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possesses a continuous symmetry group under which 
the ground or vacuum state is not invariant, that state 
is, therefore, degenerate with other ground states. This 
implies a zero-mass boson. Thus, the solid crystal 
violates translational and rotational invariance, and 
possesses phonons; liquid helium violates (in a certain 
sense only, of course) gauge invariance, and possesses 
a longitudinal phonon; ferro-magnetism violates spin 
rotation symmetry, and possesses spin waves; super
conductivity violates gauge invariance, and would have 
a zero-mass collective mode in the absence of long-range 
Coulomb forces. 

It is noteworthy that in most of these cases, upon 
closer examination, the Goldstone bosons do indeed 
become tangled up with Yang-Mills gauge bosons and, 
thus, do not in any true sense really have zero mass. 
Superconductivity is a familiar example, but a similar 
phenomenon happens with phonons; when the phonon 
frequency is as low as the gravitational plasma fre
quency, (4irGp)l/2 (wavelength^ 104 km in normal 
matter) there is a phonon-graviton interaction: in that 
case, because of the peculiar sign of the gravitational 
interaction, leading to instability rather than finite 

mass.12 Utiyama13 and Feynman have pointed out that 
gravity is also a Yang-Mills field. It is an amusing 
observation that the three phonons plus two gravitons 
are just enough components to make up the appropriate 
tensor particle which would be required for a finite-mass 
graviton. 

Spin waves also are known to interact strongly with 
magnetostatic forces at very long wavelengths,14 for 
rather more obscure and less satisfactory reasons. We 
conclude, then, that the Goldstone zero-mass difficulty 
is not a serious one, because we can probably cancel it 
off against an equal Yang-Mills zero-mass problem. 
What is not clear yet, on the other hand, is whether it is 
possible to describe a truly strong conservation law 
such as that of baryons with a gauge group and a 
Yang-Mills field having finite mass. 

I should like to thank Dr. John R. Klauder for 
valuable conversations and, particularly, for correcting 
some serious misapprehensions on my part, and Dr. 
John G. Taylor for calling my attention to Schwinger's 
work. 

12 J. H. Jeans, Phil. Trans. Roy. Soc. London 101, 157 (1903). 
13 R. Utiyama, Phys. Rev. 101, 1597 (1956); R. P. Feynman 

(unpublished). 
14 L. R. Walker, Phys. Rev. 105, 390 (1957). 
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From group-theoretical considerations, invariant scattering amplitudes for two-body reactions of particles 
with arbitrary spins and nonzero masses are constructed in various forms, including helicity amplitudes and 
amplitudes free of kinematical singularities. They are linear combinations of spin basis functions with 
scalar coefficients. In the process of construction the Pauli spin matrices are generalized for arbitrary spin. 
On the basis of a Mandelstam representation for the scalar coefficients, the unique analytic continuation 
of the amplitudes in total angular momentum is obtained. Possible kinematical singularities of the scalar 
amplitudes at the boundary of the physical region are discussed. 

I. INTRODUCTION 

THE basic quantities of ^-matrix theory are the 
Lorentz-invariant scattering matrix elements (S 

functions), which depend on the spins and types of 
incoming and outgoing particles and on the mass shell 
values of their four-momenta. From the 5 functions, 
invariant scattering amplitudes (M functions) that 
have simpler transformation properties and that are 
expected to be free of kinematical singularities can be 
defined.1 A general procedure has been given to con-
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1 H. P. Stapp, Phys. Rev. 125, 2139 (1962); Lectures on S-Matrix 

struct the invariant amplitudes in terms of the irre
ducible unitary representations of the inhomogeneous 
proper Lorentz group, based on a two-component 
spinor formalism.2 

Although the invariant scalar amplitudes for which 
the Mandelstam representation is expected to be valid 
have been known for some time in the simpler cases 
such as those of the pion-nucleon3 and nucleon-nucleon4 

Theory [W. A. Benjamin, Inc., New York (to be published)] 
2 A. O. Barut, Phys. Rev. 127, 321 (1962). 
3 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu 

Phys. Rev. 106, 1337 (1957). 
4 M . L. Goldberger, M. T. Grisaru, S. W. MacDowell, and 

D. Y. Wong, Phys. Rev. 120, 2250 (1960), (referred to hereafter 
? S ~ 9 ¥ W ) ; D ' A m a t i > E - Leader, and B. Vitale, Nuovo Cimento 
17, 68 (1960). 
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scattering systems, there is to our knowledge no system
atic construction of such amplitudes for arbitrary 
spins.5 The purpose of this paper is, first, to construct 
the invariant M functions of arbitrary spin for two-body 
reactions (two particles in, two particles out), and also 
to construct the S functions in various representations 
(for example, the helicity representation) in terms of 
scalar amplitudes and explicitly given basis functions.6 

Second, it is our purpose to define, on the basis of a 
Mandelstam representation for the two-body scalar 
amplitudes, an analytic continuation in total angular 
momentum that generalizes the recent work on simpler 
cases.7 In pion-nucleon scattering, as already men
tioned, there exist scalar amplitudes that are known to 
have no kinematical singularities. An investigation of 
this question for arbitrary spin will be reported in a 
separate paper. We proceed here on the assumption 
that one among a large class of possible bases will lead 
to scalar amplitudes without poles. 

In this paper, we ignore isotopic spin and give no 
systematic discussion of C, P, and T transformations, 
but make only occasional comments where appro
priate. 

Apart from their theoretical interest, the con
siderations involving higher spins will be, we believe, 
of practical importance in connection with the new 
higher spin resonances, and perhaps in the problem of 
analytic continuation in spin of the ^-matrix elements. 
Many of these considerations apply to processes in
volving arbitrary numbers of particles and are not 
restricted to two-body systems. For example, the spin 
matrices introduced in this paper generalizing the 
Pauli matrices to higher spins may be of interest in 
other applications. From these matrices we obtain the 
projection operators for the irreducible invariant sub-
spaces of the tensors of arbitrary rank. 

II. DEFINITION OF INVARIANT FUNCTIONS 
AND GENERAL PROCEDURE 

The formulas developed in the succeeding sections 
are rather involved. To facilitate the reading, we outline 
in this section the procedure that we have followed; 
but first we define the transformation laws of the 
various invariant functions. I t is often said that spin 
is only an inessential complication. Nevertheless, it 
appears that except in simple cases a certain amount 
of complication is, if not essential, at least unavoidable. 

5 A. C. Hearn, Nuovo Cimento 21, 333 (1961), discusses the 
amplitudes for spin J and photon processes, in a perturbation 
theory framework. 

6 A construction of the M functions from a somewhat different 
point of view has been given by Willard Miller, Mathematics 
Department, University of California, Berkeley, California. 

7 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys., 
Rev. 126, 2204 (1962). For the N-N system, see V. N. Gribov, in, 
Proceedings of the 1962 A nnual International Conference on High-
Energy Physics at CERN, edited by J. Prentki, (CERN, Geneva, 
1962) and I. Muzinich, Phys. Rev. (to be published). See also V. 
Singh, Phys. Rev. 129, 1889 (1963). 

A. The Invariant Functions 

We consider scattering processes for outgoing par
ticles and incoming antiparticles with spins and four-
momenta Si, ki, and incoming particles and outgoing 
antiparticles with spins and four-momenta Sj, kj, all 
with nonzero rest masses. The invariant scattering 
functions (or ^-matrix elements) have the following 
transformation property under representations of the 
inhomogeneous orthochronous proper Lorentz group2,8: 

®®j^
s^Af(kj)fSlA-1(A)K^ (2.1) 

where 

A'{k) = Bk^P-lABq*-P and A(A~1)k = q. 

Here K stands for the set of incoming and outgoing 
four-momenta, kn, with J^nkn=0 from momentum 
conservation; and AK stands for the set of transformed 
momenta, Akn. Elements of the orthochronous proper 
homogeneous Lorentz group Z + t are denoted by A (A), 
where ±A are the corresponding elements of the two-
by-two unimodular group. The spin indices of the S 
function, which have been suppressed, are transformed 
by direct products of the unitary matrices £)Si and 
3D5'*, which are the well-known [(25*+1), (25y+l ) ] -
dimensional irreducible representations of the three-
dimensional proper real orthogonal group. An index 
transforming according to S)s corresponds to an 
outgoing particle or incoming antiparticle and one 
transforming according to £>s* corresponds to an in
coming particle or outgoing antiparticle.9 In the 
argument A'(k) of £)s or a^*, the unimodular matrices 
B are so defined that 

A(Bk+-P)p=k, 

and similarly for Bq*-V. The Lorentz transformation 
corresponding to the unitary-unimodular matrix 
A' = Bk*-p~lABq*-p transforms the vector p into itself 
(it is an element of the little group of the vector p), 
where p= (w,0,0,0) is the rest-frame value of k; hence, 
this transformation is a rotation. 

From the definition of p and Eq. (Al.l) in Appendix 
I, we have, in terms of Pauli matrices, o-M,8 

Bk<-pBk+-pl= k^p/m. (2.2) 

The general solution of this equation can be written 
in the form Bk+-p=Ak<-PU, where A k^-p is the Hermitian 
matrix (k • er/w)1/2 and U is an arbitrary unitary matrix 
corresponding to the freedom of arbitrary rotations in 
the rest system of the particle. We use this freedom 
later in the construction of helicity amplitudes. An 

8 For a list of conventions, notation, and various important 
relations involving two-component spinors, two-by-two matrices, 
and group representation matrices, see Appendix I. 

