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Questions of existence and uniqueness of solutions of partial-wave dispersion relations are studied, with 
particular attention to the N/D method. The interaction, assumed to be given, is represented by (i) the 
strengths and locations of unphysical singularities and (ii) the inelastic partial-wave cross section. A gen
eralization of the N/D method to include part (ii) of the interaction leads to a nonsingular integral equa
tion for ImD. This equation is amenable to the Fredholm theory only if there is a correlation between items 
(i) and (ii) of the interaction, and only if the increase of inelastic processes at high energies is not too rapid. 
Certain Cauchy integrals associated with (i) and (ii) must be nonzero at threshold if there is to exist a solu
tion with the normal threshold momentum dependence. Thus, there is no solution for any model in which 
(i) is constructed from a few partial waves in the two crossed channels. For certain interactions the real part 
of the phase shift approaches a multiple of ir at large energy, just as in potential scattering. The Castillejo-
Dalitz-Dyson (CDD) ambiguity is analyzed in some detail. A uniqueness theorem is proved which asserts 
that if a solution of a particular type exists, it is the only solution of the problem within the class usually 
considered. Thus the CDD ambiguity is partially bypassed. In certain cases the unique solution is found 
by the ordinary N/D method without subtractions. Some useful results on principal value integrals are ob
tained. The discussion is carried out for the example of pion-nucleon scattering in the complex plane of w, 
the center-of-mass energy. The behavior of the amplitude near w=dz(M-m) is derived from crossing sym
metry. 

I. INTRODUCTION 

RECENTLY, the partial-wave dispersion relations 
have played an important part in discussions of 

the strong interactions.1 If the discontinuity of the 
amplitude over the unphysical cut (the "left" cut) is 
somehow known approximately, the dispersion relation 
amounts to a singular integral equation for the ampli
tude. This equation is replaced by a nonsingular one 
through the N/D method. A solution of the latter will 
sometimes provide a solution of the former. This role 
of the partial-wave dispersion relation has occasionally 
been compared to that of the Schrodinger equation in 
nonrelativistic quantum theory. However, the analogy 
is imperfect. For one thing, the jump over the left cut, 
which now takes the part of the interaction Hamil-
tonian, must be specified for each partial wave sepa
rately. But more important, the existence and unique
ness theorems that testify to the reasonable nature of 
the Schrodinger problem are almost completely lacking. 
Solutions can fail to exist if the N/D solution involves a 
spurious "ghost" pole not represented in the dispersion 
relation. Furthermore, the work of Castillejo, Dalitz, 
and Dyson2 seems to show that a solution is never 
unique (however, compare our Sec. V). 

In spite of these essential mathematical differences 
it is still desirable to improve the analogy with the 
Schrodinger problem, at least in a practical sense. That 

* Supported in part by the U. S. Atomic Energy Commission. 
t Present address: New York University, New York, New York. 
§ Present address: Illinois Institute of Technology, Chicago, 

Illinois. 
1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960), 

and papers of Mandelstam cited therein. See also the lectures of 
G. F. Chew in Relations de dispersion et particules elementaires 
(Hermann et Cie, Paris, and John Wiley & Sons, Inc., New York, 
1960), and recent papers by authors too numerous to mention. 

2 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 
453 (1956); hereafter referred to as CDD. 

is to say, we should like to know before explicit calcula
tion whether a particular interaction will lead to a solu
tion satisfying all known general requirements. Also, we 
should like to claim uniqueness of a solution, if possible, 
and perhaps to estimate some of its qualitative features 
without extensive computations. The purpose of the 
present paper is to see how nearly these aims can be 
realized. Especially, we try to make the N/D method 
more useful and more flexible through a better under
standing of the mathematical questions involved. 

The problem is important not only in the original 
Chew-Mandelstam theory, which has had only limited 
success, but also in the more ambitious schemes sug
gested by Mandelstam,1 Ter-Martirosyan,3 Zimmer-
mann,4 Chew and Frautschi,5 Wilson,6 and others. In 
these theories it seems necessary to solve at least the 
5-wave dispersion relation. As a result of bad asymptotic 
behavior of the approximate interaction term, the 
original theory is not strictly consistent. Therefore, it 
seems necessary to consider the generalizations. In that 
case the approximation of purely elastic scattering must 
be abandoned, and the N/D method appropriately 
modified. According to Chew and Frautschi,7 the 
partial-wave dispersion relation is to be solved with the 
following two items regarded as given information: 
(i) a function fu which represents the usual contribution 
of the unphysical cuts; (ii) a function f1 which repre
sents inelastic effects, f1 is determined by the partial-
wave inelastic cross section. Ball and Frazer8 have 

3 K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. (U.S.S.R.) 
39, 827 (1960) [translation: Soviet Phys.—JETP 12, 575 (1961)]. 

4 W. Zimmermann, Nuovo Cimento 21, 36 (1961). 
6 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961). 

See also reference 7, and G. F. Chew, Lawrence Radiation Labora
tory Report UCRL-9515 (unpublished). 

6 K. Wilson (unpublished). 
7 G. F. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961). 
8 J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961). 
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shown that item (ii) can be qualitatively important. In 
the approximation in which (i) is neglected they showed 
that the problem has a very simple solution that can be 
stated in closed form. Ball and Frazer also noted that 
both (i) and (ii) could be retained in a modified N/D 
procedure based on a definition of D due to Chew and 
Frautschi.9 However, the resulting linear integral 
equation had a singular form involving repeated 
principal value integrations. 

After establishing notation and stating the problem 
precisely in Sec. I I , we discuss this generalized N/D 
method in Sec. I I I . I t turns out that a careful change of 
integration order puts the equation in nonsingular form. 
Thus a nonsingular equation for ImD (oc ReN) is 
derived from the singular equation for N. The advantage 
of beginning with the N equation rather than the D 
equation is that eventually only integrations over 
physical energies are involved. In the elastic case the 
corresponding equation has been employed by Uretsky.10 

Our equation has nearly the same form as Uretsky's, 
except that the absorption factor r\ enters in a curious 
way. Here t\ is exp(—2 Im5), h being the complex phase 
shift. Although the equation has the Fredholm form, 
the Fredholm theory applies only if the kernel and 
inhomogeneous term are integrable in the square (L2). 
This point is investigated in some detail, since the 
square-integrability is in doubt if rj vanishes at infinity. 
Sufficient conditions for an L2 kernel are derived, and 
some restrictions on the interaction terms are dis
covered. I t is found that fu and f1 cannot be chosen 
independently, in general. Their asymptotic behaviors 
must be precisely matched. In the course of this discus
sion we prove that in certain cases the real part of the 
phase shift must approach an integral multiple of IT at 
infinity, just as in potential scattering. Section III con
cludes with a derivation of the N equation which is 
simpler than the obvious one. I t also eliminates an 
unnecessary assumption and forms the starting point 
for Sec. VI. 

Section IV is concerned with conditions necessary for 
the existence of solutions. We bring up a point that has 
so far not received adequate attention, viz., the require
ment that the amplitude have the expected threshold 
zeros. We treat the special case of spin 0-spin \ scatter
ing; it is particularly interesting in this respect. (In 
fact, throughout the paper weconsider just this example.) 
A simple argument shows that if the interaction term by 
itself has the threshold zeros, then there is no solution 
of the partial-wave dispersion relation with correct 
zeros. I t follows that any interaction derived from just 
a few partial waves in the two crossed channels cannot 
lead to a satisfactory solution. This situation is made 

9 G. F. Chew and S. Frautschi, Lawrence Radiation Laboratory 
Report UCRL-9685 (unpublished). This is evidently a preliminary 
version of reference 7. Our definition of D agrees with Eq. (5) of 
UCRL-9685, while the corresponding equation of the published 
paper is in accord with some work of Froissart (cf., reference 28). 

10 J. L. Uretsky, Phys. Rev. 123, 1459 (1961). 

comprehensible within the framework of the Cini-
Fubini representation11 by showing that a finite number 
of partial waves in the direct channel gives a set of poles 
of ascending order at the origin in the energy plane. 
These pole terms do not possess the threshold zeros, so 
if they are included a solution becomes possible. We 
reformulate the N/D technique so that the threshold 
conditions are automatically satisfied at the expense of 
introducing poles at the origin. 

In Sec. V we turn to the uniqueness question. We find 
that in certain circumstances the ambiguity of Castillejo 
et al? may essentially disappear. In fact, if there is a 
solution of a particular type, it is the only solution of 
the problem within the class of solutions usually con
sidered. Thus, the possibility of uniqueness depends on 
the nature of the interaction. The threshold conditions 
help to pin down the solution, and therefore are 
analogous to boundary conditions on the wave function 
in the Schrodinger theory. 

The condition for uniqueness depends on the orbital 
angular momentum /, and becomes less stringent as I 
increases. For l^ 1, if a solution exists, it is quite likely 
to be unique. If V^ 1 and if the equation for ImD without 
subtractions has square-integrable kernel and inhomo
geneous term, the amplitude constructed from its solu
tion is a unique solution of the partial-wave dispersion 
relations provided it has no ghosts. 

The topic of Sec. VI is the incorporation of the 
CDD ambiguity in the N equation with inelastic 
effects allowed. In the elastic case, Chew,1 Chew and 
Frautschi,7 and Gell-Mann and Zachariasen12 have 
shown how the so-called "CDD poles'' enter the N/D 
scheme, and have associated the corresponding free 
parameters with the masses and widths of unstable 
elementary particles. When inelastic processes are 
included some extra care is necessary in integrating over 
singularities, but the result is simple. Only the inhomo
geneous term of the N equation is altered. 

We find that CDD poles correspond to zeros of the 
amplitude only below the inelastic threshold. Above the 
threshold the amplitude has the value i(l—rj)/2k at a 
CDD pole, where k is the center-of-mass momentum. 

In Sec. VI it is proved that any amplitude has a 
particularly elegant N/D representation in which D is 
a so-called Herglotz function (generalized Wigner R 
function). This generalizes the work of Castillejo et al. to 
the cases in which the unphysical singularities may 
include branch points as well as poles. The Herglotz D is 
not necessarily identical to the usual D, but an explora
tion of the connection between the two throws light on 
the mathematical situation. Part of the work of Sec. VI 
depends on the Herglotz D. 

In Appendixes A through D we prove some necessary 
theorems on the behavior of principal value integrals. 

11 M. Cini and S. Fubini, Ann. Phys. (N. Y.) 3, 352 (1960). 
12 M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 

1961). 
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These results might be generally useful in further work 
on dispersion relations. Appendix E is concerned with 
the behavior of the pion-nucleon partial-wave amplitude 
at the points w= zfc (M—m). 

II. PARTIAL-WAVE DISPERSION RELATIONS 

We study the elastic scattering amplitude for a 
problem in which the two incoming particles have 
masses (respective spins) m (0) and M (J). In other 
cases our discussion requires only small changes. In part 
of the work, especially Appendix E, we specialize to 
pion-nucleon scattering. 

