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The object of this paper is the application of the variation method to a simple field theory. A representa
tion is found in which the state functions are emphasized. Variational trial forms are chosen for these, and 
optimized by making the expectation value of the field Hamiltonian stationary. Only the simplest case of a 
neutral, spin-zero, boson field with a fourth-power self-coupling term is considered here, but it is hoped that 
with further elaboration this may in the future lead to a description of the multipion resonances. The 
variation method has the advantage of avoiding any limitation on the strength of the self-coupling. Explicit 
results are obtained for the vacuum, single-particle, and two-particle (scattering and bound) states, and 
comparison is made with the determinantal method. Finally, a criterion for the variational stability of the 
vacuum state is obtained. 

I. INTRODUCTION 

TH E existence of well-defined resonances, or quasi-
bound states, of the two-pion and three-pion 

systems has now been established by experimental 
observation.1 Several theoretical attempts have been 
directed toward relating these resonances with each 
other2; none of these has provided an exact solution 
within the framework of any definite model, nor are 
the limitations of the approximations completely under
stood. The simplest field-theoretical model is that in 
which only pions (no nucleons) are present, and the 
interaction between pions is represented by a non-
bilinear self-coupling term in the field Lagrangian. Such 
a term appears after renormalization of the pion-nucleon 
coupling,3 and the classical theory of this model was dis
cussed many years ago in an attempt to account for the 
saturation of nuclear forces.4 Quantization was carried 
through in a lattice space, with the field-gradient 
(kinetic energy) term being treated as a perturbation5; 
the object of this approach was to take strong self-
couplings into account without approximation. Lattice 
quantization led to physically plausible lowest (vacuum) 
and first excited (single-particle) states. More compli
cated self-couplings have also been introduced in 
attempts to account for other properties of elementary 
particles.6-8 The particular case of the fourth-power 
self-coupling has been treated most fully by means of the 
determinantal method9; this work provides an impor
tant standard with which new theoretical approaches, 
such as that developed below, can be compared. 

* Supported in part by the U. S. Air Force through the Air Force 
Office of Scientific Research. 

1 For a summary of the experimental results, see the report by 
G. Puppi presented in the Proceedings of the International Con
ference on High-Energy Physics at CERN, 1962 (CERN, Geneva. 
1962), p. 713. 

2 The theoretical approaches have been summarized by S. 
Mandelstam in a report in the Proceedings of the International 
Conference on High-Energy Physics at CERN, 1962 (CERN, 
Geneva, 1962), p. 739. 

3 P. T. Matthews, Phil. Mag. 41, 185 (1950). 
4 L. I. Schiff, Phys. Rev. 84, 1 (1951); R. O. Fornaguera, Nuovo 

Cimentol, 132 (1955). 
5 L. I. Schiff, Phys. Rev. 92, 766 (1953). 
6 J. Goldstone, Nuovo Cimento 19, 154 (1961). 
7 G. Marx, Acta Phys. Acad. Sci. Hung. 14, 27 (1962). 
8 D. I. Blokhintsev (to be published). 
9 M. Baker and F. Zachariasen, Phys. Rev. 118, 1659 (1960). 

The present paper starts with a representation in 
which the state functions are emphasized.10 The varia
tion method then provides a technique for improving 
these functions, and a criterion for gauging the degree 
of improvement that is attained. I t also avoids any 
limitation on the strength of the self-coupling. Only the 
simplest case of a neutral, spin-zero, boson field with a 
fourth-power term in the Lagrangian is considered here, 
although the same methods can be applied to the self-
coupled pion (unit isospin) field.11 The work reported 
here is also limited to separable, or nearly separable, 
variational trial functions. While the results obtained 
evidently cannot be compared with experiment, they 
are promising enough to warrant extension to more 
elaborate trial functions. 