9 This choice is purely conventional, especially since the two 
representations are equivalent. It agrees with the usual con
vention in the four-component formalism, as will be seen inci
dentally in Appendix II . See also the references in footnote 1. 
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important characteristic of the invariant M functions 
denned below is that their transformation property is 
independent of B. 

The transformation law (2.1) also holds for the R 
functions, 

R=S-I. (2.3) 

There is a natural way of simplifying this transfor
mation law. Because the matrix A' (k) — Bk<-p~lABq<r-v 

is unitary, we have the identity 

£>SD4'(£)]= £>(S'0)lA'(k)l= &*'s>[A'(k)l, (2.4) 

where 3)(5»5/) are the irreducible, in general, nonunitary, 
representations of dimension (26 ,+ l ) ( 2 5 ' + l ) of L+f. 
We can, then, use the group property of 2)<s'0> and 
obtain 

<£>s{Bk<-p-lABq<-v)= &S>°KB*<-P)-1 

XSD ( S-0 )(i)a) ( S '0 )(^<-p). (2.5) 

Thus, if we introduce M functions defined by 

® ® yS)<*/.o) (Bk^p^RiK), (2.6) 

we see from (2.1) that they have the simple trans
formation law under L+f> 

<g> ® y£>(3/.o> (A)*M£A(A-l)KT\. (2.7) 

I t is simpler to construct the solutions of this equation 
than those of (2.1). Equations (2.3), (2.6), and (2.7) 
are the basic formulas from which the construction of 
the M and S functions begins. For spin f these are just 
the M functions introduced by Stapp.1 

B. The Scalar Amplitudes 

For practical purposes, such as the application of the 
Mandelstam representation, it appears convenient to 
use a representation of the invariant functions in which 
all of the dynamics is contained in a set scalar ampli
tudes. In a sense this removes spin from the problem. 
Our problem is, thus, to find a simple, explicit set of 
basis functions, Y(i)(K), in the spin space which have 
the same transformation property (2.7) as the M 
functions. Then we write 

M(K) = T.WA<»(K)Y«>(K), (2.8) 

where the A(i) (K) are Lorentz scalars and must, there
fore, be functions of the scalar invariants formed from 

the four-momenta (and possibly of the signs of the 
energies). One can also require that the basis functions 
Y(i) (K) have definite transformation properties under 
P and T. Thus, if P and T are conserved, the total 
number of independent scalar amplitudes will be smaller 
than the n«(2S , -+ l ) IL(2S/+ l ) resulting from (2.7) 
and (2.8). 

The essential requirement on the scalar amplitudes 
is that they shall have only the singularities of the M 
function itself, which on the basis of perturbation theory 
or of a pure 5-matrix theory are expected to be only 
dynamical.1 Furthermore, we wish to require that the 
basis functions themselves have no singularities. The 
simplest possibility is that the basis functions should be 
polynomials in the components of the linear momenta. 
To require that the basis functions have this form is 
not enough, however, for the scalar amplitudes could 
still have kinematical poles at various degenerate points 
where the basis functions become linearly dependent. 
Indeed, the question of whether there exists a set of 
basis functions that never induces kinematical poles in 
the scalar amplitudes already involves considerable 
subtlety in the case of two-body reactions; and there
fore, we shall restrict ourselves primarily to this case in 
any discussion where the singularities are important. 

The question of to what extent these various require
ments determine a set of basis functions is not settled 
in this paper. Rather we seek to establish a basic 
formalism for arbitrary spins that can be used in the 
construction of a large class of basis functions. We 
follow a procedure that is natural and systematic, and 
that yields the usual analytic amplitudes in special 
cases. I t consists first of building up in Sec. I l l a set of 
higher spin matrices from the spin-J matrices, <rM, by 
using Clebsch-Gordan coefficients in a process corre
sponding to the addition of spins. For two-body 
reactions we then, in Sec. IV, combine the spin matrices 
with tensors formed from the four-momenta to obtain 
a set of basis functions, Y(i) (K); and we give a brief 
discussion of the question of kinematical poles in the 
resulting scalar amplitudes. If preliminary results are 
substantiated, a second paper showing how to eliminate 
the kinematical poles will be submitted by one of us 
(DNW). 

C. Angular Momentum 

In Sec. V we define an analytic continuation in total 
angular momentum for the scattering functions shown 
in Fig. 1. For this purpose it is convenient to use helicity 
amplitudes. Having constructed YCi) (K) and, therefore, 
M(K) by (2.8), we obtain the helicity amplitudes H(K) 
from (2.6) by making the appropriate choice for B in 
the expression 

R(K) = £><*'°> (B -k^Pi)-i® 3)(5i.o) (B -fcs-pg)-1 

<g> £><s*»°> (Bk2<-P2)-
1*® SD<Si.o) (Bin^-p!)-1* 

XZ(i)A^(K)Y^(K), (2.9) 
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where now the A(i) (K) can be taken as functions of the 
Mandelstam variables, 

s=(kl+k2)
2, t^ih+hY, u=(kl+h)\ 

with s-\-t-\-u=Y,i™?* The helicity amplitudes H(K) 
are denned to be R(K) when 

Bk*-p= (k-a/m)112 exp(—ic/xrz/2) exp(—ida2/2) 
Xexp(^o-3/2), 

= exp(-^o-3/2) exp(—ida2/2) ^ ' } 

Xexp(^3/2)(g-(r/w)1/2, 

where q(l= (^0,0,0,|k|), i.e., a velocity transformation 
from the rest frame to the z direction followed by a 
rotation to the direction (6,<j>), of k.10 

Without loss of generality we can put, in the center-
of-mass frame of the s channel, <£=0. It turns out that 
for any among a large class of basis functions the 
angular dependence (0 dependence) of the helicity 
amplitudes can be factored into a product of ds(6) 
functions in the form 

Ha)(K) = Z(i),RA(HsM)Zi»R{i)dR(e), (2.11) 

where Z(i) does not depend upon 0, and R is determined 
by the spins of the particles. Here (X) stands for the 
indices (M',A',£,X) and ds (6) = &s>0)texp ({0*2/2)1. 

The projection over the total angular momentum / 
of ZI(A) is defined by10 

1 rl 

^(X)JW = - (^0 1 / 2 / dzd\v^Hw, (2.12) 
2 J_i 

where 2=cos0, AX=\—/*, AX'=X'—//, and q and q' 
are the magnitudes of the momenta of the initial and 
final particles, respectively. 

We now write for the scalar amplitudes a partial-wave 
expansion in the s channel, for example, 

A <*> (s,t,u) = Ez(2H-1) A co (l,s)dl(6)o°, (2.13) 

where we put for the Legendre polynomials, Pi(z) 
= J<(0)o°. 

If we insert this into HQ,) and combine dR(B) with 
dl(6)o° into a single d function and perform the angular 
integration, which is of the form 

1 r1 1 
- / dzdJ(d)/dR(6)/= 8JB, (2.14) 
IJ-i 2/+1 

we obtain 
*(X)JW = Li.(«^ ( i )(W^(X) (<), (2.15) 

where Z contains a sum of the original Z times a number 
of Clebsch-Gordan coefficients. In the above sum the / 
values are restricted by the given / . 

From the fixed-energy dispersion relation for 
10 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 

For rotations, an upper undotted index transforms as a lower 
dotted index. 

A(i) (s,t,u) we express A(i) (l,s) in terms of the absorptive 
parts At

(i) and Au
(i) of the amplitudes in the crossed 

channels and obtain 

*<x/W = Ei.co Z«A fdzQl(z)ASHs,z) 

+ (-iyfdzQl(z)Au^(siz)j1 (2.16) 

where the Qi(z) are Legendre functions of the second 
kind. Assuming that the absorptive parts At and Au 

are uniformly bounded in t and u by tN (or uN), we see 
that the expression (2.16) defines an analytic function 
of / for Re/>A^/, where N' is displaced from N by 
some integer determined by the spins of the particles. 

Details are given in Sec. V. 

HI. CONSTRUCTION OF SPIN MATRICES 

It is convenient to separate into two parts the 
construction of the basis functions F ( i ) (K) for arbitrary 
spin. In this section we construct a set of matrices 
which span the spin space and which contain most of 
the complications in the transformation law due to 
spin. These matrices are independent of the four-
momenta in the problem, except under special circum
stances to be mentioned later; they have essentially 
no effect on the singularity structure of the scalar 
amplitudes. The results of this section apply to M 
functions that describe arbitrary numbers of particles. 

The matrices that span a given spin space are labeled 
with tensor indices in addition to spin indices labeling 
their matrix elements. A complete set of basis functions 
Y(i)(K) is obtained by contracting the tensor indices 
of the spin matrices with a complete set of tensor 
functions which are polynomials in the components of 
the four-momenta. Given a spin basis, it is the con
struction of a basis for the space of tensor functions 
that can lead to possible kinematical poles in the scalar 
amplitudes. This question is discussed in Sec. IV. 

A. Spin-| Matrices 

The basis for general spin is constructed from two-
component Pauli spinors. Since the total number of 
incoming and outgoing fermions in any scattering 
process must be even,11 the simplest case that we can 
consider involves two spin-J particles, one incoming, 
the other outgoing. 

