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One gets or 

We have also 
(k • a)1/2 is the Hermitian square root oik-a. \ Tr(dW,T) = g,M, 

The relation between the unimodular matrices and a T^QQ. (j-i o r a =Ca TC~K 
the restricted Lorentz transformations is given by 

For any 2 by 2 matrix M the relation CMTC~1 

Aa„Af=Afi
v(rp, =M~X detM is an identity. 
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Schwinger has pointed out that the Yang-Mills vector boson implied by associating a generalized gauge 
transformation with a conservation law (of baryonic charge, for instance) does not necessarily have zero 
mass, if a certain criterion on the vacuum fluctuations of the generalized current is satisfied. We show that 
the theory of plasma oscillations is a simple nonrelativistic example exhibiting all of the features of Schwin-
ger's idea. It is also shown that Schwinger's criterion that the vector field m^O implies that the matter 
spectrum before including the Yang-Mills interaction contains tn=0, but that the example of supercon
ductivity illustrates that the physical spectrum need not. Some comments on the relationship between these 
ideas and the zero-mass difficulty in theories with broken symmetries are given. 

RECENTLY, Schwinger1 has given an argument 
strongly suggesting that associating a gauge 

transformation with a local conservation law does not 
necessarily require the existence of a zero-mass vector 
boson. For instance, it had previously seemed impossible 
to describe the conservation of baryons in such a 
manner because of the absence of a zero-mass boson 
and of the accompanying long-range forces.2 The 
problem of the mass of the bosons represents the major 
stumbling block in Sakurai's attempt to treat the 
dynamics of strongly interacting particles in terms of 
the Yang-Mills gauge fields which seem to be required 
to accompany the known conserved currents of baryon 
number and hypercharge.3 (We use the term "Yang-
Mills' ' in Sakurai's sense, to denote any generalized 
gauge field accompanying a local conservation law.) 

The purpose of this article is to point out that the 
familiar plasmon theory of the free-electron gas ex
emplifies Schwinger's theory in a very straightforward 
manner. In the plasma, transverse electromagnetic 
waves do not propagate below the "plasma frequency," 
which is usually thought of as the frequency of long-
wavelength longitudinal oscillation of the electron gas. 
At and above this frequency, three modes exist, in 
close analogy (except for problems of Galilean invari
ance implied by the inequivalent dispersion of longi
tudinal and transverse modes) with the massive vector 
boson mentioned by Schwinger. The plasma frequency 

1 J. Schwinger, Phys. Rev. 125, 397 (1962). 
2 T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955). 
3 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1961). 

is equivalent to the mass, while the finite density of 
electrons leading to divergent "vacuum" current 
fluctuations resembles the strong renormalized coupling 
of Schwinger's theory. In spite of the absence of 
low-frequency photons, gauge invariance and particle 
conservation are clearly satisfied in the plasma. 

In fact, one can draw a direct parallel between the 
dielectric constant treatment of plasmon theory4 and 
Schwinger's argument. Schwinger comments that the 
commutation relations for the gauge field A give us 
one sum rule for the vacuum fluctuations of A, while 
those for the matter field give a completely independent 
value for the fluctuations of matter current j . Since j 
is the source for A and the two are connected by field 
equations, the two sum rules are normally incompatible 
unless there is a contribution to the A rule from a free, 
homogeneous, weakly interacting, massless solution of 
the field equations. If, however, the source term is 
large enough, there can be no such contribution and 
the massless solutions cannot exist. 

The usual theory of the plasmon does not treat the 
electromagnetic field quantum-mechanically or discuss 
vacuum fluctuations; yet there is a close relationship 
between the two arguments, and we, therefore, show 
that the quantum nature of the gauge field is irrelevant. 
Our argument is as follows: 

The equation for the electromagnetic field is 

p2Aft= (k*-a>%4ti(k,a>) = 47rjfl(k,o>). 

4 P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958). 
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A given distribution of current j ^ will, therefore, lead 
to a response A^ given by 

which in a conductor is 

4TT 47T 
A,=-

*2 p2 (1) 

(1) is merely the statement that only the electro
magnetic current can be a source of the field; it is 
required for general gauge invariance and charge 
conservation according to the usual arguments. 