Let w and k be the barycentric total energy and mag
nitude of three-momentum. Then 4sk2=[j—(M+tn)22 
X\j—(M—w)2], where s=w2. The scattering in a 
definite isotopic spin state (index suppressed) and 
parity-angular momentum state with J=l±% is de
scribed by the amplitude 

fi±(«0 = {m±(w) exp[2i Re8l±(w)l~l}/2ik(w), (II.l) 

where 8i± is the complex phase shift and rj£± 

= exp (—2 Im5z-|.); 0 ^ rji± ̂  1. The unitarity condition is 

Imfl±=k\fl±\2+(l-m±
2)/4k, (H.2) 

for w ^ wo=M-\-m. We adopt the convention 8i±(w0) = 0. 
In order to avoid trouble from kinematical branch 

points, it is best to consider together both amplitudes 
having the same / , as shown by Frazer and Fulco.13 

We define a function fi±{z), analytic in the cut-z 
plane. The cuts are as follows: (i) the physical cut, 
hereafter called P, consisting of two parts of the real 
axis (— oo <z<— wo, WQ<Z<OO); (ii) unphysical cuts 
U elsewhere in the plane. There may be isolated poles 
as well. The cuts U as given by the Mandelstam 
representation are described in reference 13. However, 
the partial-wave dispersion relations may be valid 
more generally than the Mandelstam representation.14 

In any event, our work is independent of the details of 
these cuts, provided they do not intersect the physical 
cut. Now fi±(z) satisfies the MacDowell13,15 relation 

Afc(s)=-/a±i)T(-s). (IL3) 

Thus, fi+(w-{-iQ), w>w0, is the scattering amplitude 
for I—J—f, while — fi+(—w—iO), w>w0> is the ampli
tude for l=J+%. 

It is useful to define some abbreviations. We write 
f(z)^fi+(z) and f(w)=f(w+iO), where w is understood 
to be a real point on P. Since we assume the Riemann-
Schwarz condition f(z*) = f*(z), it follows from (II.l) 
and (II.3) that 

f(w) = lr1(wyi5^-l'2/2iK(w)1 (H.4) 

13 W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960). 
14 J. G. Taylor, Nuovo Cimento 22, 92 (1961): N. Nakanishi, 

Phys. Rev. 126, 1225 (1962). 
*« S. W. MacDowell, Phys. Rev. 116, 774 (1960). 

where 
7)(w) = rji+(w)J W>WQ 

= 7](l+1)-(-w), W<-WQ 

8(w) = Re8i+(w), W>WQ 

= — Re5(Z+i)-(—w), w<—w0 

and K(w) = k(\w\). 
The dispersion relation is taken to be16'17 

(II.5) 

(IL6) 

/(«) 
IT J I 

Imf(w) 
dw-

P w—z 
(II.7) 

where 
1 r Af(zf) 

fv(z) = - / to . (II.8) 
TJU zf—z 

Here Af(z) is l/2i times the discontinuity over the cut 
U. A/ may contain delta functions to account for 
possible poles of / . The convergence of the integral over 
P is assured by unitarity. The convergence of (II.8) and 
the vanishing of the integral over the contour at infinity 
presumably follow from arguments of the Pomeranchuk 
type.18,19 Roughly speaking, these arguments show that 
the amplitude should have the same asymptotic be
havior in all directions in the complex plane. 

It is instructive to rewrite (II.7) in various ways. To 
emphasize the presence of two orbital states we use 
(II.3) and find 

/ * (* ) =/n*(«) 

+ 
1 r« rlmfi+(w) Im/ ( m )_(w)- | 
- / dw\ . (II.9) 
7T J wa L W — Z W+Z J 

Incorporation of (II.2) shows that the density function 

16 To ensure the correctness of the usual formula (w—z—ie)"1 

= P((w—2)_1)+^V6(w—z) in taking the limit z —> w it is necessary 
to make some statement about the continuity properties of the 
density function Imf(w). It is sufficient to impose the Holder 
condition; cf. reference 17, Sees. 16 and 17. A function <p(x) is said 
to satisfy an H (Holder) condition on a finite interval L if 
\<P(XI) — <P(X*L)\ ^A\x\—#2K ^4>0, 0 < / i ^ l , for any two points 
x\, x2 of L. We write "<p belongs to H" or *V£i7." We assume 
explicitly that vEH and 8E3; therefore Imf(w)&H. The H 
condition is more appropriate for physics than the stronger re
quirement that the functions have a derivative. The latter condi
tion fails at least at two-body, 5-wave thresholds; e.g., there is a 
cusp phenomenon at the 7i--2 threshold in S-wave TT-A scattering, 
assuming even A-S parity. In the case of an infinite interval L, the 
H condition is supposed to hold on any finite subinterval. 

17 N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff Ltd., Groningen, The Netherlands, 1953). 

18 For the present case we know of no complete proof of a 
Pomeranchuk-type theorem {cf., I. Pomeranchuk, Zh. Eksperim. 
i Teor. Fiz. (U.S.S.R.) 34, 725 (1958) [translation: Soviet 
Physics—JETP, 7, 499 (1958)]}. A method that might be 
adapted to handle the problem is given by Weinberg in reference 
19. It is probably necessary to assume that the amplitude is 
uniformly bounded by a polynomial and that the density func
tions have at most a finite number of zeros. 

19 S. Weinberg, Phys. Rev. 124, 2049 (1961). 
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is positive on P . 

/ (*)=/• 
IT J I 

ic(w)\f(w)\2 

dw-
P w—z 

1 r, t 
H I dw-

4TT J j /c 

[ H W ] 
(w)(w—z) 

(11.10) 

i is the inelastic region | w \ >winy W{n being the threshold 
for inelastic events. Finally, we have a form that is 
useful in Sec. I I I . 

where 

/ 

T J P 

7 ( * )= - f 
IT J I 

rj(w) sin28(w) 
dw . (11.11) 

K(W)(W—Z) 

l—r)(w) 

2K(W)(W—Z) 
(11.12) 

The real part of the function ^ = / c / + / / appears in the 
N equation. 

When fu and t\ (or equivalently fu and f1) are re
garded as given functions (11.10) becomes a singular, 
nonlinear equation for f(w) in the limit z —* w-\-i0. To 
find a corresponding nonsingular and linear equation 
we use the N/D representation of Chew and Frautschi9 

in which \/D has as its phase the function 8 (w) defined 
by (II.6). N is analytic in the plane with cuts U and 7, 
while D satisfies D(z*) = D*(z) and is analytic in the 
plane cut by P . N and D may have poles at infinity, but 
it is understood that D has no poles superimposed on P 
(however, see Sec. VI). I t is not clear that any amplitude 
satisfying (11.10) has such a representation. The 
possibility of the representation can be proved if 8(w) 
is bounded on P. From here on it will be understood that 
we are considering only the class of solutions for which 
8{w) is bounded. From the 5 corresponding to a given 
amplitude / construct the function 33. 

/ z r dw 8(w)\ 
5>(*) = exp( — / — . (11.13) 

\ IT J pW(w — Z)/ 

We have 33(s*)=33*(2;), and 33(s) is analytic in any 
finite region of the plane cut by P. By (II.4), 9fl=/S3 is 
real in the elastic region WQ^ \W\ ^win. Since 91(2*) 
= 9l*(2i), the jump of 91 over P is proportional to its 
imaginary part and, therefore, zero in the elastic region. 
Thus, the example /=9 l /£> shows that any / has an 
N/D representation as described. Of course, the de
composition into N and D is not unique. N and D may 
each be multiplied by a common polynomial with real 
coefficients. Furthermore, any D that is 0 ( | z | n ) 2 ° for 
some n can be written £>=<!> 33, where $ is a polynomial. 

20 We use the symbols 0, o, and ~ in the customary way. 
f(x)-0[_g(x)2 means that \f(x)\ ^.Mg(x) for some fixed M and 
all x sufficiently close to a given limit. By f(x) = o[_g(x)~] we mean 
that f(x)/g(x) —> 0 as x tends to a given limit, while f(x)~g(x) is 
to mean that f(x)/g(x) -> 1. Thus, D(z) = 0(\z\n) indicates that 
|Z>|^Af|s|»fora]l | * |> r . 

To prove this, note that D/33 is a function devoid of 
singularities in any finite region. Also, D/£)=0(\z\m) 
for some m, by the theorem of Appendix A. Therefore, 
J9/3D is a polynomial. 

When the full notation is substituted for the compact 
writing of (III. 13), we have 

£>(s)= £ ( 2 ; ReSM-, Re$(z+i)_) 

' dw Rt5i+(w) 
= e x p ( — / 

\ 7T J u WQ w(w—z) 

00 dw Re8a+i)-(w)\ z n 

7T J W( w{w-\-z) 
(11.14) 

The behavior at infinity of 33 is related to that of 5. 
If 8 (w) approaches a constant as | w | —-> °o we have the 
theorem of Appendix A: 

33(s) = 0 ( | s | p + e ) (A6) 

for all e>0, where irp=8i+(<x>)+5(Z+D_(<*>). See, also, 
Eq. (A7). If 8(w) oscillates at infinity, 3) is still bounded 
by a power of \z\ ; cf., Eq. (A9). With (A6) we can deal 
with the question of subtractions in the Cauchy integral 
representations of 91 and 3D. Suppose that 8 approaches 
a constant. If p<l, then e can be chosen small enough 
to show that ^(z)zr1=0(\z\-8), 5>0 . In that case, 33 
satisfies a dispersion relation with one subtraction. If 
p>l, additional subtractions are needed; the subtrac
tion terms involve arbitrary constants which represent 
the CDD ambiguity. The case p= 1 also involves a CDD 
ambiguity, in general, although the Cauchy integral 
may converge with one subtraction. See Sees. VI and 
VII for a clarification of this point. 

When p<l, the one necessary subtraction does not 
imply a lack of uniqueness in the solution of (11.10), 
since without restricting the amplitude 33 may be given 
any desired value (at a point where it is real) through 
multiplication by a real constant. On the other hand, we 
cannot immediately rule out the possibility of a sub
traction in the dispersion relation for 91. None would be 
necessary if / had the unitarity bound in all complex 
directions uniformly [i.e., f(z) = 0 ( | s | - 1 ) ] . But that is 
a stronger statement than is essential for (II.7), and it is 
actually unnecessary for the formulation of the iV 
equation without arbitrary constants, as is shown in the 
next section. However, in the next section we first 
assume f(z) = O (| z \ ~l) in order to derive the N equation 
by the obvious route of eliminating D between the two 
dispersion relations for N and D. Later we give a method 
which eliminates the unnecessary assumption. The 
second method is actually simpler, even if less obvious. 