II. GENERAL FORMALISM 

We start with the Lagrangian density (in units such 
that h=c=l) 

which is Lorentz invariant if the field amplitude <£ is a 
scalar or pseudoscalar function of the coordinates and 
time. The canonical quantization procedure12 then leads 
to the Hamiltonian 

H= = / [> 2 + i (v«)2+i/xoV+iXo*4]^v, (l) 

the commutation relations 

(2) O ( r , 0 , T ( r ' , 0 ] = t S ( r - r ' ) , 

and the total momentum operator 

G = - - jtir(v<t>)+ (v*)T]rfV. (3) 

It is easily seen that G commutes with II, so that the 
10 A preliminary account of this work was presented in the 

Proceedings of the International Conference on High-Energy Physics 
at CERN, 1962 (CERN, Geneva, 1962), p. 690. 

11 P. R. Auvil, Jr., Stanford University Ph.D. dissertation, 
1963 (unpublished). 

12 See, for example, G. Wentzel, Quantum Theory of Fields 
(Interscience Publishers, Inc., New York, 1949), Sec. 6. 
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states of the system may be classified according to 
values of the total energy and total momentum. Since 
Eqs. (1) and (2) are also invariant with respect to the 
substitution <f>—» — $, 7r—> —7r, we expect the states to 
possess a multiplicative quantum number (equal to ± 1 ) 
that we shall call the amplitude parity.13 

The integration volume in (1) and (3) is chosen at 
first to be a rectangular box of volume 12 with periodic 
boundary conditions at the edges; 12 is later allowed to 
become arbitrarily large. I t is then convenient to expand 
the field amplitudes in terms of the normal modes of the 
box, 

0=O-i/2 £ qk exp(ik-r), ^ S T 1 ' 2 £ pk e x p ( - i k - r ) . 

The k's are three vectors whose rectangular components 
are integer multiplies of 2TT divided by the corresponding 
length of the box; for notational simplicity, their 
vectorial character will not be indicated in the sub
scripts. The commutation relations (2) become [_qk,pk'~] 
= ti>k,k' with other pairs commuting. Further, since we 
are dealing with a neutral field, the unquantized <£ is 
real; then the quantized <j> and TT are Hermitian, so that 

qk*=q-k, pk* = p-k. (4) 

In the usual quantization procedure,12 the q's and p's 
are expressed in terms of non-Hermitian creation and 
destruction operators. Since we wish to emphasize the 
state functions rather than the operators, we express 
the q's and p's in terms of Hermitian operators in the 
following way: 

qk=2r^(xk+iyk)f pk^2-^(Xk-iYk). 

The new commutation relations, \jCk,Xk>^\=[yk,Yk'~] 
= iSk,k' with other pairs commuting, make it possible to 
adopt the representation 

Xk= —id/dxk, Yk= —id/dyk. 

Thus, H can be expressed in terms of the x's, y's, and 
their derivatives. However, it is slightly more con
venient to define "cylindrical" coordinates 

xk=zk COS0&, yk=zk sin0k, 

and express H and G in terms of the z% d's, and their 
derivatives: 

# = L W + ( X o / 0 2 ) / * [ £ zk cos(kT+fc)]Wr, (5) 

r 1 d / d \ 1 d2 -] 
Hko=-i\ (**—)+ +W**2, (6) 

Lzk dzk\ bzj zk
2 ddk

2J 

6 = 1 * - . (7) 
ddk 

Here, cor^k2+/uo2. 
Since Eqs. (4) are satisfied if Xk=x-k and yk= —y~k, 
13 This quantum number, introduced in reference 10, has been 

discussed further by G. Barton (to be published). 

or if Zk—Z-k and 6k=—0-k, it is only necessary to sum 
over half the k space. The summations in Eqs. (5) and 
(7), and all subsequent summations over k, are written 
with coefficients so chosen that they do, in fact, extend 
over half the k space. This has the advantage that the 
field variables are not duplicated within a summation. 
While it is desirable to exploit the discreteness of the 
k space throughout most of the calculation, final results 
are only of interest for arbitrarily large 0. A summation 
can then be replaced by an integration, which for 
convenience will be taken over the entire k space; we, 
thus, have the correspondence 

ZLi-*^-[iy>k. (8) 
l07T3 J 

III. SEPARABLE TRIAL FUNCTIONS 

An exact solution of the equation H\l/ = E\p, where \p is 
a function of the s's and 0's, would give the energy 
levels E of the quantized field. We shall apply the 
variation principle to the approximate determination 
of ypy by choosing a trial function with some flexibility, 
and regarding the optimal form as that which makes the 
expectation value of H stationary. We first choose, for 
simplicity, a separable trial function that is written as 
a product of arbitrary functions of the normal mode 
variables: 