The dynamics of the matter system—of the plasma 
in that case, of the vacuum in the elementary particle 
problem—determine a second response function, the 
response of the current to a given electromagnetic or 
Yang-Mills field. Let us call this response function 

jp(k,w)=-K^(k,<a)A,(k,u). (2) 

By well-known arguments of gauge invariance, K^ 
must have a certain form: Schwinger points out that in 
the relativistic case it must be proportional to p^p, 
—gttpp2, and equivalent arguments give one the same 
form in superconductivity.5 I t will be convenient to 
consider, for simplicity, only the gauge 

M r " « (3) 

Then the response is diagonal: KfiV——gfiVK. For a 
plasma with n carriers of charge e and mass M it is 
simply (in the limit p —» 0) 

K=ne2/M. (4) 

In an insulator the response is not relativistically 
invariant. If the insulator has magnetic polarizability 
am and electric ae, the response equations may be 
written, in the gauge (3), 

jn= —aep
2Alt (longitudinal and time components), 

j = — amp2k (transverse components). 

In a truly relativistic situation such as our normal 
picture of a vacuum, we expect 

j^-apU, (5) 

to describe normal polarizable behavior. 
Since we cannot turn off the interactions, we do not 

actually observe the responses (1), (2), or (5). If we 
insert a test particle, its field A^ induces a current j„ 
which in turn acts as the source for an internal field Aj: 

j M = -K(A,*+AS), AJ= +^jjp\ 

or, the total field is modified to 

A,= {j?/V+4xKy]As. (6) 

The pole at which A propagates freely occurs at a 
mass (frequency) 

m2=-p2=4wK, (7) 

»M. R, Schafroth, Helv. Phys. Acta 24, 645 (1951). 

m2=co2—k2=o)v
2. (8) 

cop is the usual plasma frequency (4ime2/M)1/2. 
I t is not necessary here to go in detail into the 

relationship between longitudinal and transverse be
havior of the plasmon. In the limit p —» 0 both waves 
propagate according to (8). The longitudinal plasmon 
is generally thought of as entirely an attribute of the 
plasma, while the transverse ones are considered to 
result from modification of the propagation of real 
photons by the medium. This is reasonable in the 
classical case because the longitudinal plasmon disap
pears at a certain cutoff energy and has a different 
dispersion law; but in a Lorentz-covariant theory of 
the vacuum it would be indistinguishable from the 
third component of a massive vector boson of which 
the transverse photons are the two transverse compo
nents. 

How, then, if we were confined to the plasma as we 
are to the vacuum and could only measure re normalized 
quantities, might we try to determine whether, before 
turning on the effects of electromagnetic interaction, 
A had been a massless gauge field and K had been 
finite? As far as we can see, this is not possible; it is, 
nonetheless, interesting to see what the criterion is in 
terms of the actual current response function to a 
perturbation in the Lagrangian 

5L=jp&Af, (9) 

This will turn out to be identical to Schwinger's 
criterion. The original "bare" response function was K: 

Taking into account the interaction, however, we must 
correct for the induced fields and currents, and we get 

j > -K'6AS= -Klp2/(p2+4wK)3dA/-^ 

-(p2/4w)8A^ p2->0. (10) 

Thus, the new response to an applied perturbing 
field (9) is very like that of an ordinary polarizable 
medium. The only difference from an ordinary polar
izable "vacuum" with bare response (5) is that in that 
case as p •—> 0 

i T - > - [ a / ( l + 4 7 r a ) > 2 , (ID 
so that the coefficient of p2/4tir is less than unity. 

This criterion is precisely the same as Schwinger's 
criterion 

/ 
B1(tn

2)dm2=l, 

where Bxm
2 is the weight function for the current 

vacuum fluctuations. This can be shown by a simple 
dispersion argument. Schwinger expresses the unordered 
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product expectation value of the current as 

(Jr(jx)M*'))= / dm2 m2Bx{m2) / ***<—*'> 
J J (2TT)3 

The Fourier transform of the corresponding retarded 
Green's function is our response function: 

/

dm2 m2B\(m2) 

p2-m2 

and 

limKf(p)=(pftpv-gfiVp2) \dm2Bx{m2). 
P-+0 J 

Thus, (aside from a factor 4ir which Schwinger has not 
used in his field equation) his criterion is also that the 
polarizability a', here expressed in terms of a dispersion 
integral, have its maximum possible value, 1. 

The polarizability of the vacuum is not generally 
considered to be observable6 except in its p dependence 
(terms of order p* or higher in K). In fact, we can 
remove (11) entirely by the conventional renormaliza-
tion of the field and charge 

Ar^AZ-1'2, er=eZli2, j^jZ1'2. 

