) 

In these equations all four-vectors ki are the physical 
energy-momentum vectors, and R refers to the ampli
tude in crossed channel. Equation (8) shows that 
actually in the crossed process the spin components of 
the exchanged particles are the negatives of the original 
ones. The same type of equation holds also for the 
isospin,4 and the exchange particles become then 
"antiparticles." Indeed, using the relation 

© « ( 5 > ^ - l ) « - ^ * - " _ 0 , (10) 

one can easily show that both sides of Eq. (9) have the 
same transformation property given by Eq. (1). 

Similar equations are obtained in the general case and 
for the exchange of other particles. 

The crossing matrices themselves refer to the scalar 
amplitudes. If we express both sides of Eq. (9) in terms 
of spinor basis functions multiplied by scalar coefficients 
in the form 

Ai(s,t,u)Yi(kzk4,kik2) and Ai(u,t,s)Yi(—kxkh —kjz2), 

respectively, and compare the basis function, we obtain 
the crossing matrix ft satisfying 

X > j8«'F tv(W4,*i*2)=r i(-41A4 ; - * t * i ) . (11) 

Now the construction of the spinor basis functions is 
accomplished most conveniently in terms of the M 
amplitudes to be denned below and is discussed in 
detail in reference 4. We therefore turn to a discussion 
of the crossing properties of the M amplitudes and the 
scalar amplitudes. 

IV 

> The M amplitudes arise from a natural simplification 
; of Eq. (1). Because A' given by Eq. (2) is unitary we 
; can write 

(£)^(B-1AB)=<£)^(B-1AB) 
=DCofi)(jB-i)J)(ofl)(i4)5)(ofl)(5)> 

w h e r e © * 5 ^ are the irreducible representations of the 
' homogeneous Lorentz group. Note that B and A are 

unimodular but not unitary. If we now define 

then we see from (1) that M functions transform accord
ing to irreducible representations of the homogeneous 
Lorentz groups in the form 

=©« l '
( 5 l 0 )*n i 'U)®m2 ' ( f t 0 )*n t ' (^)S)m, ( f l 8 0 ) , , ,(^) 

) X^mi^
)niA)Mnzn,nVnA^-lK). (13) 

i To discuss the crossing symmetry of the M amplitudes 
2 we have to relate 35<50>(i4) to 3)<50>(4)*, or change 

primed indices into unprimed and vice versa. Because 
now these two represntations are inequivalent there is 
no simple relation corresponding to Eq. (10). These two 

' representations are related by ^-dependent matrices as 
\ follows: For 2 by 2 matrices we have for any four-

vector k the relation 

t C(k'a/m)Al(A-1k)'a/m2C-1 = A* (14) 

\ which is a consequence of the relation C~~lATC 
i =A~X detA valid for any 2 by 2 matrix and Ak-aA* 
i =Ak-<T which relates the Lorentz group A to the uni

modular group A. From the group property of 2X2 
matrices the generalization of (10) is 

^ ( ^ ) a ^ ^ ° ) ( . 4 ) / a - ^ ( A - ^ ) ^ , = © ^ 0 > ( ^ ) a ^ , , ( 1 5 ) 

where 
1 Gs(k) =3) <S0>[C(& • 9/mY], (16) 

Consider again the interchange of particles k\ and 
r &3, for example. The steps are analogous to Eqs. (5) to 
b (9); we have to use the operators G and G~l instead of 
b i)(C) and S)(C)_1. We obtain the crossing relation 

M m 3 m 4 m l ' m 2 ' (^3^4^1^2)=^ : (^ l )m 1 ' n l G^ 1 (^3)m3 n 3 , 

Y*Mniminz'm2'(—"&1&4, —k^). (17) 
1 

Again it can be verified, using (15) and its inverse, that 
both sides of (17) have the correct transformation 

) property given by Eq. (1). 
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To obtain the relation between the scalar amplitudes 
we have to expand both M functions in (17) into spinor 
basis functions, do the G operations on the right and 
then compare the scalar coefficients as in Eq. (11). Let 
us consider a simple example, the scattering of one 
spin-zero particle and one spin-J particle. Let k\ and 
kz be the particles with spin \. We have 

M„ '=AiYi(ksk4] kiko), 

where a basis with definite signature under P and T is 
the following7: 

\f ̂ i ntz 

\mi ntz/ 
r}P= — 1, rjT~ — l, 

Yz= n • c + (kz'<r/mz)n • a(ki- <0»i), 

F4=W'cr— (kz' (r/mz)n- a(ki- ar/mi)y 

(18) 

where 
T?P= — 1, ijr= + l, 

W2 mj 

Now according to (17) we have to write the bases 
F,(—kikiy —^3^2), i.e., ki and kz interchanged in Eq. 
(18), and then operate with the G's. In matrix rotation 

AiYi(kakA,kik2) 

= C~lAiYi,T(-kiki 
mz 

; - k z k 2 ) [ c 

which leads to the crossing matrix A^Pa'A?, where 

1 
1 

- 1 
1 

(19) 

In terms of the usual invariants s, t, u we have 

Ai(s,t,u)=Pii>Ai.(u,t,s). (20) 

The amplitudes A\ and Az are the same as the usual 
A and B amplitudes in w-N scattering.6 

Next we consider the scattering of two spin-f particles 
and a basis which is a direct product of two bases of the 
form (18) YiZj. [Zi are given by (18) with kx replaced 
by k% and kz replaced by £4.] The crossing matrix be
tween the 16 amplitudes A a is now 

The basis used in reference 3 for N—N scattering is 
not the product basis YiZj, but the so-called /3-decay 
basis in four-component form. We have written the 
/3-decay basis in terms of the two-component spinors and 
have verified that Eq. (17) leads exactly to the crossing 
matrix given in reference 3; the corresponding helicity 
amplitudes for this problem also agree with the choice 
of U as given by Eq. (4). 