III. N/D METHOD ALLOWING INELASTIC 
PROCESSES 

Equation (IIA) implies exp (2iS) = D*/D and N= 
(rjD*—D)/2iic, where the functions are all evaluated in 
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the limit 2—> w-\~iQ, w on P . I t follows that 

Rei\T= - (1+7?) ImJ9/2/c, (III . l) 

ImiV= (1—77) ReZ>/2^. (III.2) 

Now any / = 0 ( | JS]—1) in the class for which 6 approaches 
a constant and p < 1 has a representation N/D such that 
N and D satisfy the following dispersion relations: 

where 

N{z) = - f dz' 
IT JU 

Af(z')D(z') 

D(z) = l+-

1 r (\-
+-**( — 

IT J I \ 2K 

z r dw / — 2n\ReN(w) 

' Jp w \ l + i j 

rj\ReD(w) 

/ w—z 

l-\-T}J W — Z 

(III.3) 

(III.4) 

Substitute (III.4) in (III.3), and take the limit 
z —•> w+iO.21 The real part of the resulting equation is a 
singular integral equation for ReN(w), with w on P . 
A reversal of the order of integrations is helpful. In the 
U integral the reversal is easily justified. We find 

1 
fu(w)+~ 

K 

dw' —i 
w 

'w'fu(w')-wfu(w) 
\n(w), (III.5) 

where — nn—lmD. 
Since fu(w) is differentiable, the integrand is well 

defined at w~w'. In the I" integral we have repeated 
principal value integrations which may be interchanged 
by means of the Poincare-Bertrand formula22 

<p(x,y)dy 

y-

<p(x,y)dx 

r dx r <p[x,y)d: 
P P 

jLx—t JL y—x 

= - * W ) + / dyp -— 
JL J L(x—t)(y—x) 

(III.6) 

The integral over y on the right of (III.6) exists in the 
ordinary Riemann sense because of cancellation of one 
pole by the other. When (III.6) is applied to the / 
integral of (III.3), an expression just like (III.5) ap
pears, but with fu replaced by Re/ 1 . According to 
Appendix B, the expression \wl Ref^w^—w Re/Z(ze?)]/ 
(w,-~w) is integrable at w—w'. An additional contribu
tion, arising from the <p(t,t) term in (III.6), combines in 
an interesting way with ReiV on the left side of (III.3). 
Collecting terms, we have 

rj(w)n(w) = ReB(w)-\— / dw' I — ) 
TT J p \w' J 

~w ReB (w)—w' ReB (wf) 
X 

w—w 
\n(wf ) , (IH.7) 

21 Here, one must know that ReD and ImD satisfy the H condi
tion. See Appendix B. 

22 Conditions for the applicability of (III.6) are treated in 
Appendix C. 

ReB = Re (fu+f) = fu+Ref. 

A solution of (III. 7) is used with (III.3) and (III.4) to 
calculate J—N/D. In practice, it is perhaps better to 
calculate N by means of (III. 19) in which case we have 

f(z)=B(zy 
— ( 

nn(w) ReBOw) 
dw • . (III.8) 

P w—z 

By showing that (III . l) and (III.2) are satisfied it is 
easy to see that / satisfies (11.10) provided (a) D has 
no zero that cannot be called a bound-state zero, and 
(b) / i s such that its Cauchy integral over the contour 
at infinity vanishes and its integral over U converges 
[see the remarks following (II.7)]. If (a) is not satisfied, 
there is no solution of (III. 10) within the class for which 
p<l} since the equations we have developed are 
necessary conditions on solutions in that class. The 
exact number of zeros of D can be found by determining 
the degree of the polynomial <!>=£)/£), where 3D is 
calculated from (11.13) and the phase 5 of D~l.2Z The 
results of Appendixes A and D will help to reduce the 
amount of computation necessary in finding the degree 
of $. 

The substitution w—wo/s puts (III. 7) into the 
standard form (III.9) of a Fredholm equation of the 
second kind. 

x(s) = y(s)+ / K(s,t)x(t)dt, 

TWQK 

x=wnmn\ ^=wr/-1/2ReJ3, (III.9) 

( Kf \ ww' rw ReB(w)~w' ReB(w')~ 

w7(w')1 / 2L w-w' 1 
The Fredholm theory applies if yG^ 2 , K£.L2, i.e.. 

y 2 ( ^ < ^ , f f K2(s,t)dsdt<oo. (III. 10) 

In this case, (III.9) has exactly one solution in the class 
L2, unless the Fredholm determinant should happen to 
vanish.24 Since t\ appears in the denominator of K, and 
7j presumably vanishes at infinity (dominance of in
elastic processes at high energies), the conditions 
(III. 10) are very much in question. Only the point at 
infinity in the w, w' plane is potentially dangerous. 
Since 2K/W^\, conditions (III. 10) are then equiva-

23 This is the essential idea of a note by H. Sugawara and 
A. Kanazawa, Phys. Rev. 126, 2251 (1962). We wish to thank the 
authors for a pre-publication copy of this work. 

24 As far as we know, a vanishing Fredholm determinant would 
have no physical significance and could occur only as a result of 
some approximation in constructing the interaction. 



A N A L Y S I S O F P A R T I A L - W A V E D I S P E R S I O N R E L A T I O N S 4 8 3 

lent to 

f dw£ReB(w)l2Mw)<oo, (III. 11a) 

/ , / . 
dwdw' 

P rj(w)rj(wf) 

•w RzB(w)-wf ReB(wf)l2 

• < oo . ( I IL l lb ) 
w—w 

Although the mathematical question of the convergence 
of these integrals may be quite different in different 
cases, it is nonetheless instructive to discuss the matter 
in general as far as possible. To this end we find some 
sufficient conditions for (III . l la ,b) which are probably 
almost necessary as well. This has the advantage of 
making ( I IL l lb ) more comprehensible. Let w ReB(w) 
= a+<j)(w)y where the constant a may change when the 
sign of w changes. To begin with we assume that <j>{w) 
vanishes at large \w\. As shown below, this is actually 
necessary for existence of solutions of the dispersion 
relation (11.10) if ri—0(]n~a\w\)J a > l . Also, 0 vanishes 
in at least one case in which rj does not decrease at 
all; viz., the single-nucleon approximation 0?=1, 
£ = / ( B o r n ) ) . Thus, with 0 ->O, ( I l l . l l a ) holds if and 
only if 

/ , 
dw[w27i(w)~]~1 < oo. (III. 12) 

Let f(w,wf) be the integrand of ( I IL l lb ) . Then it is 
necessary and sufficient for ( I ILl lb) that the repeated 
integral exist: 

/ , * / , 
dwf fiw^w') < oo. 

Therefore, (III. 12) is necessary for ( I IL l lb ) , just to 
ensure the convergence of the single integral over w'. 
However, it is not sufficient, as is seen by transforming 
to polar coordinates (r,0). First change from w and wf 

to w and 0, and reverse the order of integrations. Then 
replace w by r. Both the legitimacy of reversing the 
order and the convergence of the double integral are 
assured if 

f 
J R 

rdr \jf(r cos6)rj(r sinfl)]"1 

X 
-<Krcos0)-<£(rsin0)-j2 

rcos0—rsin0 J 
(III. 13) 

converges uniformly for 0 ^ 0 ^ 2 i r . I t is sufficient to 
consider the first quadrant. We break it up into 
three regions of 0: 2^= (0,5), R2= (5, T T / 2 - 5 ) , R Z 

= (T/2—8, 7r/2), 5 < T T / 4 . Suppose 4>(w) = 0(w~alir^w)J 

where a and (3 are chosen so that w~a \rrhv is decreas
ing. Then in Rx and*i?3 the square bracket of (III. 13), 
call it $ ( r cos0, r sin0), is Ofr-"-1 lrr^r). 

To handle R2 notice that <t>(w) has a continuous first 
derivative,25 and, therefore, ^(wiw

f) = <f>f(u)J where u is 
some point between w and wf. But26 

so 

4>' (w) = 0 {w~°^1 ln~%), 

$ ( r cos0, r sin0) = 0(p- a ~ 1 ln-fy), 

where p is the smaller of r cos0, r sin0. We use this bound 
in i?2, and obtain the result that 

$ (r cos0, r sin0) = 0 (r~a~l lir^r) 

uniformly for O ^ 0 ^ T T / 2 . NOW if l/r}(w) = 0(wv\n8w), 
(III. 13) will converge uniformly if a, 0, 7, 8 are such that 

<t>(w)/ri(w) = 0(lrrew), e> 1/2. 

To summarize, sufficient conditions for the L2 properties 
(III . l la ,b) are 

(a) 4>(w) = o(l), 

(b) / dw[w2Ti(w)~]~1 < 00, 

(c) <f>(w) = 0(\w\-a\n-t\w\), 

(d) <l>(w)/rJ(w) = 0(ln-e\w\)J € > l / 2 . 

The exponents a, 13, e in (c) and (d) may be different in 
different quadrants of the w, wr plane, and a and (3 
are to be such that \w\~~a ln~^| w\ is decreasing. Condi
tion (b) is also necessary for ( I I I . l la ,b) . 

We do not discuss in detail the complicated situation 
that arises if (a) is dropped. In that case, the L2 property 
would depend on a cancellation between $ (r cos0) and 
(j>(r sin0) in (III. 13). That such a cancellation can occur 
is illustrated by the example $ (w)Mn Inw. As we show 
presently [Eq. (III. 14) ff] <j> may behave as \nw at 
worst. With a behavior that strong it is difficult to see 
how the kernel could be L2. 

To derive restrictions on <f>, as promised above, we 
return to the dispersion relation written in the form 
( I I I . l l ) : 

1 r t){w) sin25(w) 
B(z) = f{z)— / dw . (111.14) 

IT Jp K(W—Z) 

From the unitarity bound f(w) = 0(\w\~l) and Ap
pendix D, we have <f> approaching zero and 

1 r T](W) sm28(w) 
lim wReB(w) = - / dw =a, (111.15) 

l * ^ 0 0 TTJP K 

25 At least wherever drj/dw^H, according to Appendix B. We 
assume that above some energy there are no points at which 
drj/dw does not belong to H. 

26 From a generalized law of the mean one knows that if f(x) 
and g(x) have continuous first derivatives, then f(x)/g(x) 
= J'(ex)/g,(6x)i O<0<1 , provided /(0) = g(0) = 0 and the de
nominators do not vanish for x^O. If \f(x)/g(x)\ <M for all 
x<x0, then \f'(x)/g'(x)\ <M for all x<0oxo, where f(xo)/g(xo) 
= f,(OoXo)/g,(eQxo). Let f(x)=<f>(x-1) and g{x)^xa\xT^{x'1) to 
obtain the desired statement about <f>'(x). 

file:///rrhv
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provided T? sin2<5==0(ln~a|w(), a > l . Thus, if rj itself is 
0 ( l n ~ a | ^ | ) , a > l , <t> vanishes. The strongest possible 
asymptotic behavior of <f> occurs when r) sin25 approaches 
a nonzero constant. In that case, (III. 14) and the 
theorem of Appendix A show that <£=0(ln|w\) . 

To rind a sort of converse to these remarks, we now 
look for implications of w ReB being bounded. The 
second term on the right of (III. 14) is a Herglotz func
tion (cf., Sec. VII). Therefore, an argument of Wein
berg,19 quoted in Sec. VII, shows that boundedness of 
w ReB implies the convergence of the integral of 
(111.15). 

If fpdwy){iv)Krl does not converge (as in the elastic 
approximation ??=1), then sin5(oo) = sin5(— oo) = 0, 
just as in potential scattering. This is the case in the 
Born term model in which the contribution of a single 
Feynman graph (exclusive of isotopic spin factors) can 
be written as 

w ReB(w) = -i(g2/^)+0(lmv2/w). (III. 16) 

Furthermore, there is basis for conjecture that d 
approaching a multiple of TT is a fairly general circum
stance. In fact, this behavior is certainly present in 
situations other than the special case ??= 1, w ReB< <*> y 

as we now prove. The easiest case to analyze is that in 
which 7] is asymptotic to a power of \mv: t\ (w)^c ln~aw2. 
For simplicity we assume that c and a are the same at 
plus and minus infinity, but this restriction is easily 
discarded. Our first remark follows from the preceding 
observations: If w ReB is bounded and a ^ l , then 
sin5(oo) = sinS(— <x>) = 0. If a> 1 the same conclusion is 
reached if we add the following assumptions: (i) <f>/rj is 
bounded [but does not necessarily vanish as required in 
(d) ] ; (ii) 8(w) approaches a constant as \w\—> oo. To 
prove this we apply the theorem of Appendix D to 
(III. 14) and find 

4>{w) = wr\ sm28/2K+0(lrraw2)+x(w)9 

x W = - ( / + / ) . (IIL17) 
ir\J —QO J w J K. 