*=n/*(M*). w 
The product in (9), like the sums in (5) and (7), 
extends over half the k space. The f's are assumed to be 
normalized: 

f r r2* ddk 
\fk\2dTk^ Zkdzk _ | / f c | 2 = 1 < 

J Jo J Q 2w 

The invariance of H with respect to change in sign of 
the field amplitude implies that it is invariant with 
respect to replacement of each 6k by 6k+T. Thus, we 
expect each fk to have definite amplitude parity, and 
each | fk |2 to remain unchanged under this substitution. 
This means that when the expectation value of H is 
computed with \[/, the only terms in the expansion of the 
fourth power of the summation in (5) that contribute 
are 

£ zk" cos 4(k-r+0*)+3 £ £ ' zk%
2 cos2(k-r+0fc) 

Xcos2(l-r+0z). (10) 

The prime on the last summation indicates that l ^ k . 
Furthermore, after the r integration is performed, the 
6 dependence of (10) disappears. We, thus, obtain 

(H)= tyHf) = E (jkHk«fk)+ (3X0/8Q)£ {fkzk* h) 

+ ( 3X 0 / 4a )££ ' (fkzk
2fk) (ftffi), (11) 

where we have used the notation 

(fkHk°fk)= JkHffkdTk. 
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The condition that (11) be stationary for an arbitrary 
variation of the complex functions /*, subject to the 
condition that they be normalized, is 

8(H) /3Xo\ 
=Hk»fk+ (—-Wfk 

8fk \ 8 0 / 

/3Xo\ 

+ — )rL'(f*?fWfk=E*f*> (12) 
\ 2 0 / 

where Ek is a Lagrange multiplier. Comparison between 
the variational equation with respect to fk and the 
complex conjugate of (12) shows that Ek is real. 

The group of equations (12) for all k constitutes a 
particularly simple set of coupled nonlinear equations. 
We write them in the form 

ZHko+(3\oA/2QW]fk 

+ (3Xo/80)[^ 4 -4(M 2 / f c )^ 2 ] / f c =£ f c / f c , (13) 

where A = £ (fkZk2fk)> Since it follows from (8) that each 
summation is proportional to 0, it is apparent that the 
second bracket term in (13) is of order 1/0 compared to 
the first bracket term. Thus, a zero-order solution may 
be obtained with A as a parameter. The correction to 
this, which has the relative order of magnitude of the 
arbitrarily small quantity 1/0, can then be found by 
perturbation theory when the unperturbed fk is inserted 
in the second bracket term of (13). 

The variational energy (H) can be expressed in terms 
of the E's by multiplying (12) through by /&, integrating 
over zk and dk, and summing over k. Equation (11) may 
then be written as 

< # > = Z Eh- (3X0^2/4O)+ (3X0/4O)£(/fcsfc
2/fc)

2. (14) 

We are interested in the value of (H) when 0 is 
arbitrarily large. Owing to the summation in the first 
term of (14), Ek must be known to relative order 1/0 if 
the O-independent part of (H) is to be obtained cor
rectly. In similar fashion, the fk must be known to 
relative order 1/0 if A is to be found with sufficient 
accuracy to give the O-independent part of the second 
term of (14) correctly. On the other hand, the un
perturbed / ' s can be used to calculate the last term 
of (14). 

I t can be shown that the corrections of relative order 
1/0 are zero for all the cases considered in this paper. 
While a simple proof of this result would be desirable, 
it has not been found, and the required calculations are 
sufficiently lengthy and uninteresting that they have 
been omitted. The subsequent work, therefore, ignores 
the 1/0 corrections. 