Equation (2.7) then becomes 

M (K)=A ® A*MlA(A-1)K'] 

=AMtA(A-1)KlA\ (3.1) 

"Because £)S o(-^)= (-l)™Z>s°(A) and A(-4)=A(4), we 
have 
M(K) = M(A(-I)K) = (-l)&iSi®.&sjo(i)M(K) 

Hence 2» Si must be an integer if M{K) is not to vanish 
identically. 
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or, writing the spinor indices, 

MatW^As'AfMa'fiZMA-^Kl. (3.2) 

As usual, the dotted index (incoming particle or out
going antiparticle) transforms according to A* and the 
undotted index (outgoing particle or incoming anti-
particle) according to A.12 Any two-by-two matrix can 
be written as a linear combination of Pauli matrices, 
o-M. Hence, we can put 

M(K) = nK)*r (3.3) 

From the transformation law of <rM given by (Al. l) , it 
is clear that we must have 

A// , (A-i t f ) = / „ ( * ) , (3.4) 

if (3.1) is to be satisfied. 
The four-vector function /M(i£) can be expanded in 

terms of the four-momenta K, but that construction 
is reserved for Sec. IV. 

If we define 
P M = (l/v2)(7M 

and (3.5) 
pM = (l/v2)efM, 

where #M is defined in Appendix I, the orthogonality 
relations (A1.6) in Appendix I become 

and 
P^aflPfia'P' = Caa'C/3/3', 

(3.6) 

where C is the "lowering" spinor defined in (A 1.2). 
The general formalism of the theory also requires 

basis spinors with two undotted or two dotted indices. 
Such spinors can be obtained in several different ways. 
For example, the matrices p^PvC^ have lower undotted 
indices, and they certainly span the space. There is a 
choice, however, introduced by Stapp,1 that is natural 
and especially convenient for a discussion of crossing 
relations. I t consists in defining the special spinors 

ga^{k) = k'aa^/m, (3.7) 

which can be used to change a dotted index into an 
undotted one and vice versa, where k is taken to be the 
four-momentum of the particle whose spin index is to 
be operated upon. 

We then define basis spinors 

COM(&)a0=P/*/'g/3'/j= {Cpjl'<j/m)a$. 
(3.8) 

These spinors transform according to A®A and 
^4*0^4*, respectively. For example, 

A^(k)AT=A^(A)ccvlA(A)k']. (3.9) 

12 A review of spinor calculus with conventions for dotted and 
undotted indices is included in Appendix I. 

They satisfy orthogonality relations 

COM(&)«pCOM (&)«'£' = Caa'Cpfl', 

and (3.10) 

with corresponding formulas for dotted indices. 
A spin basis for arbitrarily many spin-J particles is 

obtained by taking direct products of matrices chosen 
from among pM, coM(&), and cb^ik), depending on the 
desired index types. 

B. Properties of Matrices for Arbitrary Spin 

Many of the characteristics of the spin matrices for 
higher spin are a straightforward generalization from 
the spin-J matrices and can be understood without 
going through the details of a somewhat involved 
construction. Before proceeding to the actual con
struction, we shall, therefore, describe the essential 
results. 

As already indicated, the fermion spin indices can 
always be paired; and we can also pair the boson indices 
by adding a dummy spin-0 index whenever the total 
number of particles is odd. Thus, we require a basis for 
matrices with two fermion or two boson spin indices; 
any spin space can be spanned with direct products of 
these. This basis is given by a set of rectangular matrices 
PMI.../**($£'), pn-M(SS'), a'"'~i'*M(SS';k), and 
«M••• /«*(55 ' ; k), where M= max(S,S')y which span the 
spin-5, spin-5' space, and which reduce to (3.5) and 
(3.8) when S=Sf=J. Here 5 and S' are the spins of the 
pair of bosons or fermions. The spin indices labeling 
the matrix elements have 2 5 + 1 , 2 5 ' + 1 values, 
respectivelv, ranging through 5, 5—1, ••• , — 5 and 
5 ' , 5 ' - l , : - - , - 5 ' . 

1. Transformation Properties 

The spin matrices just described are classified 
according to the representations of L+\ of the types 
£>(5'0)^4), 2)(fl'°>C4*), or the respective contragredient 
representations &S>V(A~1T), S D ^ ^ t ) . The whole 
apparatus of the spinor calculus can be taken over for 
arbitrary spin. The spin indices will be written as lower 
undotted, lower dotted, upper undotted, and upper 
dotted, respectively, corresponding to the four repre
sentations listed above. The contraction of an upper 
with a lower index of the same type is then an invariant 
operation. 

The raising of a spin-5 index is accomplished by 
contracting on the right with the matrix 

£>(s,o) (c-i)«0= 3)(5.o)(C-i)^== ( - l ) * - « a a f_ft (3.11) 

and lowering by contracting on the right with 

&s'0)(C)ap=&sM(C)ae= ( - l )*H« t t i _ , . (3.12) 

The spinor for changing dotted to undotted indices 
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and vice versa, denned in (3.7) for spin J, becomes 

^ ( l S ' 0 ) [ j ^ ) ] = 5 ) ( 5 , 0 ) ^ ^ / w ) . (3.13) 

By convention we take the types of the indices of the 
matrices 3D(,S'0) to be the same as those of their 
arguments. 

The matrices p(fl)(SSf), where ( M ) = (MI* • *M2M), are 
constructed to have a lower undotted spin-5 index and 
a lower dotted spin-5' index, while the p(M>(55') have 
an upper dotted spin-5 index and an upper undotted 

spin-5" index. The construction is such that (A 1.4) 
generalizes to 

P O O ( S S ' ) = D<*-«>(C^)pw(SST»< f l '-«(C). (3.14) 

The co matrices are defined by analogy with (3.8): 

co(M)(SS'; *) = £>(s-°> (k• <r/f»)poo WW'-® (C)~\ (3.15) 

and similarly for the corresponding matrices with lower 
dotted indices. 

The transformation laws are given explicitly by 

^(5 ,0) ( y l ) - l tp(M)(5y)2) (5 ' 1 0)(^) - l = A ( j ; ) ( M ) ( ^ ) p ( , ) ( 5 y ) ? 

and 
(3.16) 

&™(A)uM(SS,;k)&s'-V(A)T=Al,)W(A)uMZSS,i\(A)ir\, 

where A(F)W stands for a direct product of Lorentz transformations, one for each tensor index of (v). 

2. Orthogonality Relations 

The fact that the spin matrices actually span the spin space is exhibited explicitly by the relations 

(3.17) 

and those formulas obtained from these by raising and 
lowering indices. These relations are a special case of 
more general formulas given in Sec. I l l D.3. 

3. Symmetry Properties 

I t will turn out that there is a connection between 
the p matrices and the irreducible subspaces of the 
tensors of rank 2M. This connection induces various 
symmetries among the tensor indices of p, as well as 
making p traceless in the contraction of any pair of 
tensor indices. Actually, we have omitted an extra 
label in the description of the p matrices, expressing a 
freedom in their construction which corresponds to 
the fact that there are, in general, several irreducible 
subspaces of the same dimension in the space of tensors 
of rank 2M. When 5 = 6 " , however, the p^(SS) are 
essentially unique; and they are symmetric in the 
interchange of any tensor indices. Similar results hold 
for p and co. 

C. Spin-1 Matrices 

Matrices for higher spin can be constructed from the 
pM matrices by a process of spin addition with the use 
of Clebsch-Gordan coefficients. Consider the quantities 

(3.18) 

where S, S' can have either of the values one or zero, 
and C(ji,J2,jz',oLua2,otz) are the Clebsch-Gordan co

efficients in Rose's notation.13 The new quantities p*v 

transform according to the representation 3) (S,0) 

®S)(S'*0)*. To prove this we start from the identity 

Z77'™' C ( 5 I , 5 2 , 5 ; 7 , 7 > ) C ( S I , 5 V $ , / ; K / , 0 ) 

= 8Ss>&SA))(A)J, (3.19) 

which expresses the reduction of a direct product of 
representations into a direct sum. By using the ortho
gonality of the Clebsch-Gordan coefficients, 

Z T T ' C(ShS2,S; 7,7 , ,«)C(5i,52 ,5 /; 7 , 7 V ) 

and (3.20) 

E s . a C(ShS2,S;y,yf,a)C(ShS2,S;K,K',a) 

we get from (3.19) the identity 

L^2) ( ^ 0 ) (^ )«^C(5 1 ,52 ,5 ; /c /^ ) 

= ZyY C(ShS2,S;y,y',a)&^(A)y< 

X&s*>v(A)y,*'. (3.21) 

This leads at once from (Al.l) to the transformation 
law 

&aM(A)J&s''0KA)*'t'p''9(SS')pt' 

= A , ^ ) A / ( ^ ) p - ( S S 0 « a ' , (3.22) 

where &sM(A)&t=&s>®(A)*J. In matrix notation 

13 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 
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2 2 

FIG. 2. Addition of spins. 

this is the same as (3.16) when (S,Sr)= (1,1); (1,0); 
(0,1). 

According to the values of S, 6", the p*v(SS') provide 
spin matrices for the four different situations shown 
schematically in Fig. 2. It is clear from the construction 
in (3.18) that because the direct product matrices 
pfi®pv span the 16-dimensional product space, the 
matrices pM"(SS') must span the corresponding four 
direct-sum spaces of dimensions 9, 3, 3, and 1. 

For any given pair of values S, S' there are 16 values 
of the tensor indices, and hence the p»v(SS') are not all 
linearly independent. In fact, various symmetry proper
ties of the Clebsch-Gordan coefficients, for example, 

C(5i,52,6,;ai,a2,a) 
= (~ l )^^ 2 C(5 2 ,5 1 ,5 ;a 2 , a 1 , a ) , (3.23) 

are reflected in symmetries of the tensor indices. A 
straightforward calculation gives 

pM"(ll) = pH.(ll), 

P/(11) = 0, 

pM>(10) = !e^pX f f(10), 

p^(01) = - | € ^p X f f (01) , 
and 

P^(00) = ig^. 

