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It is shown that in a nonlinear Heisenberg-type theory a bound state appears which has all the properties 
of a neutral vector particle. From such a model all the results of standard electrodynamics follow in the 
limit of infinite bare coupling constant. The method used is that of Schwinger's external sources. 

1. INTRODUCTION 

IN the last few years several attempts1-8 have been 
made to derive quantum electrodynamics from a 

field theory with four-fermion coupling. In the present 
paper we discuss this problem with the use of 
Schwinger's equations for Green's functions.4 I t will be 
shown that in theories with a four-fermion coupling a 
bound state appears when the bare coupling constant 
is sufficiently large. The formation of such a bound state 
changes the whole discussion of renormalizability. All 
interactions between the fermions can then be viewed as 
mediated by a boson and the theory turns out to be 
renormalizable in the perturbation expansion. In this 
paper, we restrict ourselves to quantum electrody
namics, although the method we use seems to be rather 
general and can be applied to mesodynamics as well. 
There are two reasons which make quantum electro
dynamics more attractive in this respect than other 
theories. First, the use of the perturbation expansion is 
justified and second, the gauge invariance leads to 
several simplications. In particular, the limit of an 
infinite bare coupling constant can easily be found. 

2. EQUATIONS FOR THE GENERATING 
FUNCTIONAL 

We shall discuss the theory of a self-interacting 
spinor field \p, with the Lagrangian density £ chosen in 
the form 

where 

and 

£ = - ^ Z ? ^ - ( 2 M 0
2 ) - 1 J , i " , 

Dx=mo—iy"dp 

jp.= — erfy^-
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All properties of such a theory can be obtained from the 
time-ordered Green functions. To deal with all the 
Green functions at the same time we introduce the 

generating functional, 
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From the field equations 

(Px+eo2/MoViM)^=0, 

77=0=77 

(5) 

and from the equal-time commutation relations it 
follows that the functional r obeys the following equa
tions in functional derivatives5: 

(6) 

St) 8rjJ 

For reasons which will be clear later, we replace Eqs. (6) 
by a new set of equations for a certain more general 
functional Z. 

r 1 S - l l S 
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8 8 8n 
—No—%*— P = 
8J» 8rj 8fjJ * A preliminary account of this work appeared in Bull. Acad. 

Polon. Sci. Classe (III) 9, 385 (1962). 
1 W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957); R. Ascoli and T h e new functional Z depends on % fj and on a n auxil iary 

^ ffiK\toaKbMj.177 (1957)' S°UrCe funCti°n J>* m e n /"=s0' Z reduces t0 the initial 
3 P. Freund, Acta Phys. Austriaca 14, 445 (1961). 
4 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951). 8 K. Symanzik, Z. Naturforsch. 9, 809 (1954). 
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functional r, i.e., where 

7t . T m , -, m r^(x,^)=(iAo)C5G-1(^)/5aM(2)]. (15) 
Z{*?, ? ? , / , , = 0 } = T{7?,??}. ( 8 ) 

_ . ,„N . .. . . . Current conservation leads to two simple equations 
Equations (7) are very similar to the equations for the f Q r ^ t o r s G a n d g . 
generating functional in quantum electrodynamics m 
the Gupta-Bleuler gauge.6 The only difference is the ju0

2 6^9^(2,2') = — dvh{z—z'), (16) 
appearance of /x0

2 in the third equation, instead of the and 
operator • . idli*T*i(x,y,z) = [8(x-z)-d(y-z)~]G-1(x,y). (17) 

Current conservation leads to an additional equation _ . . ^ ^ , . ,̂ . , ,.~ ^ , ^ /n\ 
r v r̂ i • ,- i n J 4.1. r 4.' 1 \*T J The easiest way to derive them is to differentiate Eq. (9) 
for Z. This equation mav be called the functional Ward . , L ' , T

 n v 

*d r ' t 7 Tt Vr th f ' w r e s P e c t to V, % and /M. 
Since Eqs. (13) and (14) hold for all values of J^ they 

1 5 / 5 5 \ are equivalent to an infinite set of integral equations. 
ju0

2dM Z = ( — JM,M+eo—7]—eoTj— )Z . (9) The lowest three equations have the form 
i 8J» \ 8r) 8rj/ 