Lowest State—Physical Vacuum 

The leading terms of Eq. (13), together with the form 
of Hk° given in (6), shows that the unperturbed f's are 
two-dimensional harmonic oscillator functions. Then 
the unperturbed Ek= (nk+l)€k, where nk is zero or a 

positive integer and 

e*2=co*2+(3Xo,4/0), 4 = L [ (**+!) /«*] . (15) 

Suppose now that we start with some set of tik, and 
imagine that changes to fik+8rik are made. Then if the 
corresponding fractional change in A is small, which 
implies that only a finite number of the #'s are 
changed, the change in e* is given approximately by 
8ek= (3\08A/2Q€k). The variational energy 

(H)=Y,(nk+\)ek- (3X0^2/4O), 

given by the leading terms of (14), then changes by the 
amount 

« < # > = £ «*«»*. (16) 

Thus, a moderate increase in the w's increase (H). I t 
is reasonable, then, to expect the smallest value of (H) 
to be attained when each tik is zero. This lowest state 
corresponds to the physical vacuum. The corresponding 
normalized unperturbed eigenfunctions of Eq. (13) are 

/*(**,«*) = (2e*)1/2 e x p ( - ^ f c
2 ) . (17) 

The vacuum state is defined by Eqs. (9) and (17); it has 
zero total momentum and even amplitude parity 
(equal to + 1 ) . 

If we regard A as an undetermined parameter in the 
first of Eqs. (15), the second equation shows that A is 
quadratically divergent in the following sense: For a 
finite k space with dimensions of order A, A is of order 
OA2. This suggests that mass renormalization be intro
duced by replacing the square of the unrenormalized 
rest mass, MO2, by M2—fyx2 in the original Lagrangian 
density; here, 5ju2^3Xo^4/OocXoA2 is the mass counter 
term. The first of Eqs. (15) then becomes 

€*2=k2+M2, (18) 

and we shall see that /-t is to be interpreted as the 
physical particle rest mass. 

First Excited States—Single Particles 

The first excited states of the field are evidently ob
tained when each of the »'s is zero except for one of them 
which is equal to unity. The state function is given by 
(9), where each of the fs has the form (17) except for 
one, which is a first excited oscillator state: 

fk{zkfik) = 2lihkzk exp(±idk-&kZk2). (19) 

I t follows from (7) that this state is an eigenfunction of 
the total momentum operator G with eigenvalue T k ; it 
also has odd amplitude parity (equal to — 1). Equation 
(16) shows that the energy of this state exceeds that of 
the vacuum by e*. Thus, if we regard the vacuum energy 
as being unobservable, Eq. (18) shows that the first 
excited states correspond to single relativistic particles 
of rest mass /x- I t should be noted that even though k is 
restricted to half of the space, the twofold degeneracy 
of (19), indicated by the ± sign, yields particles of all 
momenta. 
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We have shown in this section that the state functions 
defined by Eqs. (9), (17), and (19) are optimal from the 
point of view of the variation principle provided only 
that the trial function is of separable form. The same 
final result for the particle energy and momentum can be 
obtained by applying the Bogoliubov transformation to 
the non-Hermitian creation and destruction operators 
usually defined in terms of the #'s and £'s.u However, 
this procedure assumes that the transformed operators 
correspond to oscillator states, and it is much more 
difficult in the Bogoliubov formalism to show that 
oscillator states are actually optimal. 

IV. SECOND EXCITED STATES 

The second excited states of the field may be described 
by separable trial functions of the form (9) in which 
either (a) each of the n's is zero except for two of them 
which are equal to unity, or (b) each of the n's is zero 
except for one of them which is equal to two. In case (a), 
the 0 dependence is of the form exp(±i0fc±i0z), which 
corresponds to total momentum T k T l . Since we must 
have k?^l, the total momentum cannot be zero; we can 
nevertheless arrive at a cm . (center-of-mass) coordinate 
system by a limiting process. I t is somewhat simpler to 
make use of case (b), in which case there are three 
second excited states, which may be chosen to be 
proportional to exp(dz2idk), or independent of Bk. The 
first two of these have total momentum =F2k and even 
amplitude parity, and describe two particles each with 
momentum ^Fk. The third state has zero total momen
tum and even amplitude parity, and describes a pair of 
particles with equal and opposite momenta (k and — k). 
This representation of the cm. system is used in the 
following; however, the same results can be obtained 
from case (a) by means of the limiting process men
tioned above. 