The various symmetries follow from (3.23) and (3.18). 
That p / ( l l ) = 0 follows from (3.6), (3.18), (3.23), and 
the fact that C is antisymmetric. We have used also 
(A 1.5) and (A 1.6) from Appendix I, as well as the 
often useful identity v2C(|,J,0;a,/3,0) = Ca/3~1. There is 
a correspondence between the expressions (3.24) and 
the irreducible subspaces of the second-rank tensors of 
dimensions nine (symmetric and traceless), three (self-
dual), three (anti-self-dual), and one (scalar propor
tional to guv), which will be further explained after 
orthogonality relations are obtained. 

The matrices ^"(SS') can be obtained by replacing 
p with p in the construction (3.18), or they can be 
obtained directly from p^^SS') by the general pro
cedure (3.14). Using (3.21) and (A1.4), we find that 
the two methods give the same result. Then, the 
orthogonality relations, (3.6) and (3.20), lead to 

P»p(SS')atp,v(L'L)0'&'==8SL5s,L,8a«'df, 
and (3.25) 

Making use of the relation 

PMa/sp/a=| Tr(oyx„) = gMI, (3.26) 

and the second relation in (3.20), we get 

Zss> p'(S'S)**p»(SS'U 
= Zss>Tr\j>*'(S'S)p>>>(SS'n 

These relations can be used to get a compact char
acterization of the invariant subspaces of the second-
rank tensors. An arbitrary tensor can be expanded: 

T»>=Zss> T* TrZpx.(S'S)p*'(SS')l. (3.28) 

Clearly the "projected" tensors defined by 

T>»(SS')=T*' TTIPX9(S'S)/>I»(SS')1 (3.29) 

lie in the four invariant subspaces mentioned pre
viously. 

D. Matrices for Arbitrary Spin 

For arbitrary pairs of boson or fermion spins we 
proceed inductively, generalizing the construction for 
spin 1. By addition of spins we reduce the direct-
product space pM1® • • • ®p(iNz=®NPfi into a direct-sum 
space. There is, of course, a freedom in the order for 
coupling the spins. We shall follow the convention that 
the reduction is always carried out beginning at the 
left: {[•••(pw®p*2)-- -]®P^}- All other choices are 
related to this one by a unitary transformation. 

1. Reduction of the Product Space 

As an example, consider the reduction of the space 
<g> 3PM. We obtain a set of matrices 

XC(L',i,S'; kyk
ffi)p™{LL>)ykp*Yk,y (3.30) 

where L, V can have any combination of the values 1 
and 0, and 5, S' can have any combination of the values 
f and J. The spin indices are labeled by S, Sf; and L, 
V label the intermediate spins that are added to J, \ 
to produce S, S'. The set of matrices pw^SS':(L)1, 
where (L)=(LL'), will be called the "reduction" of 
the space ®3p

M. In general, we shall use the notation 
prn- • -M[SS':(L)2 for the matrices that are the reduction 
of ® ATPM. The spin indices are lower undotted for spin S 
and lower dotted for spin S\ and (JL) labels the set of 
pairs of intermediate spins that are the "path" by 
which the spins S, S' are reached. 

The reduction is defined inductively by 

p«-w+ .{55':[LL':(L")]>^ 
= £,,'**< C(L,IS; y,y',a)C{L',hS';k,k',il) 

Xp"'•"""[££':(L")]7*P*W+V*<, (3.31) 

where S=L±\, S ' = Z / ± | . The matrices 
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which have an upper dotted spin-S index and an upper 
undotted spin-5" index, are denned inductively by 
replacing p with p in (3.31). 

2. Transformation Properties 

We have already the transformation laws (Al.l) for 
p" and (3.22) for the reduction of ®2PM. A simple 
induction argument in which we use the identity (3.21) 
and the definition (3.31) then gives the general law, 

a)(fl.o)(^)p(M)[5y:(L)]D(5'.o)(i4)t 

=A ( r ) ^) ( i 4 )pW[55 / : (L) ] , (3.32) 

where we use the same notation as in (3.16) with 
(/x)= (in- - •/!#)• By the same kind of argument we 
can conclude that 

/5^[5 ,5^(L)]=aD^-0>(C-1)p (M)C55':(L)]* 

XS><fl,'°>(C), (3.33) 
and obtain the law 

aD^.o>(>l)-1tp(M)[55':(z,)]a)(5'.o)(^)-i 

= A ( ^ > ( ^ ) p ( * > [ S ^ ( L ) ] . (3.34) 

Generalized co matrices with two undotted or two dotted 
spin indices can be obtained by procedure in (3.15). 

3. Orthogonality Relations 

Again by induction, the orthogonality relations for 
spin | , (3.6), and for the reduction of ®2p

M, (3.25), 
readily generalize to 

= hjh>J'&(L)(L>)&S'Q)(C)aa>&S''0)(C)ti> (3.35) 

for the reduction of ® A ^ . Similarly, 

P^[5y : (L) ]«4P(M)C/ , / : ( i / ) ] 4 ' a ' 

= 55j5s'/ '5(L)(L')5«aV, (3«36) 

where (Z/) is (Z/) with each pair of spins interchanged. 
Either of these equations proves that the p(fi)£SS' :(L)'] 
span the spin- (S,Sf) space. Furthermore, from the first 
equation in (A1.6), from (3.27), and from the second 
orthogonality relation for Clebsch-Gordan coerlcients, 
(3.20), one can show by induction that 

£ss<(L) TTIP^ZS'S'.(ZEISS':(/.)]} 
== CT(M)(»') = gHWl. . . afiNvN ( 3 . 3 7 ) 

where the trace is with respect to the matrix product 
in the spin-(5,5') space. 

4. Irreducible Tensors 

Equation (3.37) leads directly to an expansion for 
an arbitrary tensor of rank N into a sum of its irre

ducible parts. In fact, the tensors 

Tr{p^lSfS:(L)2^LSSf:(L)-]} 

are for each label [ 55 ' : (L ) ] projection operators into 
orthogonal, irreducible, invariant subspaces. I t follows 
from (3.36) that they are projection operators into 
orthogonal subspaces; and the fact that they project 
into subspaces invariant under Z,+f follows from the 
transformation laws (3.32) and (3.34), which show 
that they are isotropic tensors with respect to L+f. 
That they project into irreducible subspaces can be 
seen by noting that the ordinary Lorentz transfor
mations, A, are equivalent to the representation 
gyi.o)® 3D(o,i)j w n i c n is equivalent to £> '̂0><g)£)(*'u)*. 
Thus, the irreducible representations that occur in the 
reduction of the direct product A(fxKv) are equivalent to 
those that occur in the reduction of ®.vpM. For any 
tensor of rank N we get 

r w = L S s . ( i ) r< '>Tr{p ( , , [S 'S : (2 : ) ] 

Xp<">[SS':(£)]} 
T^ZSS':(L)1, (3.38) 

where T^lSS':(L)~] are the irreducible parts of T^\ 

5. The Spin Basis 

In order to span the spin- (S,Sf) space, we can use 
any of the sets of matrices p(li)\jSS':(L)'] for N greater 
than or equal to the minimum integer such that the 
spins S, S' occur in the reduction of ®Npifi)- This 
freedom will be reduced by requiring that N actually 
be the minimum integer. Because at least 2S undotted 
spin-J indices are needed to build up an undotted 
spin-5 index and 25 ' dotted spin-J indices to build up 

, a dotted spin-S' index, the minimum integer is N= 2M, 
where M = max (.S^S"). Thus, we shall choose a set to 
span the spin space from among p"1'"tl2M[SS':(L)']. 

In general there will still be a freedom in the choice 
of (L), the intermediate spins that are passed through 

v in order to arrive at S, S'. This freedom is present, 
however, only in the set of left elements or the set of 
right elements of the pairs of spins in (L) and not in 

i both; for either 5 or S' is the maximum spin that can 
t occur in the reduction of ®2MPM ; and the maximum 
I spin can be reached in only one way. When S=S' this 

discussion implies that (L) is uniquely determined. 
Furthermore, as we shall see, in that case p(SS) is 
symmetric in all of its tensor indices, so that all possible 
orderings for carrying out the reduction give the same 

v result. If ST^S', then there is a genuine freedom in the 
choice of (L) that corresponds to the occurrence of the 

t same representation of Z+f a number of times in the 
reduction. From the discussion in Sec. I l l D.4 on 
irreducible tensors, each choice corresponds to a par
ticular symmetry character of the tensor indices. 

A consequence of the requirement that the spin 
r matrices have a minimum number of tensor indices is 

that they are traceless in the contraction of any pair 
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of tensor indices. To see this, we suppose that S^Sf and write out the recursion (3.31) in full: 

X • • • XC(J , | , 1 ;aha2,yi)C(L2s-hhS' '> fas-ufasfi) 

X • • • X C ( i , J , L i ; ft^Op^aA- * *PM2S«2^25. (3.39) 

There is a special symmetry of the Clebsch-Gordan 
coefficients; for 5 i ^ 5 2 , we have14 

2Z/s C(Sh S2, S1+S2; 0, 7, a) 

XC(5 i -52 ,52 ,5 i ; « , i c , / ? ) 
== H/3 C(Si, 52 , ^ i + 5 2 ; 0, /c, a) 

X C ( 5 i - 5 2 , 5 2 , 5 i ; 5 , 7 , i 8 ) . (3.40) 

By substituting S2= \ into this equation and comparing 
with (3.39), we see that the sum of Clebsch-Gordan 
coefficients over 7* is symmetric in the interchange of 
the cii. [Symmetry in ah a 2 follows from (3.23).] Con
traction on any pair of tensor indices gives a factor 
Caa', from (3.6), which is antisymmetric. Hence, the 
sum is zero. When S=S' the sum of Clebsch-Gordan 
coefficients over 7*, ki is symmetric in the interchange 
of the fit indices as well, so that we then have symmetry 
in the interchange of the tensor indices. The symmetric 
and traceless property of the equal-spin matrices in 
their tensor indices can also be proved easily by 
induction, again, by the use of (3.40). Finally, it is 
clear that the proof of the vanishing of the traces is the 
same for S<S'. 