3. EQUATIONS FOR THE PROPAGATORS Q~\v(z-zf) = -^g^iz-z^-ieo2 Tr?M / G(z-x)dx 
I t will be sufficient for our purpose to investigate the 

simplest Green functions: the electron propagator G and X T v ( x — 2 ' , y—zr)dy G(y—z)y (18) 
the photon8 propagator gM„, both in the presence of an 
external current J,. G^1(x-y) = DJ(x-y)+ieo*y'1 jG(x-xfW 

1 82Z I 8a»(z) 

G(x,y) = Z-i- l ^ o ^ ' SM*(*'2') = ^ 0 ' XTHx?-z,y-z)dzQ*{x-z), (19) 
i 8ri(x)87]{y) 

(10) r 
where !>(#—2, y—2) = Y^(#—2)5(y—2)+ieo2yv I G{x—x')dxr 

1 8Z \ J 
a„(*)=z-1 . (li) 

i 5/M(2) 1̂  = 0 = 9 X r ^ ( ^ - 2 , y - 2 ' , 2 - 2 ' ) * ' &x(*-2 ' ) 

All the Green functions with either no or two external 
spinor lines can be derived from G and gM„ by differ- ~~ te° ^ 
entiating with respect to J^ or Gfc„. Let us introduce also 
the inverse propagators G~l and gM„-1 which are defined X r x ( ^ ' - 2 ' , yf—z')dy' G(y'—xrr)dxff 

through the relations . ,, N , , / ,N . . 
5 XT»(x"-z, y-z)dzf gpx(tf-2'). (20) 

-ipJ<vP G(x-x')dx' 

I< 
h 

G~1(x,z)dzG(z,y) = 8(x—y)J I t is only the equation for the propagator gM„ which 
differs from the corresponding equation in quantum 

(12) 
electrodynamics. All remaining equations, including all 

Q-1
 v(z,y)dy Qv*(y z') = 8 H(z—z'). equations with more than two external spinor lines 

coincide in the four-fermion theory and in quantum 
electrodynamics. 

Equations for G~~l and 9M*-1? derived from Eqs. (7), have 
the form 4- PROPERTIES OF THE PROPAGATOR %p 

n-\t \ m 1 a/a / \-i*/ \ 1 • 9 a [r>/ J\J J B y virtue of Eq. (16) the propagator gM„ and the 
G ^j) = lDx+eQy^(x)38(x~y)+Uo^J G{x,x>)dx> i n y e r s e p r o p a g a t o r

4 g - V can be written in the form 

XV\x\y\z)dz ^ 1 , 8 ) , (13) SM.(*-y) = " ( « „ - n~^dv)q(x-y) 
-fio~2n~ld,dv8(x-y), (21) 

<3-\v(zJz')= -»o2g»v8(z-z')-ie0
2 Try,, / G(z,x)dx (3~lAx-y)=- (&,„- U^d^d^^x-y) 

-rfn-^dJix-y). (22) 
XTv(x,y,z')dyG(y,z), (14) From Eq. (18) we can find the equation for g. In 

6 H. Umezawa, Quantum Field Theory (North-Holland Publish- m o m e n t u m space i t reads 
ing Company, Amsterdam, 1956). 

7 The derivation of such an identity in quantum electrodynamics ie$ f 
is given in another paper of the present author, Nuovo Cimento 17, G"1 (k2) — JJL0

2-\ Tr / 7 G(p-j-k) 
8 It will become clear later that the name photon propagator is ^ 

fully justified. xr*(#+*, p)G(p)dp. (23) 
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The right-hand side of Eq. (23) can be written as a 
spectral integral 

r* a(M\A)dM2 

9-1(^2) = Mo2-^2/ , (24) 

where c(M2,A) is a positive spectral function and Mo is 
the lowest mass of those intermediate states which 
contribute to the propagator g. The factor k2 in front of 
the integral appears as a result of current conservation. 
In order to ensure the convergence of the integral, we 
introduced a cutoff parameter A. The spectral function 
a can be computed by the perturbation method. 