Wave Packet Trial Function 

The second excited state just described [case (b)] is 
degenerate in a way in which the first excited state of 
Sec. I l l is not. First excited states for all vectors k of 
the same magnitude have the same energy and ampli
tude parity; but since they have different momenta and 
G commutes with H, matrix elements of H between 
different states are all zero. On the other hand, second 
excited states for all vectors k of the same magnitude 
have the same energy, amplitude parity, and momen
tum; hence they may, and in fact do, have nonvanishing 
matrix elements of H between them. I t is necessary, 
therefore, to work with a wave packet: a sum of 
separable products of the form (9). 

We, thus, choose our trial function in the form 

^ 2 = £ akgk(zk,dk)H' fi(zi,6t), (20) 

where the fs and g's are normalized and have even 
amplitude parity, and fk and gk are orthogonal to each 
other; again, the prime indicates that l^k. Normaliza
tion of 1̂2 requires that £ | ajb12= 1. I t then follows from 
(8) that unless a limited set of the a's is involved in 
(20), which turns out not to be the case, each ak is of 
order Q~1/2. We do not assume at this point that the fs 
and g's are oscillator functions. Our object is to deter
mine the optimal function of the form (20) that has the 
quantum numbers of the vacuum (zero total momentum 
and even amplitude parity), and is orthogonal to the 
vacuum trial function. Since it turns out that the fs 
and g's in (20) are, in fact, oscillator functions of the 
kind considered in Sec III, the orthogonality require
ment is automatically fulfilled. For the present, how
ever, we do not make this assumption. 

The argument leading to Eq. (10) is still valid, and 
we find that the expectation value of H is 

<#>2=E C W / * ) + (3Xo^2/40) 
+ L I ak 1

2{ (gfc[#*°+ (3\0A/2ttW]gk) - (f£Hk°+ (3\oA/2ttW]fk)} 
+ (3Xo/2Q)|L afc(/fc2&

2gfc)|
2+(3X0/8fi)L [_(fkzk'fk)-2(fkzk

2fky] 

+ (3X0/8O)E I ak1
2l(gkzk%)- U#*h)+±U#*fkY-±I U&te) 12 

-4(gkzk
2gk)(fkzk

2fk)J (21) 

The terms in Eq. (21) have been grouped so that those 
in the first line are of order 0, those in the next two lines 
are independent of 0, and those in the last two lines are 
of order 1/0; A is again defined as Yl(fkZk

2fk). In 
analogy with Eq. (12), the variational equations as
sociated with (21) may be written as 

5(H)2/8fk=Ekfk+£kgki 

KHWSgk=Ek
fgk+£kfk, 

8(11)2/8dk=aak. 

(22) 

The Lagrange multipliers Ek, Ek, and a are associated 
with the normalization of /*, gk) and 1/% respectively; 

£ib and f k are associated with the orthogonality of /* 
and gk. From a comparison between the variational 
equations with respect to fk, gk, ak, and the complex 
conjugates of Eqs. (22), it is readily seen that Ek, Ek, 
and a are real, and that £k=£k. 

We ignore the last two lines of (21) in what follows. 
Then the first of Eqs. (22) consists of two parts, one of 
which is of order 0 compared to the other; the leading 
(unperturbed) part is just the oscillator equation []first 
part of (13)]. The second of Eqs. (22) is all of the same 
order, and is an inhomogeneous equation that relates 
gk to the unperturbed fs. I t may be solved by expanding 
gk in oscillator functions; it then follows that only one of 



462 L. I . S C H I F F 

the even excited states appears, and we take this to be 
the second. The third of Eqs. (22) is 

{(g£H1P+(3\oA/2Q)zk
23gk) 

- (fklHk»+ (3\oA/2ttW]fk)}ak 

+ (3\0/2Q)(gkzk
2gk)Y,(fiZi2fi)al=aak. (23) 

If we multiply this through by ak and sum over k, the 
right side is equal to a. The left side can be shown to be 
equal to {H)% minus the vacuum energy found in Sec. 
I l l , if only terms that fail to vanish as 0 becomes 
arbitrarily large are retained. Thus, if we again regard 
the vacuum energy as being unobservable, a is the 
energy of the second excited state. 