IV. TENSOR BASES AND KINEMATICAL 
SINGULARITIES OF THE SCALAR 

AMPLITUDES 

Having constructed a basis for the spin space, we 
can now expand any M function in the form 

M(a)(K) = f(fi)(K) UiT^(SifS/)(aih (4.1) 

where the TifMi)(Si,S/)(ai) represent either p or co spin 
matrices in the previous section, according to the index 
types; (m) for fixed i represents a total of 2 max (5 t ,5 / ) 
tensor indices; (a») represents the two spin indices of 
the paired particles; (JU) represents the collection of all 
tensor indices; and (a) represents the collection of all 
spin indices. From the transformation laws (2.7) and 
(3.16), it is clear that 

A(^f(v)(K) = fM(AK). (4.2) 

In general, the space of tensor functions /(M) (K) can be 
spanned by a set of tensors formed from the four-
momenta K. For those cases where there are at least 
three linearly independent four-momenta in 7T, we 
can form a complete basis of arbitrary rank,15 and we 

14 This relation is probably known, although we have never run 
across it. In any event, it is a straightforward calculation from 
formula (11.18) in U. Fano and G. Racah, Irreducible Tensorial 
Sets (Academic Press Inc., New York, 1959). 

15 Given three independent four-vectors, one can always form 
a fourth by taking the skew product. See Sec. IV D. 

shall suppose for the purpose of the discussion im 
mediately following that we have done so. 

A. The Tensor Basis 

We suppose that we have introduced a set of tensors 
of rank N, functions of the four-momenta K, 

T^-^(K;iv -iN) = T^[K; (*)], 

ij= 1, 2, 3, 4, (j) = iv - - iN, 

and the reciprocal set T{il)[K\ (i)2 defined by 

£(.•> T^IK- ( i ) ] f < " [ * ; Wl-go™, 

r ^ [ A ' ; ( i ) ] f w [ ^ ; ( i ) ] = S ( , ) 0 ) , 

such that each tensor satisfies (4.2). We shall see how 
to form these tensors for two-body processes in Sec. 
IV C. To form a basis for the M functions, we combine 
the tensor and spin spaces to obtain functions, 

Y^(K)=TM£K; (t)]®yr<«>(S*S/), (4.4) 

which then transform as the M functions. Finally, we 
expand the M functions in terms of this basis, 

M(/ [ ) = L ( i l i « ( i : ) F « ) ( « ) , (4.5) 

where A(i)(K) are scalars under Zz+f. 

B. Determination of Scalar Amplitudes 

In general, there are considerably more of the labels 
(i) than the dimension of the spin space. As we have 
seen in Sees. I l l D.4 and I I I D.5, there are symmetries 
among the tensor indices of T(fi\ which means that not 
all of the Tifl)£K; (i)~] are needed to span the tensor 
space. Thus, Eq. (4.5) does not determine a unique set 
of scalar coefficients. There is, however, a natural way 
to impose a set of subsidiary relations among the 
A(i) (K) so that they become determined. 

First, we summarize the orthogonality relations 
among the spin matrices, (3.17), by the notation 

r W ( 5 , 5 ' ) ( « , r w ( S , 5 ' ) ( « = 5(a)<«, (4.6) 

where f represents the appropriate p or w matrices with 
upper indices. Then, we define reciprocal basis functions 

f <« (*)<«> = fwZK; (»)] I L r w (Sy,S/)<««>, (4.7) 

which satisfy orthogonality relations 

Z ( o Y«>(K)ia)?™(K)W = bia)w. (4.8) 

If we now require that the scalar amplitudes be defined 
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by the equation 

A«>(K)=MW(K) ?w(Ky*\ (4.9) 

we get an identity upon substituting into (4.5) and 
applying (4.8). This is precisely equivalent to requiring 
that the solutions for the scalar amplitudes in (4.8) 
satisfy the set of linear relations 

A^(K) = Zu)A^(K)Y^(K)(a)Y^(Ky-\ (4.10) 

which just suffices to determine them uniquely. 
Equation (4.9) is basic for the study of kinematical 

singularities in the scalar amplitudes. I t is clear that 
any singularities of A(i)(K) not possessed by M{K) 
must come from Y{i)(K).n If the tensor basis 
T{ii)[K\ {i)~] in (4.4) is constructed from polynomials 
in the momentum components, it will be holomorphic, 
and both f {il)[K; ( i)] and f(i) (K) will be meromorphic 
with poles at those points where the Tifi)[_K; ( i)] 
become linearly dependent. The question is whether 
there exists a set of T(tt)[K; (f)] such that the poles do 
not appear in the A{i)(K). We do not attempt to give 

where n = ki—kiy particles 1, 3 have spin, particles 1, 2 
are incoming, and particles 3, 4 are outgoing. We show 
in Appendix I I that the R amplitudes obtained with 
this basis are the same ones obtained from four-
component spinors by 

R=2u(-k*)(A+ynB)u(ki). (4.13) 

In particular, the amplitudes A1 and Az coincide with 
A and B. 

We can define a set of four-vectors sM(03,i so that 
the basis (4.12) becomes 

F*8ii=*(08.i-P, (4.14) 

where the subscripts, 3, 1, refer to the particles with 
spin. A basis for four spin-J particles can then be 
obtained in the form 

F*>'= F''8(i® YU,2=s"(i)z,1s
v(j)A,2P(i^pV) (4.15) 

where S(J)A,2 is obtained from $(.7)3,1 by the interchange 
k\ <-> &2, &3 <-> £4. There will be an appropriate reduction 
in the number of basis functions if P and T symmetry 
are imposed.1 This kind of basis is a slight generalization 
of the one obtained from (4.11). 

Although the Y functions obtained from (4.11) or 
generalizations of (4.11), such as in the example (4.15), 

16 This method of analyzing the kinematical singularities is the 
analog in the M-function formalism of the method given by 
GGMW. 

an answer for the many-particle case; and we give only 
a discussion for the case of two-body reactions, to which 
we restrict ourselves from now on. 

C. Special Bases for Two-Particle Reactions 

I t is straightforward to obtain Y functions for two-
particle scattering systems such as are described by 
Fig. 1. A method for constructing a tensor basis has 
been given by Hearn,5 and several examples of spin-J 
basis functions have been worked out by Stapp.1 The 
simplest method is to construct a set of four independent 
four-vectors, flM(i)> i= 1, 2, 3, 4, in the region where at 
least three of the momenta are linearly independent, 
and then to construct a tensor basis 

2>i---MJv(;r . . ^ ) = Z;MI(Z'1). . >vw(iN). (4.11) 

Unfortunately, as we shall see in Sec. IV D, this pro
cedure appears to lead to kinematical poles for higher 
spins. 

A special basis for spin-|, spin-0 scattering having 
definite signature under P and T is1 

2 are not necessarily the best from the viewpoint of 
v kinematical poles, they have certain advantages. The 
h complete Y function defined by (4.4) splits into a 

tensor product of two Y functions for the two spin 
pairs. These functions will be described by the notation 

) Y{SS'\iv • -i2jtf) = ^ ( i i ) - • •^2M(*2M)r(M)(S,S/), (4.16) 

where M=max(5,6 ' / ) . They are multilinear in their 
four-vector arguments, and in Sec. IV D we shall see 
that they have simple inversion properties. When the 
four-vector arguments are expressed in relativistic 

) spherical coordinates they become a generalization of 
spherical harmonics to many arguments and to the 
relativistic case, except for normalization and possible 

e phases.17 Because of the method of construction of the 
p and to matrices, for example in (3.30), the two-spin 

;) Y functions satisfy recursion formulas analogous to 
those for spherical harmonics. If 5 ' > 5 / > 0 , we have as 

e an example18 

n 
y 17 For a discussion of relativistic spherical functions see A. Z. 