We shall be interested only in the limiting case /*o= 0, 
which leads to quantum electrodynamics. The discussion 
could also be extended to the case /ZOT̂ O and would lead 
then to a vector meson theory. Although, the transition 
to the limit /io=0 cannot be directly performed in the 
initial Lagrangian, one can do it in the equations for the 
propagators. The only singular term is the last term in 
the expression (21). It is well known, however, that this 
term does not affect physical results since it represents 
the propagation of unphysical, longitudinal photons 
which do not interact with electrons. We could easily 
eliminate this term by an appropriate gauge transforma
tion.9 An even more straightforward procedure which 
will be used in the further discussion is to keep ju0

2 in 
Eq. (21) as an arbitrary parameter, the value of which 
does not affect gauge-independent quantities. 

In the limit MO=0, the inverse propagator 9 - 1 has a 
spectral representation of the form 

r1(*2)= 
where 

-k2[z^+k2\ ), 
\ Jo M2 M2-k2/ o M2 M2-

«dM2 
/""dM* 

Jo M2 

(25) 

(26) 

This leads to the following representation for the 
propagator §: 

Z3 r pdM2 

g(#) = + / . (27) 
k2 Jo M2-k2 

In formulas (25) and (27) we made use of the fact that 
the pole term in (27) represents a zero-mass particle, 
and the existence of such a particle implies that the 
lowest intermediate mass Mo is zero. Had we not put 
Mo=0 we would have obtained a bound state with non
zero mass. 

Apart from possible differences in the spectral func
tion and in the constant Z3 the propagator g does not 
differ from the photon propagator in standard quantum 
electrodynamics. We show in the next section that 
after renormalization both propagators become equal. 

9 B. Zumino, J. Math. Phys. 1, 1 (1960); I. Bialynicki-Birula, 
ibid. 3, 1094 (1962). 

5. PROOF OF THE EQUIVALENCE 

We show now that the set of equations for the 
propagators yields identical renormalized solutions in 
the four-fermion (FF) theory and in quantum electro
dynamics (QED). First, let us consider the lowest order 
correction to the propagator 

r1^2) 
J A 

= -tt 

* (T^dM2 

4m* M2-k2 

A2 

where 

e0
2 A2 r00 dM2 a™ ~| 

12TT2 4W2 Jw M2 M2-k2J 

/ 2m2\ 

\ M2)' 
r(2)(M2) = — ( l — ) 

12TT2\ M2J 

4ra2\1/2/ 2m2\ 

(28) 

(29) 

(30) 

Terms of the order k2/A2 and m2/A2 have been neglected. 
Expression (29) is to be compared with the unre-
normalized photon propagator in quantum electro
dynamics. In the same order it has the form 

r erf 
gQED- 1(fc 2)=-H 1+— 

L 127 

2 A 2 

In 
12TT2 4W2 

r dM2 o-(2) I 
+ W L (31) 

J w M2 M2-k2J 
The only difference is the value of the renormalization 
constant Z3. 

(Z3
FF)-1= W/127T2) ln(A2/4w2), (32) 

( Z S QED)- I = 1 + (eo2/127T2) ln(A
2/4w2). (33) 

This difference will disappear, of course, in the re-
normalized expressions. In both cases, we shall have 

^ e n - K ^ ^ g - 1 ^ 2 ) 

r /•«> dM2 <rTen -] 
= -k2\l+k2 , (34) 

L J 4m« M2 M2-k2J 

where <rTen differs from a in having e0
2 replaced by 

e2=Ztfo2. In the lowest order we obtain 

e2=(l/127r2)ln(A2/4w2), (35) 

so that the observable charge does not depend on the 
bare one. Since the equations for the electron propagator 
and the vertex function are the same in both theories, 
there will be no difference (apart from the difference in 
factors Z%) between the next order corrections to the 
electron propagator and to the vertex function. The 
simplest way of proving the equivalence in any order is 
to notice that in both theories we have the same set of 
Feynman diagrams and the same rules for writing the 
^-matrix elements. Finally, we would like to point out 
that the equations in the four-fermion theory can be 
obtained from those in quantum electrodynamics as a 
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result of the transformation 

e0
2 -» €~W, 8M* - * *SM» (36) 

in the limit € —> 0. The transformation (36) belongs to 
the renormalization group and leaves the physical 
content of the theory unchanged. 