Equation (23) determines a and the a's. I t is sufficient 
now to use the unperturbed f% in which case (23) 
becomes 

2ekak+ (3Xa/21kik)|X (a«/€,)]=aa*. (24) 

The physical meaning of Eq. (24) may be inferred in the 
following way: If Xo were zero, then ak could be different 
from zero only if a = 2ek. Thus, for arbitrarily large but 
finite 0, there would be a discrete set of energy levels 
that correspond to noninteracting pairs of particles with 
equal and opposite momenta; for given magnitude of the 
momenta, each level would be degenerate with respect 
to direction. Since X0 is not equal to zero, the spectrum 
of a does not have this simple form, but is still discrete. 
The a's are mixed together, and the displaced a's corre
spond to wave packets that describe two-particle 
scattering. The displacement of a can be related to the 
scattering phase shift, in a well-known way.14-16 

Two-Particle Scattering 

We define B^^{ai/ei), and rewrite Eq. (24) as 

(a-2ek)ak=3\QB/2ttek. (25) 

There are two kinds of nontrivial solutions of (25): Either 
ak is spherically symmetric with respect to the direction 
of the vector k and BT^O, or else B=0 and a = 2ek. The 
first case describes S-wave scattering, and the second 
describes higher partial waves in the c m . system for 
which there is no energy displacement and hence no 
scattering. We are interested only in 5-wave scattering, 
in which case the equation for a is easily seen to be 

1 212 
£ — - = — . (26) 

ek
2(a — 2ek) 3Xo 

The summation in (26) is over the vectors k, and may 
be written as a summation over the magnitudes and 
directions of these vectors. Because of the spherical 
symmetry of the summand, we may write this 

£5>EC(*), (27) 
k 6,<f> k 

14 J. Schwinger, Phys. Rev. 94, 1362 (1954). 
15 B. S. DeWitt, Phys. Rev. 103, 1565 (1956). 
16 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). 

where k = {kfi,<j>). I t is convenient then to imagine that 
the volume 0 is of spherical shape with radius R, so that 
Q=4TTRZ/3. Then we may use spherical waves instead 
of the plane waves of Sec. I I ; for any partial wave, the 
summation over k can be replaced in the limit of 
arbitrarily large 0 or R by R/w times an integration over 
k. The function C(k) can be determined by writing the 
limit of the complete summation in (27) either as 
(R/w)fC(k)dk, or from Eq. (8) as (ti/16Tz)f4irk2dk. 
I t follows that 

C(k) = k2R2/3. (28) 

Except in the immediate neighborhood of the value 
of k for which the denominator of the summand 
vanishes, the left side of (26) may be replaced by the 
principal value of the integral over k. From (27) and 
(28), this is 

r (k2R2/3)(R/w)dk 
P / — . (29) 

J ek
2(a—2ek) 

The discreteness of the summation must of course be 
taken into account when ek is close to \a. Let €K be the 
value of ek that is closest to Ja, and K be the correspond
ing value of k. Then the denominator of the summand 
of (26) can be written to sufficient approximation 

-2eK2t(eK-hcx)+ (K/eK) ( « * / * ) ! 

where n ranges from — oo to + °o in integer steps. This 
substitution, together with (27) and (28), then gives 
for this part of the left side of (26): 

KR* (eK-ha)eKR 
cot . (30) 

6eK K 

In the argument of the cotangent, ex—\a is the negative 
of the displacement of the energy of a particle caused by 
the interaction, and (K/eK){ir/R) is the separation of 
adjacent unperturbed particle energies; thus, this argu
ment is just the scattering phase shift 5.14~16 

Combining Eqs. (26), (29), and (30), we obtain 

TTK 16TT2 r k2dk 
— cot5= P , (31) 
£K 3X0 J ek

2(ek—eK) 

where we have replaced \a by eK in the integral. This 
integral is logarithmically divergent, which means that 
8 is infinitesimally close to zero or an integer multiple 
of 7r if Xo is finite. We may, however, assume that Xo is 
infinitesimally negative in such a way that the first 
term on the right side of (31) cancels the divergent part 
of the integral, leaving a finite remainder that deter
mines 5. One way of accomplishing such a coupling 
constant renormalization is to add and subtract 
f(k2/ek

z)dk on the right side of (31), and define the 
renormalized coupling constant X by the relation 

16TT2 16ir2 r & 
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Equation (31) then becomes, after a change in variable 
of integration from k to ek: 

TK 
cot5=-

*K 

16TT2 

3X 
"CK p . (33) 

The last term in (33), e# times the principal value of 
the integral, may be evaluated in an elementary way 
and is equal to 

1+-
T (w2-l)1 

€K 

2w w 
• l n [ > + (w2-1)1/2], w^—> 1. 