The point is that % behaves as ln~a+%2 if one does not 
have sin5(oo) = sin6(—oo) = 0. But that would mean 
that <j>/f] is not bounded, contrary to hypothesis. To 
make explicit the asymptotic behavior of x, we write it 
as 

x(w) \p(w) 

hr***w*, (III. 18) 

where 

\p(w)=l I + / )dwrjK~1. 

Evaluate the limit of the first factor of (III. 18) by 
PHospitaPs rule. I t is equal to — 7r_1[sin25(— oo) 
+sin25(oo)]. Again by PH6pital, the limit of the second 
factor is a nonzero constant, and the proof is complete. 

There is one further point which is important in the 
practical problem of finding suitable approximations for 
the interaction functions fu and f1. If w ReB is bounded 
and 7]=0(lira\w\)) a > l , the two terms wfu and wf 
making up w ReB must be individually infinite at large 
w. This is apparent in (III. 7). The term involving rj in 
wfT(w) approaches a constant, by the theorem of 
Appendix D quoted above. By direct evaluation the 
other term is seen to have a logarithmic increase, which 
must be canceled by an opposite increase of wfu. 
Evidently, the question of how to choose approxima
tions for fu and f1 is a delicate one. 

The restriction (III. 12) on the rate of decrease of rj is 
something of a surprise. If (III. 12) fails, the existence 
of a solution of the integral equation (III.8) is at least 
in doubt, although admittedly we cannot rule out 
solutions of a type not comprehended by the usual 
Fredholm theory.27 Froissart,28 who has given another 
solution of the problem of this section, found a similar 
restriction on t\. He found it in a different way, however, 
and apparently regarded it more as a limitation of his 
method than as a hint that no solution may exist if r\ 
falls off too rapidly. 

We may mention in passing that the method de
scribed here is somewhat easier to apply than that of 
Froissart. Besides, it seems to be a more systematic 
generalization of the elastic N/D procedure, and it 
throws into an interesting form the question of limita
tions on t). 

In order to drop the restriction /(^) = 0 ( | s |~ 1 ) , we 
consider the function 

A(z) = N(z)-B(z)D(z) 

1 r dw ImD(w) ReB(w) 
+ - / . (111.19) 

IT J p W — Z 

The integral converges, since ImD/w=0(\w\~8), 5>0, 
and w ReB=0(lnw2) for any B consistent with the 
partial-wave dispersion relation. Since its discontinuity 
over the cuts vanishes, A is a polynomial. In fact, it is 
identically zero, since limA(w) = 0, w-~* oo, by the 
theorem of Appendix D. Then if we let z—>w-\-iO in 
(III. 19) and take the real part we arrive immediately 
at (III. 7). Note that the Poincare-Bertrand formula is 
not necessary in this proof. 

IV. THRESHOLD ZEROS AND EXISTENCE 
OF SOLUTIONS 

In this section, we impose the physically reasonable 
requirement that the amplitude have the normal 
centrifugal barrier momentum dependence at thresh
olds. When this restriction is combined with the 

27 Some readers may be interested to know that Zaanen treats 
Fredholm equations in the general Lebesgue spaces Lp: A. C. 
Zaanen, Linear Analysis (Interscience Publishers, Inc., New 
York, 1953). 

28 M. Froissart, Nuovo Cimento 22, 191 (1961). 



A N A L Y S I S OF P A R T I A L - W A V E D I S P E R S I O N R E L A T I O N S 485 

unitarity condition, a strong, but different, restriction 
on the threshold behaviors of both fu and B is implied. 
To see this, consider the function fi+(w) — fi+

u(w) in a 
state of definite isotopic spin. I t has no unphysical 
singularities. Equation (11.10) serves to express it as an 
integral over P with a non-negative spectral function 
Imft+(w). I t follows that fi+—fi+u is monotonically 
increasing in the interval — WQ^W^WQ and hence 
vanishes at most once in this interval. Now for l^ 1, 
fi+(w) vanishes at w=dtzWo and w=zk(M—m)\ cf. 
Appendix E. Consequently, fi+u(w) can vanish at no 
more than one of these points. For / = 0 , f^u(w) can 
vanish at no more than one of the two points w— —w0, 
w= — (M—m) at which fo+(w) vanishes. Equation 
(11.11) can be used to show that the same statements 
also hold for B(w). 

This necessary condition is not fulfilled if, for example, 
the Born approximation is used for fi+u(w). I t is clear, 
therefore, that no ghost-free solution exists for this 
model. The conclusion holds for arbitrary, nonvanishing 
coupling strength and for arbitrary inelastic effects. Our 
remarks don't apply directly to the model considered by 
Uretsky10 because he treated only the S wave, mutilating 
the P1/2 scattering in a way that is inconsistent with our 
point of view. 

The restriction on threshold behavior can be con
trasted to the limitations on asymptotic behavior that 
also follow from unitarity. A violation of the latter is 
often traced to the fact that the discontinuity function 
A / increases too rapidly at infinity. On the other hand, 
the restriction on threshold behavior involves only a 
finite number of zeros. Any model that violates only this 
restriction can be "corrected" simply by adding to 
fi+u(w) a function with only a finite number of poles. 
The question of whether these additional poles are 
authentic contributions to fi+

u(w) must be examined in 
individual cases. In the limited class of models based on 
the Cini-Fubini representation,11 a general answer will 
now be given. 

In the construction of models, we need the energy-
square variables s and t in the two crossed channels. 
They are related to s by s+s+t=2M2+2m2 and 
t= — 2&2(1 — cos0), where 0 is the scattering angle in the 
s channel. Consider the invariant amplitude A(±)(s,t). 
The Cini-Fubini approximation to the Mandelstam 
representation is (for pion-nucleon scattering) 

A<&(s,t) 

1 rSm r 1 1 i 
= - / ds' a.(±)(*V) ± 

7T J SQ Ls' — S Sf~ §J 

1 / •<* 1 
+ - / <ft'fc/±> ( * ' , , - * ) _ -

7T J 4TH1 t — / 

+ a low-order polynomial in s, s, and /. (IV. 1) 

Here Cts
(±) and Qt

(±) are roughly the absorptive parts 

for the s and / channels, respectively. The approxima
tion consists in treating the dependence on the second 
argument of the absorptive parts as a low-order 
polynomial, corresponding to the first few partial waves 
in each channel. Let Zfh-u(w)l*+t be the ^-channel 
partial-wave projection (taking spin and kinematic 
factors into account) of the terms in (IV. 1) that have 
s'—s and t'—t denominators. I t is well known, and 
easily verified by expanding about k2=Q and using the 
orthogonality of Legendre polynomials, that such func
tions have zeros at thresholds. Therefore, if [Ji+u(w)2s+t 
alone is used as the model for the unphysical singulari
ties, the necessary threshold property is violated and 
there are no ghost-free solutions. 

I t is easy to construct models which avoid this 
difficulty. Let [_fi+u(w)^s be the contribution from the 
terms in (IV. 1) with s'—s denominators. The essential 
point is seen more clearly if we neglect spin complica
tions ; then we have 

1 /-00 

TT J w0
 l' 

X [ dxPl{x)lPv{\-{kykf2){\-x))-Pv{x)-]1 

(IV.2) 

where Pi{x) is a Legendre polynomial. For a finite sum 
on /', the right-hand side is analytic as a function of w, 
except for poles at w=0y arising from the ^-dependent 
Pi'. Thus, Zfi+U(w)ls is a rational function. If spin 
effects are included, the contribution to C/o+?7(w)]s from 
the (3,3) resonance behaves as w~A near w=0 and 
doesn't vanish at any threshold. This term is present in 
the static model, where it participates in a striking 
cancellation. In general, there is no reason for [Jj^u{w)~\9 

to vanish at any threshold. Thus models with consistent 
threshold behavior are comprehended in the Cini-
Fubini framework. The singularity at w = 0 , however, 
depends on all waves of the 5 channel (that are included 
in the /' sum), so the calculation of a given partial wave 
is no longer decoupled from the remaining ones. 

The interdependence of the different partial waves 
and the more quantitative restrictions on fu and B will 
be brought out by the following discussion. 

The point is that for a given [_fu1s+t and 77, the 
threshold requirement implies some relations among 
the parameters yn of Zfi+

U%=Y, Tn^r*""1, n = 0 , 1, • • •. 
With some courage, the method we propose can be 
applied to more general cases, but to keep the motiva
tion clear, we develop it in the Cini-Fubini framework. 

Threshold functions 6i(w) are defined by 

60(w)^w2(w+M+m)-1(w+M-m)-1 (IV.3a) 

for / = 0 , and for l^ 1, by 

dt(w) = w2W(w2~- (M-tn)2)-1 

X (w-ze>o)-*(w+w0)m. (IV.3b) 
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Note that 0i(w) = O(l) for large w. The centrifugal 
barrier threshold behavior of /z+(w) is enforced by 
applying the N/D method to the function 

h (w) = 6l (w)fw (w) = [61 (w) N {w)~]D~l (w) 

and seeking a solution 6i(w)N(w) that is finite at thresh
old. The integral equation for 

n(w) = 2 ReN(w)£l+r1(w)']-1 

is (suppressing /) 
1 f 

7](w)n(w) = KeB(w)-\— / dw' 
ir J p 

Kfn(wf) 

X 

P W 

w'e{wf)e~l{w) ReB(w')-w ReB(w) 

] (IV.4) 

where B is a modified interaction function defined by 

A/(2)0(s) 
d(w)B(w)--•V 

7T J U 

dz-
-w 

+ — J dwf 

2ir J p 

[l~Tj<y)]0(w') 
(IV.5) 

Now B and B differ by an additive rational function 
which need not vanish at any threshold. In fact, B has 
the centrifugal barrier zeros and, therefore, n or N 
does.28a However, unless some accidental cancellation 
occurs, the resulting solution / = hd~l will have poles at 
w=0 in addition to any that might already be present in 
fu. The new poles (similar to ghosts) amount to a modi
fication of the coefficients yn and are not objectionable 
to the extent that the yn are considered ambiguous. 

The expression for B can be simplified considerably if 
we write A/=[A/] f +«+[A/], . Since [/]«+* has the 
centrifugal barrier behavior already, the Cauchy rela
tion for d(w)[_f(w)~]s+t shows that 

7T-1 f dz d(z) (z-w^ZAfiz)-]^ 

The contribution from [A/]*, where 

can be written as 

0(z)ZAf(z)l8 - ynd"/d(z)> 

(IV.6) 

T J U 

dz-
-w 

• In dn /d(z)\\ 

n-o n\ dzn\z—wJ\z^0 

m—0 
(IV.7) 

28a Even though l/dx behaves as w2— (M—m)2 at w = ± (M—m)y 
the amplitude /i+(«) constructed by the method described will 
have the correct behavior [V— (M—m)2"]lli found in Appendix E, 

where the Tm are defined here in terms of the 7n. Due to 
0, the Tw depend on yn only for n>2l+3~-8m. That is, 
the Yn for n^2l+3—dw do not enter into the integral 
equation. The low-order poles of [/]* are constructed 
by the N/D method through the zeros of 0 and, in 
effect, the coefficients yn for n^2l-{-3—8io are auto
matically assigned values that yield the proper thresh
old behavior. For example, take 7=J( /=0) and assume 
TnP̂ O for w=0, 1, 2, and 3. This includes contributions 
from the (3,3) state and second wN resonance in the 
s channel. Then 

T0=y2(M
2-m2)~1+2Myz(M

2-nt^-2
) 

r i = - Y 3 ( M 2 - m 2 ) - \ 
(IV.8) 

and rTO=0 for m^ 2. The calculation of a given partial-
wave is independent of the calculation of the remaining 
ones in the same channel to the extent that the solution 
may not be sensitive to higher values of n. 

