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This work reports both experimental measurements and calculations of two-phonon Raman spin-lattice 
relaxation times for shallow donors in silicon. Saturation, line broadening, and adiabatic fast passage tech
niques were used to measure Ts (AM8 = ± 1 , AMi = 0) between 2 and 30°K for P, As, Sb, and Bi at 3300 G. 
Tx (AMS = ± 1 , AMi- T l ) was measured in the liquid He range for As, Sb, and Bi at 3300 G. The calcula
tions of the spin-lattice relaxation rates 1/T, and 1/TX for Raman processes were made using only the IS 
doublet and triplet valley-orbit excited states. The calculations were made for both the power-law 
temperature-dependent region and the exponential temperature-dependent region. 

1/Ta for P and As showed a power-law temperature dependence Tn with n closer to 9 than to 7 between 
2.5 and 6°K for P and between 3 and 11°K for As. In this range there is no magnetic field-crystal axis 
orientation dependence and also no magnetic field dependence between 3300 and 8000 G as shown by 
Wilson and Feher. These facts suggest a spin-orbit spin-flip interaction which would have a "Van Vleck 
cancellation." No T13 Raman temperature-dependent 1/T8 was observed experimentally. P, As, Sb, and Bi 
all show an exponential temperature-dependent l/Ts above 6, 11, 4, and 26°K, respectively. The rate 
constant E (l/Ts — Ee~^lkT) gets larger as one goes to the higher Z donor impurities. 

The ratio Ts/Tx was measured between 2 and 5°K for As75, the result showing Ts/Tx <* T~% above 2.2°K 
consistent with Tsaz~*-5 and TxccT~*-5 near 5°K. Experimental values of Tz were obtained for Sb121 and 
Bi209 at 2.2 and 4.2°K, respectively. 

Use of the Hasegawa-Roth mechanism for the calculated Raman 1/T8 for both the power-law and the 
exponential temperature-dependent regions gives a result nearly four orders of magnitude smaller than 
experiment. In the short-wavelength phonon region the 15 triplet can be equally as important as the 15 
doublet via intervalley Umklapp processes. For As it is shown that intervalley Umklapp processes will 
predominate over intravalley processes. In the exponential case the calculated \/Tt rate can have a maxi
mum value when the excited states have level widths equal 2&ue//. 

The calculated Raman 1/TX rates for the different donors show good agreement with the experimental 
values. The 1/TX rate can have an exponential temperature-dependent term but it will be much smaller 
than the T7 term for the temperature range considered here. 

Calculations have been made of the level widths of the P and As 15 excited states due to spontaneous 
phonon emission. It is shown for As that the dominant intervalley Umklapp spontaneous emission will be 
sharply peaked along the [100] axis. 

I. INTRODUCTION 

TH E first measurements of the spin-lattice relaxa
tion of donor electrons in silicon at liquid He 

temperatures by Honig1 and others2-4 showed extremely 
long spin-lattice relaxation times. Subsequent experi
mental studies by Feher and Gere,5 Honig and Stupp,6 

and Wilson and Feher7 have produced quantitative 
data on the dependence of these relaxation times on 
temperature, magnetic field, magnetic field orientation 
with respect to the crystal axis, concentration of donor 
impurities, and the density of free electrons in the 
conduction band introduced by light. The temperature 
dependence of the relaxation rate (1.2 to 4.2 °K) 
indicated a change from a linear temperature depend
ence associated with a single-phonon direct process, to 
a T1 dependence, associated with a two-phonon Raman 
scattering process. For phosphorus, this T7 process 
takes over above 2.5°K. Early theoretical attempts8-9 

1 A. Honig, Phys. Rev. 96, 234 (1954). 
2 A. Honig and J. Combrisson, Phys. Rev. 102, 917 (1956). 
3 A. Abragam and J. Combrisson, Compt. Rend. 243, 576 (1956). 
4 G. Feher, R. C. Fletcher, and E. A. Gere, Phys. Rev. 100, 

1784 (1955). 
5 G. Feher, I). K. Wilson, and E. A. Gere, Phys. Rev. 114, 

1245 (1959). 
6 A. Honig and E. Stupp, Phys. Rev. 117, 69 (1960). 
7 D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961). 
8 D. Pines, J. Bardeen, and C. P. Slichter, Phys. Rev. 106, 489 

(1957). 
9 E. Abrahams, Phys. Rev, 1073 491 (1957), 

to explain the long relaxation times were not very 
successful. More recently, Hasegawa10 and Roth11 

independently developed a theory which gave excellent 
agreement with experiment for the single-phonon Ts 

process (AM 5=dbl , AMj=0) . However, little effort 
has been made to explain the magnitude of the Raman 
relaxation. 