6. CONCLUSIONS 

The main result of this paper, which is that particles 
may appear in conventional field theory without corre
sponding fields being introduced into the initial Lagran-
gian, seems to be quite general. We restricted ourselves 
to quantum electrodynamics, but very similar results 
can be obtained in mesodynamics. 

I. INTRODUCTION 

THIS paper presents a calculation of the equilibrium 
configurations of rotating liquid drop nuclei and 

the fission barrier of such drops. The opposing effects 
of surface tension and centrifugal forces are considered. 
In this respect the calculation differs from the work of 
Bohr and Wheeler1 where nonrotating nuclei were 
considered and the two opposing effects determining 
stability were the Coulomb energy and surface tension. 
The purpose of this paper, in which Coulomb effects 
are neglected, is to obtain information about the effect 
of angular momentum on nuclear stability. When the 
separate effects of angular momentum and Coulomb 
forces will be known, one might attempt to look at the 
general case where both effects exist. 

The importance of nuclear states with high angular 
momenta was realized from the results obtained with 
the heavy-ion accelerators. When uranium is bom
barded by 10-MeV oxygen nuclei, states with angular 
momenta as high as 60 units of ft are obtained. It has 

* Part of this work was submitted as part of a thesis in partial 
fulfillment for the Ph.D. degree at Princeton University. 

1 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). 

There are many formal similarities between our ap
proach and the results of Jouvet,10 Nambu and Jona-
Lasinio,11 Bjorken,2 and Freund.3 It is very likely that 
all these, seemingly completely different, descriptions 
are to some extent equivalent. 

We do not think that in this paper we have given a 
proof that the photon is a bound state of an electron-
positron pair. We would rather say that our results 
indicate that an ambiguity exists in the relationship 
between physical particles and Lagrangians. There may 
exist several Lagrangians leading to the same set of 
Feynman diagrams. 

10 B. Jouvet, Nuovo Cimento 5, 1 (1957). 
11Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). 

been found experimentally2 that the partial width for 
fission increases with increasing angular momentum. 

The properties of a rotating incompressible fluid have 
been studied and discussed by Plateau,3 Poincare,4 

Rayleigh,5 and Appel.6 However, none of these papers 
contain an analytic expression for the equilibrium shape. 
All of the authors resort to numerical methods at one 
stage or another. In this paper analytic expressions for 
the shape of equilibrium are obtained. It is also shown 
that the topology of the equilibrium configuration 
changes when a parameter (which will be defined later) 
assumes the value 2.414. This value is to be compared 
with 2.32 and 2.4, which are the estimates of Appel 
and Rayleigh, respectively. The nature of those equi
libria with respect to small deformations when the 

2 S. A. Baraboshkin, A. S. Karamian, and G. N. Flerov, Soviet 
Phys.—JETP 5, 1055 (1957). 

3 J. Plateau, Mimoire sur les Phenomenes Que Presente Une 
Masse Liquide Libre et Soustraite de VAction de la Pesanteur, 
Premiere Partie, Nouveaux Me*moires de FAcademie Royle des 
Sciences et Belles Lettres de Bruxelles, Tome 16 (1843). 

4 H. Poincare, CappillaritS, George Carre, Editeur (Paris, 
1895), pp. 118. 

5 Lord Rayleigh, Phil. Mag. 28, 161 (1914). 
6 P. Appel, Traite de Macanique Rationelle (Gauthier-Villars, 

Paris, 1932), Vol. 4, Chap. I, p. 295. 
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The equilibrium shape and the fission barrier are calculated for the entire range of angular momenta for 
which a rotating droplet held together by surface tension has a stable equilibrium. A liquid drop which is 
originally spherical takes the shape of an oblate spheroid as the angular momentum increases. At higher 
angular momenta, the shape becomes concave at the poles and a ring form is created. It is shown that the 
equilibrium ceases to be stable at or near the critical angular momentum at which this change of topology 
occurs. 