V. A UNIQUENESS THEOREM 

We choose to admit only scattering amplitudes that 
have the proper threshold zeros, that are uniformly 
bounded by a polynomial as w approaches infinity in 
any complex direction, and which have phase shifts with 
real parts approaching finite constants for large w. 
Suppose /H- (1) and /^ ( 2 ) are two such functions that 
satisfy the partial-wave dispersion relation with the 
same given /z +

u , rn+J and f?(z+i)_. We seek conditions 
under which the difference g(w) = /j+

(1)(w)—/z+
(2)(w) 

vanishes identically. 
Now g(z) is analytic except for the two cuts com

prising P and perhaps poles if /z+(1) and fi+{2) have 
distinct bound states. 

The boundary values of g(z) are given by 

lim g(z) = rji+ (w)k~l(w) 
z-no+iO 

X e x p i R e C V ^ + a ^ 2 ' ) 

XsinRe(5i+<1>-5l+(2)), (V.la) 
and 

lim g(z)=-rilW)_(w)k~1(w) 
z-+—w-iQ 

Xexpi Re(a(,+i)_(1>+5a+1)_<2>) 

Xsin Rt(6<ii.i>Jl>-iiW)J»)f (V.lb) 

where w>wQ and 8(i) = 8(i)(+w) is the phase shift of 
f{i), i= 1, 2. Using 3D we construct $(z) as 

^(2) = g ( 2 ) ^ ( z ; R e ( 5 l + ( 1 > + 5 ^ ( 2 > ) , 

R e ( S a + i ) - ( 1 ) + 5 ( i + 1 ) _ < 2 > ) ) 

Xn(*-w* c i ) ) (*-ws ( t ) ) . (V.2) 
B 

provided only that the given discontinuity A/ is proportional to 
[w2— (M—m)~\ll% near -±(M--m). This is because $(a>)N(a>) in
volves the term fdzAf(z)0(z)D(z)/(z—a)) which has a singu
larity of the type L«*- (M-m)2Tm-
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For notation see (11.14). The coincidence of Ws(i) with 
any bound-state poles of / ( i ) and the phase conditions 
on g and 3D ensure that <£ has no singularities in any 
finite region. For large z, 3D is uniformly bounded by a 
polynomial (Appendix A). Since we assume / ( 1 ) and 
/ ( 2 ) are uniformly bounded by a polynomial for large z, 
g (z) is also. Hence, | <$> (z) | = 0 (| z |m) for some integer w, 
and by a familiar theorem <£(z) is a polynomial. Let <p 
be the degree of 3>. Because of the Holder condition on 
ReS, the exponent in the definition of 3D is finite for all 
finite z, including real values on P. Hence 3D and 3D-1 

have no finite zeros and the zeros of <£ are identical with 
those of g. The number of these zeros is <p. The re
mainder of the proof consists of finding upper and lower 
bounds on <p. 

The upper bound depends on the limiting values 
Re5z±(oo) = limw,->00Re6z::t(w). Then for large, real w, 
|S)(w+iO)| =0(w«+*)> where 

q=T-i Re[5 M .< 1 >(«)+V 2 ) (oo) 
+ «(l+i)-(1>(oo) + « ( W ) .<«(oo) ] , 

and e is any real number greater than zero. If / ( i ) has 
n(i) bound-state poles, all distinct, the polynomial factor 
in (V.2) gives a power behavior of degree w(1)+w(2) 

for large w. Finally, the unitarity condition gives 
|g(w+iO)| =0(w~x) and we have 

<p^q+n^+n^-l. (V.4) 

For if ^><j+« ( 1 )+» ( 2 )—-1, there is a contradiction of 
the statement |$(*) | =0( |z |Q + n ( 1 ) + n ( 2 )-1 + c)> because € 
can be taken so small that 

q+nV+ni2)-l+e<<p. 

To find a lower bound on <p, we evaluate the number 
of known zeros of g(z). The centrifugal barrier behavior 
of both / ( 1 ) and / ( 2 ) implies that g(z) has an Ith order 
zero at W=WQ, and an (H-l ) th order zero at w= —WQ. 
Such a behavior follows from the Mandelstam repre
sentation (see Appendix E) and is demanded in any 
theory in which the forces are limited in range. In 
addition, crossing symmetry and unitarity imply zeros 
at the other roots w=zL(M—tn) of k2(w) = Q. In fact, 
g(z) has a zero at w= — (M—m) for all 2, and a zero 
at M—m for IT^O, as shown in Appendix E. From (V.l) 
g(z) has a zero on P at each point where Re(5*+(1) — 5*+

(2)) 
or Re(5(z+i)_(1) —5(z+i)_(2)) passes through an integral 
multiple of w. On the right-hand physical cut there are 
at least *-*{ \Re[8l+«)(oo)-8i+<>2)(x>)']\} zeros of this 
kind, where {C} is "the greatest integer less than C " 

At this point, we first complete the proof under the 
restrictive assumption that there are no bound states, 
or, more generally, that the bound-state poles of / ( 1 ) and 
/<2) coincide in position and residue. Then 

<p^2l+l+(2-8lQ) 

+ 7 r - 1 { | R e [ 5 ^ ) ( ^ ) - a ^ 2 > ( ^ ) ] | } 

+ 7 r - 1 { | R e [ 5 a + 1 ) _ a ) ( ^ ) - 5 ( ^ 1 ) _ < 2 ) ( ^ ) ] | } . (V.5) 

The inequalities Eqs. (V.4) and (V.5) can be solved 
to find a relation for 6(1) and 5(2) separately. If we set 

R e C V ^ ^ - V ^ o O ] ^ , 

and 

Re[5 ( H . i )-<1>(oo)-5 ( W ) . («(co)] = y, 

the algebra can be done in the form co ̂  | x | + | y \ 
—x—y^O. The inequality co^O reads 

^ ^ = 7 r - 1 R e [ 5 , + ^ ( ^ ) + 5 a + i ) - ^ ( ^ ) ] 

^ H - l - J c h o . (V.6) 

If there are at least two admissible solutions of the 
partial-wave dispersion relation which are free of 
bound states, then (V.6) is a necessary condition on 
any such solution. Since g(z)=0 is the only alternative 
to (V.6), we have a kind of uniqueness theorem: A 
solution that contradicts (V.6) is the only admissible 
solution without a bound state. 

Is there ever an admissible solution without bound 
states that contradicts (V.6)? For 1^0 the answer is 
likely to be yes. In fact, if rj does not decrease too 
rapidly, an admissible solution constructed from an & 
solution of the N/D equation (III.9) will have the 
desired property, provided it has no bound state. 
Suppose that r](w)\w\a—> oo as \w\—» oo, where 
0 < a < 1. Since #£Z,2 means that SP dw 7j(w)n2(w) < oo, 
it follows that n2(w)\w\1~a=o(l). Since ImZ>= — KH, 
the Cauchy representation of D and the work of 
Appendix D show that D=0(\w\ (1+«>/2). Since £>=<!>£>, 
where $ is a polynomial, we can conclude from Appendix 
A, Eq. (A7), that p<\ and (V.6) is contradicted. If 1=0 
the same argument does not quite suffice. However, if 
one finds n(w) = 0(\w\~a)j a > | , then p<\ and the 
corresponding solution is a unique / = 0 solution in the 
class considered. 

If there are two solutions / ( 1 ) , / ( 2 ) , and each has 
nz=na) — n(2) bound states, then (V.6) is replaced by 
pii}^l+l—\bw-~n. If the latter inequality is violated 
by some solution, it is the only solution with n bound 
states. A better theorem for the situation in which 
bound states are allowed seems possible only if we can 
claim additional zeros of g(z). One basis for doing this is 
provided by the assumption that the residue of a bound-
state pole has a definite sign; i.e., J{1)^RB(WB{1) — W) _ 1 

near W=WB(1\ where RB>0. Then / ( 1 ) must have a 
zero between consecutive poles. The number of such 
zeros in g(z) depends on /x= \na)—ni2)\ because g(z) 
need not vanish between adjacent poles of / ( 1 ) and 
/ ( 2 ) . The counting is complicated by the fact that such 
zeros might coincide with the ones at w=zL(M—m) 
already counted. In any case, there are at least 
/ * — 3 + 2 $ M 0 + 5 M I + $ Z O additional zeros. Altogether, the 

file:///bw-~n
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minimum estimate for <p is 

^ 2 / + l + ( 2 - 5 , 0 ) 
+ 7 r - 1 { | R e [ 5 z + ^ ( ^ ) - ^ ( 2 ) ( ^ ) ] | } 
+7r-HlRe[5a+i)- (1)(^)-5 (Z+i)- (2)(oo)]|} 

+ |»<i)_w<2> | + 2 6 , O + 5 M I + 5 ; O - 3 . (V.7) 

The inequalities (V.5) and (V.7) can be put in the form 
co /^|^ | + bl+M-^~3 ;-(^ ( 1 )-^< 2 ))^O.Thus Jforboth 
i—1, 2 we have 

7r-1Re[5z+^ )(00)+5a- fi)- ( i )(00)]+^ (0 

>l~h (V.8) 

T h e connection with potent ia l scattering is in
teresting. I n this case, our inequali ty becomes 8t( oo) 
^ TT(J/— 1—UB) where UB is the number of bound s ta tes . 
On the other hand , Levinson's theorem29 s ta tes t h a t 
di(°o)——imB> Thus , there is a contradict ion for 
1^3. E i ther there is a unique, admissible solution of 
the part ial-wave dispersion relations of potent ia l theory 
for Z ^ 3 , or else our assumption abou t the sign of 
bound-s ta te residues is no t acceptable. 

There is another slight extension. If addit ional param
eters are granted, in the form t h a t fi+ (both /z+ (1) 

and fi+(2)) has a prescribed value a t h different points , 
then g(z) has h addit ional zeros a t these points , and an 
added t e rm \h is implied on the r ighthand sides of Eqs . 
(V.6) and (V.8). 