We, thus, have a closed expression for the differential 
scattering cross section in the cm. system, (1/K2) sin25; 
it decreases monotonically with increasing particle 
energy. 

Two-Particle Bound State 

Equation (26) may also have a solution for which 
a < 2/x, which corresponds to a bound state of the two-
particle system. In this case, the summation on the left 
side is equal to the integral (29), of course without 
taking the principal value. We use the same renormali-
zation as for the scattering problem, replace a by 2e0, 
and find that (33) is replaced by 

16TT2 

3X 
- = € o 

1 kdek 7T (l-v2)^2 

= 1 + (ix+sin-HO, 
ek2(ek—e0) 2v v 

where ^ = C O / M < 1 is the ratio of the total energy of the 
system to the rest mass of two free particles, and the 
value of the arcsine lies between 0 and \ir. There is no 
bound state unless X is negative and 167r2/31X | < 1 + | T T ; 
as j X | increases from this minimum value to infinity, eo 
decreases monotonically from /x to zero. 

Connection with the Determinantal Method 

A formalism such as that developed in this paper must 
conserve probability, since it is set up in terms of 
normalized state functions. I t is expected, then, that the 
S matrix will be unitary, and this is demonstrated in 
the case of two-particle scattering by the existence of 
the real phase shift given in (33). I t is also of some 
interest to rewrite (33) in a form that brings it into 
correspondence with the determinantal method,9-16 

which also leads to an S matrix that is automatically 
unitary. The result is 

1 r(K) 3XK 
-eih s in$ = , r(K)= , 
T D(K) l6w26K (34) 

D(K) = \-eK\ 

where t? is a positive infinitesimal. 

Equation (34) is very similar to the first-order result 
obtained by Baker and Zachariasen,9 which differs from 
(34) mainly through the appearance of the squared 
energy rather than the energy in the integrand of D. 
This is a characteristic difference between covariant and 
noncovariant dispersion relations; indeed, Auvil11 has 
shown that (34) can be obtained from a summation of 
graphs in which the propagation is entirely forward in 
time, not forward and backward as with Feynman 
graphs. However, it has not proved possible to derive 
the covariant version of (34) from a variation principle 
by the methods developed in this paper, so it is not clear 
that the first-order Baker-Zachariasen expression for 5 
is superior to (33) or (43). 

V. STABILITY OF THE VACUUM STATE 

The variation principle has been used in this paper in 
the sense that the expectation value of the field Hamil-
tonian for a given class of trial functions is to be made 
stationary. The stationary point should in addition be 
a minimum, and we investigate this now to see whether 
or not the vacuum state found in Sec. I l l is stable with 
respect to small variations in the / ' s . Our procedure 
consists in calculating (H), given by (11), when fk of 
(17) is replaced by 

Fk^(fk+gk) 1 + f\g\*drk] 
-1/2 

here gk is orthogonal to /*, so that Fk is normalized. The 
smallness of the variation implies that f \gk\

2dTk<^l, 
and we shall keep only quantities of second order in 
the g's. 

Retaining only the leading terms, of order ft, we find 
after some calculation that (H) is replaced by 
(H)+8{H), where 

HH) = L (gktHk»+ (3\oA/2Q)zk
2-ek]gk) 

+ (3Xo/4a){EC(g^ fc
2/,)+ (/**2«*)]>2. (35) 

Since ek is the smallest eigenvalue of the operator 
Hk°+(3\oA/2Q), and the square bracket in the second 
term is real, it is evident that b(H)is positive so long as 
Xo is positive and gk is nonzero. Thus, the vacuum state 
is stable if X0>0. However, the discussion following 
Eq. (31) shows that there is no two-particle interaction 
in this case. We should, therefore, investigate stability 
when Xo is negative. 