Dolginov, Soviet Phys.—JETP 3, 589 (1956); A. Z. Dolginov 
and I. N. Toptygin, ibid. 10, 1022 (1960); and A. Z. Dolginov 
and A. N. Maskalev, ibid. 10, 1202 (I960). Relativistic spherical 

) r coordinates are obtained from /=pcosha, r=p sinha, where 

) /2—r2>0. We shall not give the details of the connection in this 
' paper. For a discussion of this generalization in the nonrelativistic 

case, see R. Spitzer and H. P. Stapp, Phys. Rev. 109, 540 (1958). 
le 18 Equations such as (4.17) implicitly express a spinor inter-
»y pretation of the Clebsch-Gordan coefficients. In line with the 

discussion in Sec. I l l B.l and Eq. (3.21) one can regard the 

P = [ ( * 1 / w 1 ) - ( V w 8 ) ] - c r , a P = + l , <rT= + l , 

P = [ ( f t l / W l ) + ( * 3 / * » 8 ) ] - 0 " , C r P = - l , 0 T = - 1 , 

Yz = n'<r—(kr<r/tnz)n-a(ki-cr/mi)i 07*=+ 1, o r = + l, 

Y*=n'<j+ (kz - (x/mz)n -&{kv a/nii), <rP= — 1, <rT= + 1 , 
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Y(S+i, Sf—\\iv • 't2s+i)afi More generally, one can start from four-spin basis 
=*Y,yy'kk' C(S, | , S+%;y, y', a) functions Y(^^;ij) that are not direct products 

XC(Sf, | , Sf~|;£, kf, /3)Y(SS';ii' • 'hs)yk of two F ( | | ; i ) functions and define recursive sum 
X Y(i | ; ^25+1)7'*'. (4.17) rules such as 

FQS^SaS'ijS'l J (i)(j)3ay$k=Y<8Vi\' Lee ' / iA' C(Ji,Li,Si ', 5 , 5 ' , a ) C ( J z f L s , S z ; t,e',y)C(72,^2,^2 j X , X ' ^ ) 

XCVuLxJilw'AYUJJJi', {fftuUFlLiLiLiLi-, ( i )>« 'W, (4.18) 

where one must, of course, keep track of the coupling 
scheme. We shall write this in the short form 

FC(5),(ii)](a) = e ( / , L , 5 ; ^ » 
XFC(/),(»)](«FC(L),(i)]W'). (4-19) 

The reduction is shown schematically in Fig. 3 for a 
simple case; the right-hand side corresponds to the 
binomial expansion. 

D. Kinematical Poles 

A reciprocal basis to (4.11) is easily obtained from 
the reciprocals of the four-vectors v(i), which are given 
by 

v(l) = lv(2)v(3)v(4)l/d, 

*(2)=~[>(1>(3)K4)]M 

£(3) = |>(l)z;(2>(4)]M 

z5(4)=-[.(l)K2)K3)]M 
with 

d= €M,Xp^(iy (2>X(3V (4), (4.20) 

where [xyz]^ eliV\px
vyKzp. From these definitions it is 

clear that 
v(i)'v(j) = 8ij, 

and 
Y,iV»(i)vv{i) = Y,iV»{i)vv{i) = g>lv. (4.21) 

The tensor basis reciprocal to (4.11) is then 

f " - ^ ( i i - • •*V) = ^1(*i)-' -vw{iN\ (4.22) 

and the F functions are obtained by substituting into 
(4.7). 

From (4.9) it is clear that any kinematical singu
larities in the scalar amplitudes must be poles coming 
from the vanishing of d, provided the v(i) are poly
nomials in the components of the four-momenta. The 
determinant d vanishes if an only if the four-vectors 
v(i) become linearly dependent.19 

Clebsch-Gordan coefficients as spinors with the first two indices 
upper and the third lower, or with the first two indices lower and 
the third upper. This property is already familiar from the rotation 
group and is mentioned, for example, by E. P. Wigner, Group 
Theory and its Application to the Quantum Mechanics of Atomic 
Spectra (Academic Press Inc., New York, 1959), Chap. 24, pp. 
292-296. 

19 In this statement we are taking it for granted that at least 
one of the four-vectors is inside the light cone and that all three of 
the vectors are real. When the vectors become complex the state
ment is no longer true in general, and our analysis of the kine
matical singularities must, therefore, be considered heuristic. The 
essential result, however, survives a more careful treatment. 

Four-momentum conservation implies that only 
three of the momenta can be independent for two-
particle reactions. For the purpose of this discussion 
we shall choose 

v(i) = ki for i=2 ,3 ,4 ; v(l) = £kJtzkA~]. (4.23) 

Clearly v(l) is independent of #2, k3j k^ and i>(l) = 0 if 
and only if £2, £3, &4 are linearly dependent. Equation 
(4.20) implies that 

d=v(l)'v(l) = det(ki-kj) for i, j=2, 3, 4, 

which is familiar in the analysis of scattering kine
matics.20 We shall write d in the form 

d=l(stu-sa2-tb2-uc2+2abc), (4.24) 
with 

a— (mi2+m22—ms2—m42)/2i 

b — (wi2+w3
2—W22—W42)/2, 

c= {m?-\-m£—m£—m£)i2, 

where we have used the identity $ + / + « = £ * m } . 
This reduces in the equal-mass case, as usual, to (stu/A). 
It can be shown that the basis in (4.12) or (4.14) has a 
determinant proportional to d. 

To analyze the kinematical singularities induced in 
the scalar amplitudes by this basis, we consider first 
the case of spin-0, spin-J scattering—of which pion-
nucleon scattering is an example. It is well known that 
the scalar amplitudes in (4.13) have no kinematical 
singularities,21 and our discussion should be regarded 
as an illustration of how such a proof goes in the 
If-function formalism. 

The basis functions and their reciprocals are 

Y<=v(i).p, P=#(*).p, (4.25) 

and the scalar amplitudes are 

Tr[Jf/5"]^(t) = ai(s,t,u)=f»(K)vli{i). (4.26) 

± ! I i 
2 V 2 2. 2, I ! I I I I 0 I 0 0 

2 22 2 i 4 6 4 I 
permutations permutations permutations 

FIG. 3. Decomposition of direct products of spin-| basis functions. 

20 See, e.g., T. W. B. Kibble, Phys. Rev. 117, 1159 (1960). 
21 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin, Inc., New York, 1961), Chap. 5. 
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We suppose that we can invoke the Hall-Wightman 
theorem22 in a manner similar to that of GGMW4 to 
infer that a^sjju) is holomorphic except for the 
dynamical singularities from M and the kinematical 
poles in v. We shall prove that the poles are not present. 

Disregarding the dynamical singularities, we see by 
inspection of (4.20) and (4.26) that 

\imai(sit,u)d=0, (4.27) 

because lirm>(l) = 0. Using (4.24) and eliminating u, we 
can write d in the form 

<*= - i ' l>-*+(0] |>-*-( ' ) ]• (4-28) 
Thus, except for a finite number of values of t where 
s+(t) = s-(t) or possibly 2=0, a{{s,t) can have only 
simple poles in s. But from (4.27), al(syt) must have at 
least a simple zero in 5 for the same values. By applying 
the argument to each variable in turn, we find that at 
most a^SjtjU) can have poles at a finite number of 
values of its argument. But this is impossible because 
a function of several complex variables cannot have 
isolated poles. [See, for example, the lecture notes of 
H. J. Bremermann, Complex Analysis in Several 
Variables (University of California Press, Berkeley, 
1962) p. 91.] 

This proof does not, however, generalize for a product 
basis to higher spin or to the case where more than two 
particles have spin. In general, if we write 

T r [ i f f (MI) (ShSx')® f « (6WSV)]=f(li) (K), (4.29) 

which is holomorphic except for dynamical singularities, 
and 

a{s^u\iv ' 'iN) = f(li)(K)v^(i1)" 'ti»»(iN), (4.30) 

the best that we can conclude is that the coefficients 
(4.30) have kinematical poles of order at most dN~1. 
That we can, in fact, get poles from a product basis is 

where a(n)=a(n,s) and p(n,s) are the position and 
residue of the nth Regge pole of the partial-wave 
helicity amplitude hJ(s). We wish now to establish 
that there is a unique analytic continuation of the 
partial-wave helicity amplitudes from the physical 
values of / . 

Let us denote, in the center-of-mass system, the 
scattering angle of the outgoing particles 3 and 4 (Fig. 

22 D. Hall and A. S. Wightman, Kgl. Danske Videnskab. 
Selskab, Mat.-Fys. Medd. 31, No. 5 (1957). 

illustrated by the example /„„(#) = g^. Then a(s,t,u; if) 
= v(i)"v(j), and, in particular, a(ll) = v(l)'v(l)-l/d. 

In general, considerable care must be exercised in 
the selection of a basis, as is already known by experi
ence with the T-N and N-N cases. One expects from 
perturbation theory that such a basis exists.5 In the 
N-N case, GGMW were able to obtain a proof only by 
doing a partial-wave analysis. Preliminary results 
obtained by one of us (DNW) indicate that this is not 
necessary, and that in fact a complete solution can be 
given for the problem of finding a basis leading to 
singularity-free amplitudes for two-body reactions. 
The details will be given in a second paper. For the 
purpose of the continuation in total angular momentum, 
we need only assume that there exists some basis formed 
from polynomials in the momentum components such 
that the scalar coefficients have only dynamical singu
larities ; and that will be our procedure. 

V. ANALYTIC CONTINUATION IN TOTAL 
ANGULAR MOMENTUM 

The analytic continuation in total angular momentum 
/ is most conveniently done in terms of the helicity 
amplitudes ZZ^X'.AX, which have simple projection 
properties in terms of the partial-wave helicity ampli
tudes Vx'^x17-10 I n the s channel, for example, we have 

1 
fl,'X'.tf= E ( 2 / + 1 ) V V , A X / W 

2(M , ) 1 / * ' - ° 

Xexpp(X-£)4>] exp[-i(V--/*')*] 

X<F(0W,x-M, (5.1) 
where qf and q are the magnitudes of the final and 
initial cm. momenta, and where we have introduced 
the convention that the upper undotted index of the 
dJ matrix shall be written as lower dotted because both 
have the same transformation property for rotations. 