VI. CASTILLEJO-DALITZ-DYSON AMBIGUITY 

T o include the C D D ambigui ty in the N equat ion we 
generalize the method described a t the end of Sec. I I I . 
For this purpose we define functions N and D with the 
same restrictions on asymptot ic behavior as the N and 
D of t h a t section. Of course, the new functions have 
poles. Ampli tudes in the class for which fiT^p< (w+ l ) x 
have a decomposition No/Do in which DQ has no poles 
and is 0(\z\ n + 1 ~ s ) J 5 > 0 . Do differs from £> of (11.13) by 
a t most a multiplicative constant . Now D=Do/p, where 
P=IL=in(2—**)> is 0 ( | s | 1 _ " 5 ) . If we introduce the 
corresponding numera tor function A 7 = D 0 / p , the func
tion A (2) of ( I I I . 19) can be constructed. A is well defined 
if the Zi do not lie on P . B u t for ampli tudes in the class 
nw<p< (n-\-i)w there are n points Wi a t which sin6(w») 
= ImDo(wi)/1 Do(wi) | = 0 ; (we set aside for the moment 
the case p=nw). I t is convenient, and in accord with the 
work of Castillejo et al., to let the 2* approach wim T h e n 
since ImDo(wi) = 0, the limit Zi—^Wi causes no trouble 
in the dispersion relation for D. I n fact, we know from 
Appendix B , L e m m a A, t h a t ImDo/(w—w%) satisfies a 
Holder condition near Wi provided t h a t dh/dw does. We 
assume t h a t indeed d8/dw(£H near w± T h e assumption 
is certainly reasonable if Wi is not an S-wave, two-body 

29 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat.-fys. 
Medd. 25, No. 9 (1949); R. Haag, Nuovo Cimento 5, 203 (1957). 

threshold. Thus, ImDEfiT on P, which means that the 
Cauchy representation of D and the function A are both 
well-defined for Zi=W{. Now, A has zero jump over the 
cuts U and P, so its only singularities are the poles of D 
which make their appearance in the —BD term of 
(III. 19). D now takes the form 

r n a 1 r Kn(w) 1 
D(z)=l+z\ £ / dw— L (VI.1) 

Lt- iz—Wi w Jp w(w—z)J 

where — Kn(w) — ImD(w) and 

Ci=Ci*=Dfi(wi)[wi TL(wi—Wj)Jr\ 

3 

If n= 1, then CI=DQ(WI)/WI. When (VI. 1) is substituted 
in (III. 19) one sees that 

n ctWiReB(wi) 
A(s)= - E . (VI.2) 

»-l Z—Wi 

In (VI.2) let 2—>wGP and take the real part. The 
result is a simple modification of (III. 7): 

n w ReB (w)—Wi ReB (wi) 
t\ (w)n (w) = ReB (w) + £ ct 

t-»l W — Wi 

1 r H! rw'ReB(w')—wReB(w)-l 
+ - / dw'—n(w')\ . (VI.3) 

IT J p W' L W' — W J 

T h e 2n real parameters c», w», are to be regarded as 
completely arb i t ra ry unless they are associated with un
stable e lementary particles with known masses and 
widths.1 '7 '12 According to ( I I I . l ) and ( I I I .2) , the 
condition ImZ>o(wt) = 0 means t h a t f(wi) = i ( l — rj) (2K)"1. 
T h e C D D points correspond to zeros of the ampli tude 
only below the inelastic threshold. 

If p=mr there m a y be only n—\ finite points Wi a t 
which sin5(z^) = 0. I n t h a t event (VI.3) does not 
necessarily hold, and we must resort to the more subtle 
analysis of Sec. VI I . According to the remarks preceding 
(VII.6), any amplitude30 of the class nw^p<(n+l)w 
has an N/D decomposition in which31 

[ « d 1 /* K n(w)"l 
A + Z / dw , (VI.4) 

»-l 2 — W{ IT J p W W — ZJ 

where A—A*, and either A or one of the Ci is zero. 
T h e zA t e rm m a y be regarded as a C D D pole a t 
infinity. I t m a y be nonzero only if p=mr, and it need 

30 That is, any amplitude for which the phase 8(w) does not go 
through a multiple of x an infinite number of times. 

31 We shall suppose that n(w)£H. This does not follow from 
the work of Sec VII. It presumably is implied by 8(w)£H} but 
we shall not try to prove that here. 
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n o t be presen t in t h a t case if ir~1[8i+(w)-\-&(i+i)-.(w)~] 
approaches p—mr from above. Now when (VI.4) is 
substituted in (III. 19) we must somehow guarantee the 
convergence of the integral in (III. 19). An integration 
by parts shows that one has convergence if 

wReB(w) = 0(l), (Vl.Sa) 
and 

\[wReB(w)J\dw=<°o. (VL5b) 

Condition (VI.5a) is normally expected, as is indicated 
by the discussion of Sec. I I I . Equation (VL5b) follows 
from (VI.5a) and the condition T)(W) = 0(ln~a | w | ) , a> 1, 
according to (111.17). In any event, let us suppose that 
the integral of (III. 19) converges, either through 
satisfaction of (VI.5) or otherwise. Then A (2) is a 
rational function as before. A(w) is o(wa), 0 < a < l , and 
since it is rational it must be bounded for all \w\ 
greater than some W. I ts value at infinity is 

f r I [ K' 
l im J — w ReB(w)A-{-\ rj(w)n(w)— j dwf— 
"""»[ L TTJP wf 

fwf ReB(wf)—w RtB(w)\ 
Xn(w')l-

w —w -)] <<*>. (VI.6) 

If the limits of the two terms of (VI.6) exist separately, 
our integral equation for n may be written 

r}(w)n(w) 

= ReB(w)+A[w ReB(w)- l im w ReB(w)2 
W-+00 

n w ReB (w)—Wi ReB (wi) 
+ Ec, 

t=»0 W — Wi 

1 f *•' r 
— / dwf —w(w') • 
T J p Wf L 

+ 

Xlim 

w' RtB(iv')—w ReB(w)~ 

w> —w 

1 r Kf 

7)(w)n(w)— / dw'—n(wf) 
7T J p U>' 

w' ReB(w')-w ReB(w)-
X [- w —w 

(VI.7) 

The last term on the right of (VI.7) may or may not be 
zero, depending on the rate of decrease of n(w) at 
infinity. But according to the construction of D in 
terms of £> in Sec. VII, the large w behavior of n(w) 
depends on the rate at which 7r_1[5z+(w)+5(z+i)_(w)] 
approaches mr. If the approach is rapid, the last term 
in (VI.7 is zero and only 2n— 1 CDD parameters enter. 
If the approach is slow, the full complement of 2n CDD 
parameters may enter (VI.7), even only 2n— 1 appeared 
in (VI.4). Thus, for a restricted class of amplitudes the 

CDD pole at infinity implies only one arbitrary con
stant, but in general two are involved. Note that equa
tion (VI.7) is of Fredholm type only if the last term on 
the right side is zero and the factor multiplying A 
decreases rapidly enough at large w. 

VII. THE HERGLOTZ DENOMINATOR 

I t is interesting to observe that the partial-wave 
scattering amplitude can always be factored in the form 
N/D in such a way that D is a so-called Herglotz func
tion. A function H (z) analytic in the upper half plane is 
called a Herglotz function32 if it has the property 

l m # ( s ) > 0 , l m z > 0 . 

The Wigner R function R(z) is a special case in which 
R(z) is also meromorphic in the complete z plane.33 

Herglotz functions, or generalized R functions, have 
been studied in the theory of moments,34 the theory of 
electrical circuits,35 the analysis of Low's scattering 
equation,2 field theory,36 and in the proof of the 
Pomeranchuk theorem.19 We collect here the principal 
properties of Herglotz functions. 

Theorem. If H(z) is analytic in the half-plane l m s > 0 , 
and if ImH"(z)^0 for l m z > 0 , then there exists a 
bounded nondecreasing real function a (w) such that 

H(z) = Az+c+[ da(w)(l+wz)(w-z)~\ (VII.l) 

where A and c are real and A^O. Moreover, 

lim z~1H(z) = A , 
Z-+QO 

when z —> 00 along any direction not parallel to the real 
axis. 

I t follows that J9r(2*) = iff*(z), Imff (2) > 0 for l m s > 0 
and H(z) has no complex zeros. Note that —H~l(z) is 
also Herglotz. If ImH(w) vanishes for real w in some 
interval —/x<w</x, then fw~lda(w) exists and Eq. 
(VII.l) can be put in the form37 

H(z) = H(0)+Az+zf dp(w)w-1(w-z)-\ (VII. la) 

where dfi(w)= (l+w2)da(w). Weinberg19 has shown that 
at least one of the integrals 

w~ldp(w), w~l\H(w+iO)\-2dp(w), 

32 A. Herglotz, Ber. Verhandl. Sachs. Akad. Wiss. Leipzig, Math 
Naturw. Kl. 63 (1911). 

33 E. P. Wigner, Ann. Math. 53, 36 (1951). 
34 J. A. Shohat and J. D. Tamarkin, The Problem of Moments 

(American Mathematical Society, New York, 1943); cf., especially 
p. 23. 

35 P. I. Richards, Quart. J. Appl. Math. 6, 21 (1948): T. T. Wu, 
J. Math. Phys. 3, 262 (1962). 

36 K. Symanzik, J. Math. Phys. 1, 249 (1960), Appendix B. 
37 Cf., reference 2, Eq. (2.13). 
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TABLE I. Topological types. 

Type 

r ( + - ) 
r ( - + ) 
r(++) 
r( ) 

h+ 

A
V
A
V
 

o
o
o
o
 

5(z+n_ 

A
V
V
A
 

o
o
o
o
 

€0 

0 
0 

- 1 
+ 1 

<r 

- 1 
+ 1 
- 1 
+ 1 

(2J,2I)TN 
state 

(empirical) 

(1,1) N 
(3,1) N** 
(3,3) N* 
(1,3) 

must converge. Symanzik36 and Weinberg19 have shown 
that if Z?i(z) = Z)i*(2;*) is uniformly bounded by a 
polynomial and is analytic except for singularities 
on the real axis and if its spectral function ImDi(w-\-iO) 
has at most a finite number of zeros, then D\(z) 
= R(z)H(z), where R(z) is a rational function and H(z) 
is Herglotz. 

To demonstrate the existence of a Herglotz de
nominator we examine all points on P at which Re5 
passes through an integral multiple of w. Corresponding 
to the continuous phase Re5z±, let us define 5i± by38 

$i±(w) = Re8i±(w)—T YLi ®{w—w3) 
+ i I i e M i ) , (VII .2) 

where %, j=l, 2, ••*, j(ma,x), [resp. ibi, i = l , •••, 
i(max)] are the energies at which Re8i± goes up (resp. 
down) through an integral multiple of T, and &(w) 
= %(l+\w\,ur1). We assume i ( m a x ) and y(max) are 
finite. It is easy to see that 

O ^ $ « ± ( « 0 ^ T , (VII.3a) 

if 8i± is positive just above threshold, or 

-7r^$i±(w)^0 (VIL3b) 

if it is negative there. A systematic characterization can 
be made if we distinguish four cases according to the 
signs of $i+ and §(Z+D_. We call these "topological types" 
and denote them by r ( + + ) , etc., as shown in Table I. 
We don't know that there is any significance to this 
classification, but it is interesting to note that, empiri
cally, each type occurs once in / = 1/2, 3/2; / = 1/2, 3/2 
pion-nucleon scattering. 

We now define the Herglotz denominator explicitly in 
terms of £>. To avoid confusion with other definitions 
we designate it by H. 

H(z) = <r(z-a)*°S)(z; JHJCH-D-), (VII.4) 

where o-= ± 1 and e0=0, =fc 1 as indicated in Table I, and 
a is some arbitrary real point in the interval 
— wo^a^wo. For eQ=l, H(a) = 0 and a could be taken 
as the energy of a bound state if there were one; 
otherwise, N(a) must vanish also. H has the following 
properties: 

38 It is interesting that in the case of pure elastic scattering 8 
is just the argument <f> of the partial-wave amplitude: &/=sin£ 
Xexp(*'5)= |£/|exp(^>). <f> jumps by ±T whenever sinS vanishes. 