Z, here, can be shown to be precisely 

Z = l - 4 ™ ' = 1 - f dm2Bx(m
2). 

Jo 

Thus, the renormalization procedure is possible for any 
merely polarizable "vacuum," but not for the special 
case of the conducting "plasma" type of vacuum. In 
this case, no net true charge remains localized in the 
region of the dressed particle; all of the charge is 
carried "at infinity" corresponding to the fact, well 
known in the theory of metals, that all the charge 
carried by a quasi-particle in a plasma is actually on 
the surface. Nonetheless, conservation of particles, if 
not of bare charge, is strictly maintained. Note that 
the situation does not resemble the case of "infinite" 
charge renormalization because the infinity in the 
vacuum polarizability need only occur at p2=0. 

Either in the case of the polarizable vacuum or of 
the "conducting" one, no low-energy experiment, and 
even possibly no high-energy one, seems capable of 
directly testing the value of the vacuum polarizability 
prior to renormalization. Thus, we conclude that the 
plasmon is a physical example demonstrating Schwing-
er's contention that under some circumstances the 
Yang-Mills type of vector boson need not have zero 
mass. In addition, aside from the short range of forces 
and the finite mass, which we might interpret without 

6 We follow here, as elsewhere, the viewpoint of W. Thirring, 
Principles of Quantum Electrodynamics (Academic Press Inc., 
New York, 1958), Chap. 14. 

resorting to Yang-Mills, it is not obvious how to 
characterize such a case mathematically in terms of 
observable, renormalized quantities. 

We can, on the other hand, try to turn the problem 
around and see what other conclusions we can draw 
about possible Yang-Mills models of strong interactions 
from the solid-state analogs. What properties of the 
vacuum are needed for it to have the analog of a 
conducting response to the Yang-Mills field? 

Certainly the fact that the polarizability of the 
"matter" system, without taking into account the 
interaction with the gauge field, is infinite need not 
bother us, since that is unobservable. In physical 
conductors we can see it, but only because we can get 
outside them and apply to them true electromagnetic 
fields, not only internal test charges. 

More serious is the implication—obviously physi
cally from the fact that a has a pole at p2=0—that 
the "matter" spectrum, at least for the "undressed" 
matter system, must extend all the way to m2=0. In 
the normal plasma even the final spectrum extends to 
zero frequency, the coupling rather than the spectrum 
being affected by the screening. Is this necessarily 
always the case? The answer is no, obviously, since the 
superconducting electron gas has no zero-mass excita
tions whatever. In that case, the fermion mass is finite 
because of the energy gap, while the boson which 
appears as a result of the theorem of Goldstone7'8 and 
has zero unrenormalized mass is converted into a 
finite-mass plasmon by interaction with the appropriate 
gauge field, which is the electromagnetic field. The 
same is true of the charged Bose gas. 

I t is likely, then, considering the superconducting 
analog, that the way is now open for a degenerate-
vacuum theory of the Nambu type9 without any 
difficulties involving either zero-mass Yang-Mills gauge 
bosons or zero-mass Goldstone bosons. These two 
types of bosons seem capable of "canceling each other 
out" and leaving finite mass bosons only. I t is not at 
all clear that the way for a Sakurai3 theory is equally 
uncluttered. The only mechanism suggested by the 
present work (of course, we have not discussed non-
Abelian gauge groups) for giving the gauge field mass 
is the degenerate vacuum type of theory, in which the 
original symmetry is not manifest in the observable 
domain. Therefore, it needs to be demonstrated that 
the necessary conservation laws can be maintained. 

I should like to close with one final remark on the 
Goldstone theorem. This theorem was initially con
jectured, one presumes, because of the solid-state 
analogs, via the work of Nambu10 and of Anderson.11 

The theorem states, essentially, that if the Lagrangian 

7 J. Goldstone, Nuovo Cimento 19, 154 (1961). 
8 J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 

965 (1962). 
9 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). 
10 Y. Nambu, Phys. Rev. 117, 648 (1960). 
11 P. W. Anderson, Phys. Rev. 110, 827 (1958). 
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possesses a continuous symmetry group under which 
the ground or vacuum state is not invariant, that state 
is, therefore, degenerate with other ground states. This 
implies a zero-mass boson. Thus, the solid crystal 
violates translational and rotational invariance, and 
possesses phonons; liquid helium violates (in a certain 
sense only, of course) gauge invariance, and possesses 
a longitudinal phonon; ferro-magnetism violates spin 
rotation symmetry, and possesses spin waves; super
conductivity violates gauge invariance, and would have 
a zero-mass collective mode in the absence of long-range 
Coulomb forces. 