This is most readily accomplished by expanding gk in 
higher oscillator states fkn, which are assumed to be 
normalized: 

gk=T, bknfkn, [Hk°+ (3X0^/2O)]/ fcn= (n+!)€*/*». 

In this notation, fkQ is given by (17) and fk\ by (19). 
Only fk2 contributes to the second term of (35), and it is 
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easily seen that 

(fk2Zk
2fk) = pk/ek, 1 0 * 1 ^ 1 ; 

the value of fik depends on the particular linear com
bination of the three degenerate second excited oscillator 
states that is chosen for /*2. Substitution into (35) 
then gives 

« < # > = £ ek(\bkl\*+2\bk2\2+3\bkz\*+ • • •) 

+ {3\,/mniQ>k^k+bkA)/^J. (36) 

For negative Ao, 8(H) is algebraically smallest when 
all of the bys are zero except for bk%. Further, if only a 
finite set of the bk2 differ from zero, the first term of (36) 
is of order unity and the second term is of order 1/0, so 
that d(H) is positive. Thus, we obtain the severest test 
of stability if we assume that bk2 is real and fik is equal 
to unity, and then take the limit of arbitrarily large 0 
so that bk2 can be replaced by a continuous function 
b(k). Equation (36) then becomes 

0 r 31X01 Or 
5( jSr>=— / €kb

2(k)k2dk 
27T2 J 167T4 

t f bW T (37) 

where we have explicitly recognized that Xo is negative. 
We must now choose b(k) so as to maximize the ratio 

VI eJP(k)lMk. (38) 

Variation of (38) with respect to the form of b(k) shows 
that it is stationary when b (k) — constant/e^2; further 
analysis shows that this stationary point is a maximum. 
I t then follows from (37) that 5(H) is positive with this 
form for b(k) if 

|Ao|<-
87T2/ r W \ 

(39) 

The inequality (39) is the stability criterion for the 
vacuum state when it has the separable form (9) and it 
is assumed that Ao is negative. The integral in (39) is 
logarithmically divergent; if the k space is spherical and 
has radius A, then (39) becomes approximately 

| \ o | < -
&T 2 

3 In(2A//0 
A»/i . (40) 

I t is interesting to see what conclusions can be drawn 
concerning the renormalized coupling constant A from 
(32) and (39). 

We see that 

lev 

3A 

16TT2 

3|Aol • / 

k2 

-dk<-
ek° 

8TT2 

3|X0 f 

from which it follows that A is negative for stability, and 
also that |A| <2 |A 0 | . Together with (40), this leads to 
the stability criterion 

16TT2 

IAK-
3 ln(2A//i) 

(41) 

which for large A means that the renormalized two-
particle interaction is very weak.17 As an example, there 
is no bound state of the two-particle system if A>6.6ju. 

VI. CONCLUDING REMARKS 

We have shown how the system described by Eqs. (1) 
and (2) can be formulated in terms of state functions 
that can be approximated by means of the variation 
principle. This method does not impose any limitation 
on the magnitude of Ao. Optimal trial functions of 
separable form have been found that correspond to the 
vacuum and to single-particle states, and which require 
the introduction of mass renormalization. Optimal 
wave packets that describe two-particle scattering and 
binding have been constructed, and these lead naturally 
to coupling constant renormalization. The variational 
stability of the vacuum state has been examined, and 
yields the rather unsatisfactory criterion (41). This 
suggests that attention should be focused on more 
elaborate trial functions, particularly for the vacuum 
state, rather than on the introduction of isotopic spin 
or the solution of the three-particle problem.11 

Although it is not shown in this paper, we have also 
found that a sum of separable products of the form (9), 
in each of which a finite number of the fs are permitted 
to differ from the lowest oscillator function (17), does 
not change the leading term in the vacuum energy, 
which is of order 0. I t seems likely that improvement 
can be achieved only by abandoning the separable form 
(9), perhaps by expressing \p as a function of collective 
variables that involve all of the s's and 0's. The variation 
formalism is well adapted to attempts of this kind, and 
these are now under way. 
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17 Owing to an error of a factor 2 in the earlier derivation of the 
stability criterion, this result was incorrectly stated in reference 10. 