(i) H(z) is analytic in the cut plane; 
(ii) H(z*) = H*(z); 
(iii) ImH(z)>0, lmz>0; 
(iv) for real z=w, ImH(w-\-iO)^0 on P; 
(v) H(w) has a pole with positive residue at w=Wj. 

j = l , • • • , j ( m a x ) ; 
(vi) at w=Wi, i = l , •••, i(max), KeH(w) and 

ImH(w)/ReH(w) vanish; 
(vii) if Reb (w) tends to a finite constant for large w, 

then except for logarithmic factors H{z)^zq for large z, 
where — l^g^J I,39 

(viii) We define n(w) by ImH('W-{-iO) = —K(w)n(w); 
then w(W)^0 on P and for large w, n(w) = o(l); n(w) 
is not necessarily square integrable. In both cases (v) 
and (vi), n(w)/H(w) vanishes. 

Note that at #»• as well as at Wi the amplitude has the 
value f=i(l—r})/2K. Properties (i) and (iii) show that 
H is in fact Herglotz. We now prove (iii) for type 
T( )> m which H has the form H(z) =(z—a) exp/(z), 
where J(z) is the integral in the definition of 2D, Eq. 
(11.14). Setting z=a+R exp(i0), we have 

ImH(z) = R[_exp ReJ(z)] sin[0+lm/(;s)]. 

The factor exp Re J (z) is positive definite in the upper 
half-plane because J (z) is analytic there. In order to 
show that 0<6-\-ImJ(z)<T, we parametrize 0 as 
follows: Let z=u-\-iv> then 

( u—a\ r°° 
} = W dw\w+z\-2. 

Hence, 

6+1mJ(z) = - / dw\ + 
TTJW, L|*e;-z|2 \w+z\2 J 

/

wo 

dw\w+z\~~2. 
-a 

The inequality (VII.3b) for r( ) and the restriction 
— a^wo ensure that ^+Im/(2)>0 for v>0. An upper 
bound is established by replacing each phase by its 
extreme value and extending the lower limit of the third 
integral to — Wo- Therefore, for a^w0, 

6+ImJ(z)<v I dw\w+z\~2 = T. 
J —oo 

This concludes the proof for r( ). The other cases 
can be handled similarly. The remaining properties are 
easy to verify. 

39 The expression "except for logarithmic factors B(z)~z*" 
means precisely that B{z)=s« exp\(z) where |X(s)| <e ln | z | for 
all z such that |z |>i?(€) and for any c>0 ; cf., Appendix A, 
Eq. (A7). 
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The Herglotz-Cauchy representation of H is 

H(z) = H(0)+zA 

z c Kfi(w) zc/ 
dw + E , (VII.5) 

w(w—z) j WJ(WJ—Z) -'-I 
T J p 

where H(0), A, c/, Wj, j=l, • • •, ./(max) are real and 
A^O, c/^0, and n(w)^0 on P. The Wj may be re
stricted to P with one exception in type r ( + + ) . The 
pole terms involving (WJ,C/) include any CDD poles, but 
include also poles at all points where Re5 goes up 
through a multiple of w. The number of (finite) CDD 
poles is j(msix)—i(max). Which of the Wj are regarded 
as CDD points seems to be a matter of free choice, if 
i (max) 5^0. This may be a significant point in connection 
with attempts to represent unstable particles by CDD 
poles. 

In the formulation of the integral equation for n(w) 
as carried out in Sec. VI, the function H(z) is not useful 
as it stands. Among the (wj,c/), only a certain number 
of "authentic" CDD parameters may be regarded as 
arbitrary; an arbitrary choice of the remaining param
eters may be incompatible with a given interaction. 
However, a D function with a representation like 
(VII.5) but involving only CDD poles is available. A 
number i(max) of pole-zero pairs may be factored out 
of H. If 

t (max) Z — Wi 

T(Z)= n — , 
t - l Z—Wi 

(VII.6) 

then D=TH has the desired integral representation. 
This is clear after some manipulation with partial 
fractions. The Az term survives the transformation. 
This D function is the starting point of the derivation 
of (VI.7); see Eq. (VL4). Of course, it is not necessarily 
Herglotz, and there are no restrictions on the signs of 
the parameters Ci beyond those implied by the require
ment that the amplitude have no ghosts. 

To conclude, we give some relations between the 
various D's. Suppose N/D is constructed as in Sec. VI 
with n finite CDD poles and perhaps . 4 ^ 0 . Then 
D(w)^wr, r ^ l , and r = l if A^0*° Suppose the 
numbers r, i(m&x), j(ma,x), and p are known. The 
number of zeros, nz, of D is evaluated by constructing 
the pole-free D=pD, where p is defined at the beginning 
of Sec. VI. Now D^wr+n and £)^wp (where 3D is 
defined with continuous phase 5), and the polynomial 
$=533~"1 has degree nz—r—p+n^0. Thus r—p is an 
integer. Since r ^ l and p^ j(ma,x)—i(max) we have 
nz^n+i(ma.x) — j(ma.x)+l» 3 differs from D by a 
multiplicative rational function which may be worked 
out from the construction (VII.4) and the relation of 
D to the 3D defined with continuous phase. 

40 Here and in the following remarks the symbol ~ indicates 
asymptotic equality "except for logarithmic factors," as explained 
in reference 39. 

APPENDIX A 

Asymptotic Behavior of D(z) 

We examine the asymptotic behavior of £)(z',a+,aJ) 
under the assumption that a+ and a_ approach constants 
for large w. Each of the integrals in the exponent can be 
broken up as follows: 

a(w) fc a(w) 
dw = / dw-

r ° a{w) r 
I dw = / 

Jrvo wfw^Fz) Ju w(w^z) 

+ a ( r ) / dw 

wo w(w^¥z) 

1 

w(w:TLz) 
• / . 

a(w)—a(r) 
dw , (Al) 

w(w::fz) 

where c is some constant, WQ<C<<X>, and r= \z\. The 
first term is 0(r~l), the second is equal to ^ ( r j r 1 

Xln(l=Fzc -1), and the third term (call it / ) can be 
treated as follows: We write 

•(f+r\r) 
\J c J r-S J T+&/ 

a (w) — a (r) 
dw -

r+8/ w(wlrZ) 
(A2) 

where 5 is a constant such that 0 < 5 O — c. For any 
e>0 , c can be chosen so that \a(w)—a(r)\<e for all 
w,r>c. Then we have 

r\ °° I r°° dw r' 
kw -— -$* 

J \r+$\ Jr+SlVlW^Fzl J r. 

and 

dw e r + 5 
- = ~ l n , (A3) 

' r+hw(w—r) r 8 

J c ' •/ c 

dw 

w(r—w) r 

e (r-b)(r-c) 
= - l n . (A4) 

be 

In (A3) and (A4) the inequality \w—r\ ^ |ze;=Fz| has 
been used. By reference 16, \a(w)—a(r)\^A\w—r\li

) 

0 < J U ^ 1 . Then 

v r+5| -H-* |W—f|" A fr+5 

/ \^A dw < / < 
j M r - 5 l J r-S wlw^Fzl f—bJr-S 

dw\w—r\Vr~ 

= 2A5»(r-d)->i=0(r-1). (AS) 

From (A3), (A4), and (A5) one has \J\^3er-l\nr 
+0(f-1). With | e x p ( a J ) | ^ e x p | a 6 | , the definition 
(11.14) gives 

£ ( * ; o L ^ ) = O(r*+0, (A6) 

where e has been redefined by a numerical factor and 
7r^=o:+(oo)+a_(oo). The above proof also shows that 

T>=zpeK{z\ (A7) 

where \X(z)\<e lnr for all r greater than some R(e) and 
any e>0 . 

When a (w)—a (r) decreases rapidly enough at infinity, 
one gets a precise power behavior of S>(w;a+,aJ) at 
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large w. Wr i t e t he integral as follows: 

r00 a(w') r00 a(w') —a(°o) 
P dw' = P dw' 

Jw0 w'{w'dtw) Jwo w'(w'±w) 

-00 I 

+a(°o)P dw' . (A8) 
JWfi w'(w'±:w) 

If a(w)— a(<x>) = 0(ln~aw), a > l , then the theorem of 
Appendix D shows that the first term on the right of 
(A8) tends to the constant fwJ° dw1 [a(w')—a(°c)1/w'. 
Thus, £>>^wp. 

If a oscillates at infinity the argument leading to 
(A6) may still be applied if \a(w)—a(r)\<\ for all 
w,r>c. Then we have 

£>(z; a+ya_) = 0(r [«+<'>+«-(r)]/x+8X/ir)t (A9) 

APPENDIX B 

Continuity Properties and Derivatives of 
P.V. Integrals 

The following lemmas are to be proved: (A) In the 
"normal" case, Re£> (resp. ImD) satisfies an H condi
tion. In the CDD case, ImD^H near the CDD point 
Wi if dd/dwtEH near Wi\ (B) ReB has a derivative that 
satisfies an H condition wherever drj/dw^H; (C) 
h(w,wf) = [w ReB(w)—wf ReBiw'^iw—w')"1 satisfies 
an H condition in both variables wherever drj/dw£:H. 
The H condition in both variables means that \h(whW2) 
—h(wi,W2)\ ^A\w1-w1

,\'i+B\w2—W2\v
J 0</x, v^l. 

Two theorems from Articles 19 and 20 of reference 17 
will be helpful. Theorem 1: If <p(t) satisfies an H condi
tion on the interval L~\)i,t2], then 

$0+;o)= 
• / . 

<p(t) 
dt-

L t- (s+iO) 

satisfies an H condition everywhere (except possibly in 
arbitrarily small neighborhoods of th t2l if <p is not zero 
at those points). Theorem 2: If <p(t,s) satisfies an H 
condition in both variables for h^s, t^t2 then 

$(s+v j0)= / dt~ 
JL t-

<p(t,s) 

(s+iO) 

satisfies an H condition for s in L, except possibly near 
t h e ends . W e no te also Lemma l:s&{s,s')~[}l/{s)—\l/{sf)~] 
Y,{s—s')~l satisfies an E condition for s^s, sf^sh if 
dr/z/ds^H for s o ^ O i - This follows immediately from 
the identity t(s)-$(s')= (s-s')fQ

1$Zs'+y(s'--s')']dy. 
The first part of Lemma A follows immediately from 

Theorem 1, since in the normal case Z>=<i>S), where $ is 
a polynomial. In the CDD case the same argument 
applies to ImD except near the points W{. Near w^ only 
the factor sin5 (w)/ (w—Wi) of ImD is in question. Let 
\p(w) = sind(w) in Lemma 1. Since ^(wt-) = 0, it follows 
that sm8(w)/(w—Wi)^H near Wi if db/dw^H near Wi. 