Equation (5.1) can be formally transformed into a 
Sommerfeld-Watson representation 

1) by 6 and w—6. We shall put <p=0 without any loss of 
generality. Also let us denote the helicities of particles 
1, 2, 3, and 4 by X, /i, X', and y!. We write the M 
functions in the form of Eq. (4.5) 

M(a)(K) = X(i)A^Y^(K)(a). (5.3) 

Here (i) labels the scalar amplitudes; (S) = (5*4, • • • ,Si) 
are the spins; and (a) = (a^az^di) are the spinor 
indices. The helicity amplitudes are given according to 
Eqs. (2.9) and (2.10), by 

t , (2J+l)h(x)J(s)dJ(6)Ax>tM(-iy 
H(x> — H 1 / - • (sinx/) 

[2a(»)+l] |8(X)(»^-«">(«—^AX'^AU-I)^' , 
+*£ ; — }, (5.2) 

n sin7ra(M) 
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H = £><S4.«[exp(i<?'cr2/2) ( -*«• ff/w4)
1/2] 

<g> » (S ' '° '[exp(^<r2/2) (-/fe3- of/mj)1'2] 

® 5><*-°>[exp(*W2) (A,- <0w2)1/2]* 

®£><a»-0>n(Ax-ff/«i)1 / ,]*Z(«^">y (S )" ) , (5.4) 

Consider the basis, Eq. (4.12), for the spin-(|,0) 
system. We first evaluate the JR-basis functions, R{i), 

f-kvtt\*«'fkv9\hil 

tfx,*H«> = ( ) ( ) Fa^HCO, 

where d' = ir—d. The angles in the center-of-mass frame where R = Y,(i) A{i)R{i\ or, in matrix form, 
of particles 1 and 2 have been taken to be zero and 7r, , , , « , , / „ 
respectively. R\W) = l ! _ ) y H ( 0 [ J L . \ . (5.5) 

We want now to separate the ^-dependent part of \ t»3 / \ m\ ) 
H(\). To see how the first twTo matrices act, we consider 
firstly the case 5 i = 5 3 = I , 52=^4 = 0 . The general case We obtain in the center-of-mass frame (after some 
will be built up from here. calculation): 

U*40>= (mlmz)~ll2{L(El+m1)(Es+mz)2
m-qf •v£-*l{E1-m1){Ez-m)y*}, 

mto=(mimzYW{[E*+EiX& 
+ g ' - ^ a ( [ ( £ i - m 1 ) ( £ 3 - W 3 ) ] 1 ^ ^ (5.6) 

and 

+ iE2+E4T(E1-m1)(Ez+mz)Y>)+q''v(qt(E1-M 
+ lE2+E4']t(Ei+tn1)(Es-tm)J'*)}. 

Here Eh E2, Eh E4 are the c m . energies of the four 
particles, and q and qf are the unit initial and final 
momenta. In the equal-mass case these expressions 
simplify to 

R^=(l/m)[(E+in)-q/'vq-<T(E-fn)~], 

R^=(q/ni)<,.(q-n 

RU>= (2/m)i(E+m)(2E-m) 

+ qf-Gq-if{E~m) ( 2 £ + w ) ] , (5.7) 
and 

RM=-(±qE/m)« •{&+$'). 

These are just the standard expressions. 
For the scattering of two spin-J particles we have 

16 combinations R(a)$*(i)(a) .#(«/>* *<>>(a'), where the 
argument a' indicates change of signs of q and q' and 
change of E\ <-> E2, E% <-> E4, and m\ «-» W2, w3 <-> W4. 
There are, of course, other choices of basis functions 
possible that are not a direct product of two R functions. 

For the spin-(J,0) system, we have from Eq. (5.4) 

Rv$ 1= 5)( i») [exp( tW2)]x^ E a) A WRfi>} *(i>. (5.8) 

Equations (5.6) show that R^(i) are functions of 
a-q and <r*g', which are the helicities of the two 
particles in the center-of-mass frame. The rotations 
merely diagonalize the helicities to their eigenvalues X 
and X'. This is, of course, precisely the meaning of the 
helicity amplitudes. Using the identity 

[exp (;0<x2)]v
 a (<r • q) «x = 2X^[exp (;0<r2/2)> x, 

or in matrix notation 

[exp (*0<r2/2)] (cr • q)[exp ( - i0o-2/2)] = asq, (5.9) 

we obtain from (5.8) 

flx'^^Iw^^^)^/2^)^, (5.10) 

where Z^(i) is independent of the angle 0. I t is ob
tained by replacing a-q by 2X and a-q' by 2X' in Eqs. 
(5.6). We have also used the identity 

£ (*-°>[exp(zW2)]=^1 / 2(0). 

The corresponding formula for the helicity amplitudes 
of four spin-| particles is 

#M'A'.MX§ * * l(*'y) = £>(i>0){expii(T-6)<j2/2~]}fi><* 
XSD(i-0)[exp(i(9a-2/2)]x^ 

XRa.-^^R^^i-l)^ 
where we have used 

Then, 
a 3( / ,o)[e x p( i 7 r ( 7 2 /2)]^= ( - iy-«Ba-em 

Xd^iir-B),.^^ (5.11) 

The separation of the angular part in the above 
manner can be performed for any basis that is a poly
nomial in the momenta. Such a basis can be reduced 
to a sum of terms such as k^k/, ki-kjg^, and €\oV.vkfkj% 
for example, in the case of second-rank tensors; and 
these multiplied with the spin basis give eventually 
terms like kfv^kfvy from which the angular parts 
can be obtained by use of Eq. (5.9). The angular parts 
of the scalar products ki-kj, which are polynomials in 
s, t, and u, are obtained by Legendre expansion. Thus, 
if a general polynomial basis is used, we obtain a sum 
of terms of the type (5.11). 
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The form of the transformation properties of the R recursion formulas 

and H functions is the same as that of the M functions; o (S) (;,;) = £ ( / LS'a/3 y)R(a)
(J)(i)R(3)(L)(:i) (5.12) 

only the argument of 3D(Si0) is different. Consequently, 
the basis functions of the higher spin R and H functions a n 

are constructed from Eqs. (5.6) and Eq. (5.11) by H(x)(S)(*';") = C(/,L,5';<r>r,X)H(o ( J ) (0^(r)CL) ( , ' ) . (5.13) 
means of Clebsch-Gordan coefficients in exactly the We shall now exhibit the angular dependence of the 
same manner as the higher spin M functions. We have, higher spin helicity amplitudes. First, let us consider 
therefore, corresponding to Eqs. (4.18) and (4.19) the the spin-1 helicity amplitudes. 

ff(X)Cim>«*0 = £ C(J, i , l ; a X X ' ) C ( i , * , l ; «AX)C(U,1 5 « ' , p V ) C ( i * , l ! *,p,£)fl»'** »<»(») 

X H H , M W f f . ' i " ( l , ( * - W l ) ( » - » ) - (5-14) 
From Eq. (5.10) we have 

XZ*i<«(« ' , ^ H ( O (p ' , p )^ / 2 W«'^ 1 / 2 W<i^ 1 / 2 ( ' r -0 )« ' , - ^ 1 ' 2 (T -e )p ' , ^ . (5.15) 

Since the Z's depend upon the helicities but not the angles, we can write the Eq. (5.15) in the form 

F ( x, 1 • • • 1 =Z0 1 1 »<0Co>; /3^4;«^*;p^p; (X)> r t (»)« '4<P f l (»V^ l f l (x-«)«^^ f l (T-«) ,^-^ (5.16) 

with the obvious definition of zamHi). 
In this form, the equation can be generalized, and we obtain for the higher spin case 

F{X)t»w=z(»«>[aVi; • • •JNANIPIA; • • • ;0'*,4»; ( W 2 W » v r • - ^ P W * 
Xd^iT-d)^,^- • - ^ ( T - t f W - f c , (5.17) 

where iV=max(2Si,2S3) and M=max(252,26*4). The d1/2(6) and dll2(T—6) functions can now be recombined into 
a sum of single d functions multiplied by Clebsch-Gordan coefficients by using the relations 

<*'(0)XA= ( " 1 ) X " ^ W - X , - M = ( - 1 ) X - ^ J WMX= (~ 1) J-xdJ(w~e)x,^ 
and 

d W V * = £ r C(7, i , / ; X', M', X ' + M ' ) C ( / , L, / ; X, A, X + £ ) < * W . X + * . (5.18) 

For example, in the case of spin 1, Eq. (5.16), we find 

ff<x,<»»><» = Z<»»>«>[a',d; (?j • K',K ; p',p ; ( X ) ] ( - 1 ) ' - ' - ' E / , r . * C(i, §, / ; a', (f, a'+ftCQ, *,/;<*, ft d + 0 ) 
X C ( i i , / ' ; - « ' , - p ' , - K ' - p ' ) C ( i , | , / ' ; - * , - p , - * - p ) C ( / , / ' , * ;a '+ /S ' , —«'—p', a ' + / S ' - « ' - p ' ) 

XC(7, / ' , * ; d + p \ -K-p ,c i+ /3-K-pK(^„ ' + / 3 ' -« ' - ( ) ' , i + ( j -« -p (5.19) 
or 

F<x)(11U)«=L* l^ ( i ,[a',a; (fj; «',*; P'P ; (x); *]<f*(*)«<+/>'-.<- ,<.^j-*-* (5.20) 
where 

P F ^ [ a V ; ^ ; , V ; p ' , p ; ( X ) ; ^ ] 
is the coefficient of # ( 0 ) in (5.19). 

The general case is also of this form but with a more complicated lower index of the same form. 
We are now in the position to discuss the partial-wave helicity amplitudes, which are defined by Eq. (2.12). 