Finally, we should like to remark that the need for 
crossing matrixes arises because one uses different basis 
functions for the original and the crossed channels, 
denoted by F* and Ft- in the previous section. Corre
spondingly, the arguments of the scalar amplitudes Ai 
and Ai are different. Because, however, these two 
amplitudes, and others in the remaining crossed 
channels, are connected to each other by analytic con
tinuation, one can also simply use the analytic continua
tion of the original basis functions. These are obtained 
by changing the signs of the momenta corresponding to 
the particular crossed channel considered. For example, 
the functions F,(—kz, k±) —hi, £2) (no permutation, 
just change of signs) describe the process 2 + 3 —> 1+4 , 
if the functions Yi(kz,kt\ k\,k^) describe the process 
1+2—> 3 + 4 , and similarly for the other channels. If 
this method is used, the scalar amplitudes A i{sj,u) are 
the same functions for all channels, but the physical 
domain of the invariants s, /, u are now those of the 
crossed channels. This is, indeed, the generalization of 
what happens in the spinless case and one does not need 
any crossing matrices. Although this approach does not 
seem to have been used in literature, it appears that it 
would simplify practical problems considerably. 

I should like to thank H. P. Stapp, D. N. Williams, 
and I. Muzinich for some helpful correspondence and 
discussion. 

APPENDIX 

We review here briefly some properties of spinors used 
in the text. 

Spinors transforming according to A, AT~\ A*, and 
A*~l are written with lower unprimed, upper unprimed, 
lower primed, and upper primed indices. If A is unitary, 
upper unprimed and lower primed indices are the same, 
and vice versa. The lowering and rising matrices are 
C«0 and C~la&, respectively, where 

A ij(s,t,u) = fiw <5yy A ? 3> (u,t,s) 
= Pa>At>j>(u,t9s). 

(21) 

-G > -c-i=-cr=-ct. 

7 H. P. Stapp, Phys. Rev. 125, 2139 (1962). 

In the generalizations of these statements to higher 
spinors we replace A by Di0S)(A)} C by Di0S)(C) etc. 

We denote the Pauli matrices by <TM=(/,O'). Then 
cr"=(J, —O-) = <TM. We write frequently k-a—k^a^. 
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One gets or 

We have also 
(k • a)1/2 is the Hermitian square root oik-a. \ Tr(dW,T) = g,M, 

The relation between the unimodular matrices and a T^QQ. (j-i o r a =Ca TC~K 
the restricted Lorentz transformations is given by 

For any 2 by 2 matrix M the relation CMTC~1 

Aa„Af=Afi
v(rp, =M~X detM is an identity. 
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Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge 
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero 
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. We show that 
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m^O implies that the matter 
spectrum before including the Yang-Mills interaction contains tn=0, but that the example of supercon
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these 
ideas and the zero-mass difficulty in theories with broken symmetries are given. 

RECENTLY, Schwinger1 has given an argument 
strongly suggesting that associating a gauge 

transformation with a local conservation law does not 
necessarily require the existence of a zero-mass vector 
boson. For instance, it had previously seemed impossible 
to describe the conservation of baryons in such a 
manner because of the absence of a zero-mass boson 
and of the accompanying long-range forces.2 The 
problem of the mass of the bosons represents the major 
stumbling block in Sakurai's attempt to treat the 
dynamics of strongly interacting particles in terms of 
the Yang-Mills gauge fields which seem to be required 
to accompany the known conserved currents of baryon 
number and hypercharge.3 (We use the term "Yang-
Mills' ' in Sakurai's sense, to denote any generalized 
gauge field accompanying a local conservation law.) 

The purpose of this article is to point out that the 
familiar plasmon theory of the free-electron gas ex
emplifies Schwinger's theory in a very straightforward 
manner. In the plasma, transverse electromagnetic 
waves do not propagate below the "plasma frequency," 
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas. 
At and above this frequency, three modes exist, in 
close analogy (except for problems of Galilean invari
ance implied by the inequivalent dispersion of longi
tudinal and transverse modes) with the massive vector 
boson mentioned by Schwinger. The plasma frequency 

1 J. Schwinger, Phys. Rev. 125, 397 (1962). 
2 T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955). 
3 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1961). 

is equivalent to the mass, while the finite density of 
electrons leading to divergent "vacuum" current 
fluctuations resembles the strong renormalized coupling 
of Schwinger's theory. In spite of the absence of 
low-frequency photons, gauge invariance and particle 
conservation are clearly satisfied in the plasma. 

In fact, one can draw a direct parallel between the 
dielectric constant treatment of plasmon theory4 and 
Schwinger's argument. Schwinger comments that the 
commutation relations for the gauge field A give us 
one sum rule for the vacuum fluctuations of A, while 
those for the matter field give a completely independent 
value for the fluctuations of matter current j . Since j 
is the source for A and the two are connected by field 
equations, the two sum rules are normally incompatible 
unless there is a contribution to the A rule from a free, 
homogeneous, weakly interacting, massless solution of 
the field equations. If, however, the source term is 
large enough, there can be no such contribution and 
the massless solutions cannot exist. 

The usual theory of the plasmon does not treat the 
electromagnetic field quantum-mechanically or discuss 
vacuum fluctuations; yet there is a close relationship 
between the two arguments, and we, therefore, show 
that the quantum nature of the gauge field is irrelevant. 
Our argument is as follows: 

The equation for the electromagnetic field is 

p2Aft= (k*-a>%4ti(k,a>) = 47rjfl(k,o>). 

4 P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958). 