To prove Lemma B it is sufficient to consider only 
the term R e / J in ReB, since fu is analytic in a region 
including P . Compute d(RefT)/dw from 

R e / I(w) = I dw' 
w'<p(w')—w<p(w) 

w —w 
f l 

-\-w<p(w)P I dw' , 
J i w'{w'-—w) where <p— (1—17) (2717c)"""1. 

d(Ref) r 1 
= / dw' 

Ji w'—w dw 

fw'<p(w')—W(p(w) d 

w'—w 

d r 

dw 

dw 
[w<p(w)~] ] 

\w<p(w)P J dw' . (Bl) 
L Ji w'(w'—w)-i 

From (B.l), Lemma 1, and Theorems 1 and 2 we con
clude that d(Ref)/dw(EH if dt)/dw^H. Lemma C 
follows from L e m m a s B a n d 1. 

APPENDIX C 

Changing the Order of Repeated 
P.V. Integrations 

The Poincare-Bertrand formula (III.6) is proved in 
Sec. 23 of reference 17 for the case in which L is a finite 
interval \jco,xi]* The weight function <p(x,y) is assumed 
to satisfy an H condition in both x and y, and the point 
t is not to coincide with either of the end points xo, %\. 
Here we show that (III.6) also holds when L is the 
infinite region [#o, <*> ] and <p satisfies the conditions of 
our problem. 

The proof of reference 23 can be extended trivially to 
the case in which the x and y integrations are over 
L=[_x^X~\ and M = [#o,F], respectively, and the point 
t is common to L and M. Now suppose that 
ly—PfxiT <p(oc}y)(x—y)~1dy converges uniformly for 
xo ̂  x ^ X. T h e n i t follows t h a t 

rx dx r[ 

1 ^rt <p(x,y)dy 

XQ •*- b J XO y % 

+ 

= - x V ( M ) 

x <p(x,y)dx 

["'IT 
J XQ J XO \% 

(x-t)(y-x) 
, (CI) 

provided the integral on the right side converges. The 
limit X —» oo gives the desired result if the limit can be 
taken inside the y integral. The latter operation is 
permissible if 

r00 r00 <p(x,y)dx 
lim / dyP = 0 . (C2) 
x^Jxo Jx (x-t)(y~x) 
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We now wish to show that the various conditions 
mentioned are all fulfilled in the problem of Sec. III. 

In Sec. I l l , <p(x,y) = g(x)h(y). In fact, 

(p(w,w')~-
l—r)(w) lmD(wf) 

K(W) 

/*°° (DxXldX /*' 
tP = / <p(x)dx+0(\n-°t), (Dl) 

J X0 t X J XQ 

where #a>0. For the proof we suppress the symbol P 
and decompose the integral as follows. 

<p(x)dx 

X(f(x) 

Therefore, g(x) = O(arl)>0, A(*) = 0(ar«), *>0 . Also */ = / *(*)** 
g, (pGH. The uniform convergence of Iy and the conver- J xo x J *° 

+ / dx+ / 
J xo t—% J t(l-e) t— 

/ &—iL^—ki 

gence of the integral on the right side of (CI) follow 
immediately. To prove (C2) write fx™=fxQ

x-\-fx 
= / i + J 2 . We first examine h. Now for y, t<X, 

-dx 

M X 
= —In ^M dx 

'x x(x—y) y X—y J tc 

<p(x)dx 

Hence, 

' i(l+e) t—X 

where 0 < e < l and xo<t(l — e). Since 

= / i+/2+/8+/4, 

rx 1 X 
\h\^M dx In 

J99 *1+e X-x 
\h\^Mtrl / \jr~axdx= 

J 350 

Mt-Vt, 

X(l-6) ~X 

+ / = / l + / 2 , 
;o J X(l-d) 

where 0 < 5 < 1 and #0 < X (1 — 5). After a partial integra
tion and use of an upper bound for a factor of the inte
grand we find / i = 0 ( X - « ) . Moreover, 72==0(X-<lnX). 
Thus, J i —» 0. To treat 72 write 

we can apply l'Hopital's rule to J2/t lvrat to show that 
72=0(ln~~a/). For 1\ we have 

| / 4 | ^Mt l n - ° 0 ( l + e ) ] f x-1(x-t)-1dx=0(\rr«t). 
A (1+0 

I* can be written in the form 

\It\$M[ dy — 
Jx y(y-t) 

«I+«> x<p(x)-l<p(t) 
-dx. 

t—x 

X P r dx z(x)(— — ^ I (C3) B u t tx<pW"-^(0](^-0~1== [>*>(*)]*-«', where J is be-
i x \£— * x—y/\ tween a; and /. By reference 26, [x<p(x) J = 0 ( ^ _ 1 ln~a^). 

Call the two terms in the absolute value sign Ki and iT2. 
Since g (x) ^ 0, | Kx \ ̂  fXo

x dx g (x) (x- i)'1=M (t) for all 
X>Xo>t. In K2 we subtract out the pole: 

xg(x)-yg(y) 
-K2= dx-

>x x(x—y) 

+yg(y)P 

Since gE:H we have 

-00 1 

/ dx =Li+L2 

Jx x(x—y) 

ILA^M I dxx~~l\x—y\ 
J x 

• I + M = 0 ( 1 ) , 0 < M ^ 1 . 

I t follows that / 3 = 0 ( l n - a / ) . Finally we note that 

7 i = / <^(^)Jx+0(ln-a/), 

and the proof is complete. With the alternative hypoth
esis <p(x) = 0(x~~a), a > 0 , ^GC 1 , similar reasoning shows 
that the integral on the left of (Dl) is 0(tl~a). Finally, 
if (p(x) = 0(ln~ax)y a > l , cpEiC1, then the integral is 
0(tW~at). If the denominator t—x in (Dl) is replaced 
by t-\-x, a similar theorem holds without any assump
tion about the derivative of (p. In that case one also has 
a related result due to Hardy and Littlewood41: If 

After evaluation of JL2 and some obvious estimates, 
(C3) shows that I2 -> 0. 

APPENDIX D 

Asymptotic Behavior of P.V. Integrals 

Theorem: If <p(x) = 0(x~l\rrax), a > 0 , and <p'(x) 
exists and is continuous, then 

then 

G(t)= / x<p(x)dx=o(t), 
J ZQ 

t dx— I <p(x)dx=o(l). 
J o?o t \ X J XQ 

41 G. H. Hardy and J. E. Littlewood, Proc. London Math. Soc. 
30, 23 (1930). See also, reference 42 and D. Amati, M. Fierz, and 
V. Glaser, Phys. Rev. Letters 4, 89 (1960). 
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The proof of this theorem given by Widder42 can be 
adapted in a straightforward manner to fit the principal 
value case. One finds that G(t) = o(t) implies 

r <p{?) rta+e) 

IP I dx— j <p(x)dx 
/••<!+«) X(f(x) 

-P dx=o(l), 

where e>0 is arbitrarily small. 

APPENDIX E 

Evaluation of the Amplitude Near 
w=±(M—m) 

We use crossing symmetry to evaluate the ampli
tude fi±(w)> rather than just its discontinuity, near 
w=zk(M—m). The essential point can be seen in terms 
of the Legendre projection At

{±)(s) of the invariant 
amplitude A(±) (s,B,t) = ±A(±) (s,^).43 This is 

Al^(s) = ±f dxPt(x) 

XA^(2M2+2m2-s+2k2(l-x\ s, ~2k2(\-x)), (El) 

where in the barycentric system of the crossed channel 
B=2M2+2m2-s+2k2(l-x) is the square of the total 
energy and z= l+^(2fc2)~1 is the cosine of the scattering 
angle. The magnitude of the barycentric three-momen
tum k is expressed in terms of s in the same way that k is 
expressed in terms of s. For s in some domain in the 
complex 5 plane, it can be shown that B^ (M+m)2 and 
that z lies within the Lehmann ellipse for all x in the 
interval — 1 ^ # ^ 1 . We need only the more limited 
result that for real s in O^s^ (M—m)2, s^ (M+m)2

y 

and — 1 ̂  z ̂  1 for all relevant x. It is, therefore, per
missible to expand A(±) (s,s,t) in terms of partial waves 
of the $ channel. 

We set s= (M—m)2—8s and keep only the leading 
terms in 8s. Then 

S=(M+m)2+8s[l+2fr.M(M-m)-2(l-x)2+0[(8s)22, 

and 

k=mM(M2~m2)-1(28s)112 

X[(M2+m2) (2Mm)-1-x2ll2+0(8s). 

We take into account unitarity in the s channel; for a 
state of definite isotopic spin 7 = | , f, we have 

fl±W(s) = a(I, l±)k2l(\-ia(I, l±)W+l)~l 

«*(/ , l±)k2l+ia2(I, l±)Wl+\ 

42 D. V. Widder, The Laplace Transform (Princeton University 
Press, Princeton, New Jersey, 1941), Chap. 5, Sec. 5, Lemma 5. 

43 The discussion of this Appendix is restricted to pion-nucleon 
scattering. The notation is that of Frazer and Fulco, reference 13 

for small k. To lowest order in 8s, the amplitudes A(±) 

and S<±> ($,«,*) ===FJ3(:fc)(W) are given by 
A^\sysJt) = ^(2M+m)(2M)~l(a(dz)+ib(±)k) 

-8wmMc(±) (E2a) 
and 

B^(s}s}t) = 4w(2M)--1(a(±:)+ib(db)k) 
+8irMc(±:)y (E2b) 

plus terms of order 8s, where 

M + ) \ 1/1 2 w a ( i , 0 + ) \ 

\ a ( - ) / ~ 3\1 - l / \ a ( i , 0 + ) / ' 

/K+)\_l/ l 2\/a2(i0+)\ 
\J ( - ) /~ 3\1 -lAa2(iO+)/ 

and c(=h) are related to the four p-w&ve scattering 
lengths a(I, l i t ) . To this order z does not enter. The 
final form is best given in terms oifi±(w). 

Let w=M—m—8w, then s= (M~m)2— 8s-{-0[_(8s)'r\ 
(for small 5w>0) where 8s=2(M—m)8w. Now fi±(w) is 
expanded in terms of Ai{±)(s) and Bi(±)(s) by 

fi±(M—m—8w) 
= 2M[\6ir(M-m)~yi{Al[_(M-m)2~8s~] 

-mBt(M-m)2-8s~]}+0(8w). (E3) 

It is remarkable that /*+ (M -~m— 8w) = fi- (M—tn—8w) 
+0(8w). Inserting (El), a corresponding relation for 
Bi^ (but with the ± inverted), and (E2) into (E3), 
we have44 

M-\-m 
/ j +

( ± ) (M-w-8w) = =b a(±)8m 
M—m 

f mM \f 8w \1/2 

±ib(±)h[ +0(8w), (E4) 
\M—m/ \M—mJ 

where 

£z= f dx Pi(x)l(M2+m2)(2mM)-l-xJl\ 

The value near w= —M+m is given by the MacDowell 
symmetry. It is very interesting that the behavior for 
every I is given in terms of the S-wave scattering lengths, 
alone. 

It is easy to verify that the Mandelstam representa
tion implies the behavior k21 and k2l+2 at the physical 
thresholds w0 and — w0. Expand Mandelstam de
nominators containing cos# in terminating Taylor series. 
A partial-wave projection then gives the result, after a 
straightforward justification of the changed order of 
integrations. This procedure fails for s= (M—m)2 be
cause the Mandelstam denominator s'—[2M2-\-2m2—s 
+2£2(l-cos0)] vanishes for s'= (M+m)2, 

44 (E4) does not agree with some unproved statements about 
the behavior near zt(M—m) in reference 13. 