It is noteworthy that in most of these cases, upon 
closer examination, the Goldstone bosons do indeed 
become tangled up with Yang-Mills gauge bosons and, 
thus, do not in any true sense really have zero mass. 
Superconductivity is a familiar example, but a similar 
phenomenon happens with phonons; when the phonon 
frequency is as low as the gravitational plasma fre
quency, (4irGp)l/2 (wavelength^ 104 km in normal 
matter) there is a phonon-graviton interaction: in that 
case, because of the peculiar sign of the gravitational 
interaction, leading to instability rather than finite 

mass.12 Utiyama13 and Feynman have pointed out that 
gravity is also a Yang-Mills field. It is an amusing 
observation that the three phonons plus two gravitons 
are just enough components to make up the appropriate 
tensor particle which would be required for a finite-mass 
graviton. 

Spin waves also are known to interact strongly with 
magnetostatic forces at very long wavelengths,14 for 
rather more obscure and less satisfactory reasons. We 
conclude, then, that the Goldstone zero-mass difficulty 
is not a serious one, because we can probably cancel it 
off against an equal Yang-Mills zero-mass problem. 
What is not clear yet, on the other hand, is whether it is 
possible to describe a truly strong conservation law 
such as that of baryons with a gauge group and a 
Yang-Mills field having finite mass. 

I should like to thank Dr. John R. Klauder for 
valuable conversations and, particularly, for correcting 
some serious misapprehensions on my part, and Dr. 
John G. Taylor for calling my attention to Schwinger's 
work. 

12 J. H. Jeans, Phil. Trans. Roy. Soc. London 101, 157 (1903). 
13 R. Utiyama, Phys. Rev. 101, 1597 (1956); R. P. Feynman 

(unpublished). 
14 L. R. Walker, Phys. Rev. 105, 390 (1957). 
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From group-theoretical considerations, invariant scattering amplitudes for two-body reactions of particles 
with arbitrary spins and nonzero masses are constructed in various forms, including helicity amplitudes and 
amplitudes free of kinematical singularities. They are linear combinations of spin basis functions with 
scalar coefficients. In the process of construction the Pauli spin matrices are generalized for arbitrary spin. 
On the basis of a Mandelstam representation for the scalar coefficients, the unique analytic continuation 
of the amplitudes in total angular momentum is obtained. Possible kinematical singularities of the scalar 
amplitudes at the boundary of the physical region are discussed. 

I. INTRODUCTION 

THE basic quantities of ^-matrix theory are the 
Lorentz-invariant scattering matrix elements (S 

functions), which depend on the spins and types of 
incoming and outgoing particles and on the mass shell 
values of their four-momenta. From the 5 functions, 
invariant scattering amplitudes (M functions) that 
have simpler transformation properties and that are 
expected to be free of kinematical singularities can be 
defined.1 A general procedure has been given to con-

* Work done under the auspices of the U. S. Atomic Energy 
Commission. 

f Present address: University of Colorado, Boulder, Colorado. 
t Present address: University of Washington, Seattle, Washing

ton. 
1 H. P. Stapp, Phys. Rev. 125, 2139 (1962); Lectures on S-Matrix 

struct the invariant amplitudes in terms of the irre
ducible unitary representations of the inhomogeneous 
proper Lorentz group, based on a two-component 
spinor formalism.2 

Although the invariant scalar amplitudes for which 
the Mandelstam representation is expected to be valid 
have been known for some time in the simpler cases 
such as those of the pion-nucleon3 and nucleon-nucleon4 

Theory [W. A. Benjamin, Inc., New York (to be published)] 
2 A. O. Barut, Phys. Rev. 127, 321 (1962). 
3 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu 

Phys. Rev. 106, 1337 (1957). 
4 M . L. Goldberger, M. T. Grisaru, S. W. MacDowell, and 

D. Y. Wong, Phys. Rev. 120, 2250 (1960), (referred to hereafter 
? S ~ 9 ¥ W ) ; D ' A m a t i > E - Leader, and B. Vitale, Nuovo Cimento 
17, 68 (1960). 