We have 

S(s) = Hqqf)mf d(co$d)dJ(6)AX,tAiHc (X)" W = f Kqq r* / a^ow)a« WAX',AX#(X) 

= Hqq')m[ dzdJ{6)^^ £ (2l+l)A™(l,s)dl{e)*> E W™[a\a\Pfi\Kr,k\ p',p', (X);*] 
J_l (i).i k 

Xdk(fi)a>+fi>-*>-P:&+t-*-fi, (5.21) 
where 

^*Wa'+/J'-«'-p',«+/»-i-/i=^*WAX',AX 

from the Clebsch-Gordan coefficients in Eq. (5.19) with the indices on dk just AX and AX'. Finally, we combine 
dl(6)ob with GK(0)AX',AX to obtain 

J-r-Z 

< W A V , A X = E C(/ , / ,L; 0,AX',AX')C(/,/,Z,; 6,AX,AX)JL
AX' AX, 

L - | / - Z | 
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and integrate each term dLdk by using Eq. (2.14); hence, 

A(X)JW = J ( « 0 1 / 2 E E (2/+1M ({ )(W Z ^w[(X);*]C(/,/,*;0,AX',AXOC(/,/,ft;0,AX,AX), (5.22) 
(*) i A;-|/-iI 

and, because the h values are restricted by the Clebsch-Gordan coefficients in their definition, Eq. (5.20), only a 
restricted number of / values of A (i)(l,s) contribute to each &(x/ with a given / . For example, in the case of spin-1 
particles, k = 0, 1, 2, and only three / values contribute; thus, l=J,J— 1, and /— 2, respectively. Writing the terms 
separately, we have 

W=H^01/2Ec;){(2/+l^ 
+ (2J- \)A <*> ( / - 1 , s)W^l(\),l']C(J- 1, / , 1; 0, AX', A\')C(J-1, / , 1; 6, AX, AX) 

+ ( 2 / - 3 ) 4 <*>(/-2, s)W«>Z(\),2]C(J-2, J, 2; 0, AX', AX/)C(/~2, / , 2; 6, AX, AX)}. (5.23) 

In the higher spin case we will have, in general, more 
terms of this form. 

This equation and the generalization of it will now 
be used to define an analytic continuation of hJ in / . 
The Clebsch-Gordan coefficients can be continued 
analytically in / in terms of their closed-form ex
pression. Note that this continuation is naturally not 
unique. We can take one that does not change the 
asymptotic behavior of A (J,s) for large | /1 in order to 
make the Sommerfeld-Watson transformation (5.2) 
possible. 

Assuming that the scalar amplitudes A(i) (s,t,u) 
satisfy the Mandelstam representation (see previous 
section), we obtain, in the usual way,23 an expression 
for each term Aw(J,s) in (5.19) suitable for analytic 
continuation in / : 

A^(J,s)=~ fdzAt^(s9z)Qj(z) 
T J 

+ (-iy- fdzAJHsrfQAz), (5.24) 
7T J 

where At
(i) and Au

(i) are the absorptive parts of the 
scalar amplitudes, A(i\ in the / and u channels, re
spectively. These absorptive parts are assumed to be 
bounded uniformly in s by tN and uN, so that A (J,s) 
is a holomorphic function of / for ReJ>N. Equation 
(5.24) inserted in (5.23) together with the analytically 
continued Clebsch-Gordan coefficients defines finally 
the analytic continuation of the partial-wave helicity 
amplitudes. Note that in various terms of hJ, J occurs 
in the argument of A displaced by integer units, so that 
the poles will occur displaced in A (J,s). 

VI. CONCLUSION 

By an application of the theory of representations 
of the Lorentz group, we have shown in some detail 
how to extend the two-component 5-matrix formalism 
to describe nonzero-mass particles of arbitrary spin. 
In the process we have obtained the generalization of 

23 M. Froissart, in Proceedings of the La Jolla Conference on the 
Theory of Weak and Strong Interactions (unpublished): V. N. 
Gribov, Soviet Phys.—JETP 14, 1395 (1962). 

the Pauli spinors to arbitrary spin and the projection 
operators for the irreducible subspaces of the tensors 
of arbitrary rank. 

Although we have given a general prescription for 
expanding the 5 matrix for two-body reactions in terms 
of a set of basis functions, we have not given in this 
paper specifications for choosing the basis functions 
for the general case in such a way as to avoid possible 
kinematical poles at the boundary of the physical 
region. With the assumption that there exist scalar 
amplitudes that satisfy the Mandelstam representation, 
we have obtained the unique continuation in total 
angular momentum. 
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APPENDIX I: NOTATION, CONVENTIONS, 
PROPERTIES OF SPINORS 

Our Lorentz metric is goo=l= — gn= — £22= — #33; 
also, €0123= ~-l. For matrices we use the notation MT 

for transpose, M1" for Hermitian conjugate, M* for 
complex conjugate. 

A brief review of spinor calculus,24 leads us to note a 
number of relations involving the Pauli matrices, o ,̂ 
where 

and 

and the space-inverted matrices, <JM= (cro, — <r). The 
one-to-two homomorphism between L+f and the two-
by-two unimodular group is expressed by 

AM,(±v4)==i Tr(5v4ov4+), 
24 For these and other formulas from the spinor calculus, see, 

e.g., W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953); 
E. M. Corson, Introduction to Tensors} Spinors, and Relativistic 
Wave Equations (Blackie & Son Ltd., London, 1953). 
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and the transformation character of <rM, c^ is expressed 
by 

A x^a^Af = [A (A )x2fiatl 

and (Al.l) 
A~lfxtiafiA-1= [A(,4)£><7M, 

where A is a two-by-two unimodular matrix, and 

For any spinor, those indices transforming according 
to A, A* are written as lower undotted, lower dotted, 
respectively, and those transforming according to the 
contragredient transformations A~1T, A~u are written 
as upper undotted, upper dotted, respectively. Thus, 
from (Al. l) , <rM, <rM have indices <7Ma/3, <JM

A^. Contraction 
of relatively upper and lower indices of the same type 
is an invariant operation. We use the summation con
vention throughout for repeated relatively upper and 
lower tensor or spinor indices. 

If the matrix C is defined by 

/ 0 1\ 

c ~ 1 = ~ c = ( - i 0 / ( A 1 , 2 ) 

we have the general matrix equation for any M, 

C-iMTC= M~l detM. (A1.3) 

The spinor indices are taken to be Clafi=C~1&^ and 
Cap=Cai3', and these matrices are used as raising and 
lowering spinors, contracting always on the right index. 
The matrices a^ satisfy the identities 

cr^C-^/C^C^afC. (MA) 

We write the indices of the Kronecker's 8 symbol in 
two different ways, for example, 8ssf, 5 a

a ' . Both mean 
the same thing. The indices are written as relatively 
upper and lower when we wish to emphasize the spinor 
character of the symbol. 

The following equations and orthogonality relations 
are often useful: 

and 

and 

<rMfry = gnv+ iie^Xpa^aP, 

VvPv—£M v ~ 2 l € M "X P a a \np. (A1.5) 

(A1.6) 

For any four-vector x we have (x'a)(x-a) = x-x. The 
Hermitian matrix (k • a/m)1/2 corresponds to a Lorentz 
transformation from rest to the four-momentum k: 
(&-cr/w)1/2=cosh(x/2)+&-ff sinh(x/2), where k is the 
unit three-vector and x is the "angle" of the Lorentz 
transformation; also, k = km sinhx, ko=m coshx. 

The representation matrices for the proper rotation 
group and the proper homogeneous orthochronous 
Lorentz group, £)S(A), T>iS's,)(A), are denned for 
unitary-unimodular and unimodular two-by-two ma

trices A} respectively, with 5 , S' half-integers. The 
matrices S)S(A) are unitary; and the representation 
3D5 is unitary-equivalent to D5*, which follows from 
(A1.3) and the group property. But £>(S'Sf)(A) is in 
general not unitary, and the representation &(s>s') is 
inequivalent to T>(S':S) unless S=S'. The following 
identities hold: &S>V(A)=&°'S)(A)-V; &s>v(A*) 
= £><'S'0)C4)*; &S>0)(AT)=&S'0)(A)T. The choice 
S)^'0)(A) = A is a convention. The opposite convention, 
&(°>V(A) = A, is often used. If the latter convention is 
used, £>(S'Q) in our formulas should be replaced by 

APPENDIX II: RELATION TO FOUR-COMPONENT 
FORMALISM 

The customary introduction of the invariant scat
tering amplitudes has been in terms of four-component 
spinors. Stapp has already given the relation between 
his two-component If-function formalism and the 
four-component formalism.1 We give here a demon
stration that exhibits the relation between the corre
sponding scalar amplitudes for pion-nucleon scattering 
without isotopic spin. 

According to (2.6), the M function for the situation 
described in (4.12) is 

M=B — kst-psRBkn-pi''. (A2.1) 

The positive-energy solutions of the free-particle Dirac 
equation in momentum space can be written in the form 

«&(*) = ( _ .. " ' ) , (A2.2) 
/ Bk<r-p <l>a\ 

where <t>& represents two two-component vectors, which 
wre take to be 

v 2 \ 0 / v 2 \ l / 

We use the following representation for the Dirac 
matrices: 

7 M = ( „ • (A2.4) 

Then, writing 
Ua=Uaf7Q, 

Ra0=2ua(—kz)Tup(ki), 

(A2.5) 

(A2.6) 

and evaluating (A2.1) using (A2.2) and (A2.5), we 
obtain 

ki-a ks-a kz'a ki'<r 
M=Tn r 2 2 + r 1 2 T21 , (A2.7) 

nti m% mi wi 

where Z\7 are the two-by-two blocks of the T matrix. 
From (4.13) and (A2.4), these are given by 

Tn==T22==A} T12=Ba-n, T2i=Ba-n. (A2.8) 

The M function (A2.7) thus agrees completely with 
the M function given by the basis (4.12) in the P- and 
T-conserving case, where A=Al and B=AZ. 