The present work is concerned primarily with the 
temperature dependence of the spin-lattice relaxation 
between 2 and 30°K and is a study of two-phonon 
processes. The initial motivation for this work resulted 
from (1) a measurement5 showing that the Ts measured 
at 20 °K was more than three orders of magnitude 
shorter than predicted by an extrapolation of the T~7 

dependence; (2) Abrahams' calculated Tn Raman 
process temperature dependence9; and (3) the fact 
that the important physical parameters and wave 
functions for silicon donors were well known, this 
suggesting that accurate relaxation rate calculations 
might be made. During the study the investigation was 
greatly stimulated by the experimental discovery12 

of an exponential temperature dependence for spin-
lattice relaxation. The work of Hasegawa10 and Roth,11 

showing for the first time the importance of the valley-

10 H. Hasegawa, Phys. Rev. 118, 1523 (1960). 
11 L. M. Roth, Phys. Rev. 118, 1534 (1960). 
12 C. B. P. Finn, R. Orbach, and W. P. Wolf, Proc, Phys. Soc. 

(London) 77, 261 (1960). 
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orbit splitting for spin-lattice relaxation, was a second 
important stimulant. 

The suggestion13 of an exponential temperature 
dependence for spin-lattice relaxation led to a fit with 
preliminary saturation data for T8 between 10 and 20 °K 
for P donors in silicon. The slope yielded an activation 
energy of about 11X10 - 3 eV, in good agreement with 
the calculated position14 of the IS doublet and triplet 
above the IS singlet ground state for the P donor. In 
previous work15 the spin-lattice relaxation times for P, 
As, Sb, and Bi donors were measured over a temperature 
range and an exponential temperature dependence was 
found for each donor. The valley-orbit splittings were 
determined for these donors, the results indicating the 
\S doublet and triplet energy levels were 34X10"3 eV 
below the conduction band minima for all the different 
donors. The exponential temperature-dependent spin-
lattice relaxation for shallow donors in silicon is not 
surprising since the maximum phonon energies are 
several times larger than the energy splitting of the 
low-lying excited states above the donor ground state. 
However, unlike some rare-earth ions12 the shallow 
donors also exhibit the usual power law (T~ or T9) tem
perature dependence for Raman spin-lattice relaxation. 

Several questions arise concerning this exponential 
relaxation. (1) Is the anisotropic Zeeman interaction of 
the 15 doublet, used by Hasegawa10 and Roth11 as the 
spin-flipping interaction, able to account for the 
magnitude of the relaxation rate? (2) How does the 
calculated spin-lattice relaxation rate compare with 
Orbach's calculations16 for the rare-earth paramagnetic 
ions? (3) The wavelengths of the "resonant" phonons 
vary from 10 to 25 A which is equal to or less than the 
donor electron orbital radii. What new features appear 
when the usual long-wavelength approximation used 
for the orbit-lattice interaction matrix elements is poor. 
Calculations of the two-phonon spin-lattice relaxation 
are made using the Van Vleck17 approach. These calcula
tions are developed in Sec. VI and compared with those 
of Hasegawa and Roth. 

Several interesting unanticipated results were found, 
namely, (1) in the short-wavelength phonon region not 
only the IS doublet, but also the 15 triplet contributes 
to the spin-lattice relaxation. The relaxation via the 15 
triplet states is a result of an intervalley scattering 
Umklapp process which, for the right magnitude of 
valley-orbit splitting, can predominate over the normal 
intravalley process. For As this dominance of the 
Umklapp intervalley over the intravalley relaxation 
appears to be supported by the experimental data. (2) 
The level broadening of the 15 excited states has an 

13 The author is indebted to W. P. Wolf for pointing out the 
possibility of exponential temperature-dependent spin-lattice 
relaxation when there are low-lying excited states. 

14 W. Kohn and J. M. Luttinger, Phys. Rev. 97, 1721 (1955); 
98, 1915 (1955). 

15 T. G. Castner, Jr., Phys. Rev. Letters 8, 13 (1962). 
16 R. Orbach, Proc. Phys. Soc. (London) 77, 821 (1960); 

Proc. Roy. Soc. (London) A264, 458 (1961). 
17 J. H. Van Vleck, Phys. Rev. 57, 426 (1940), 
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FIG. 1. Ground-state spin energy levels for As donors in silicon 
with 5 = 1 / 2 , 7 = 3/2 for a large Zeeman splitting and a much 
smaller hyperfine splitting. The arrows show the various spin-
lattice relaxation processes. In these experiments only the allowed 
transitions (AA/a = dbl, Aif/ = 0) are excited with the microwave 
power. 

important effect on the magnitude of the relaxation in a 
way not present in Orbach's results. This dependence on 
level broadening can result in a maximum possible 
relaxation rate for a given magnitude of a spin-flipping 
interaction. 

As a by-product of these calculations some observa
tions on the decay of donor electrons in excited donor 
states are made in Sec. VII. The generation of high-
energy phonons by the decay of donor electrons in 
excited states is briefly analyzed, the result showing that 
the emitted phonons, as a result of Umklapp decay, 
have highly directional properties, the propagation 
vectors lying nearly along the [100] crystal axis. 

II. THE VARIOUS RELAXATION PROCESSES 

We consider As as a typical donor having an unpaired 
electron with 5 = 1 / 2 interacting with a nucleus with 
7 = 3 / 2 . Figure 1 shows the different energy levels of 
such a system with a small hyperfine splitting super
imposed on a large Zeeman splitting. The various Ti 
represent the various spin-lattice relaxation processes. 
These processes have times Ts ( A M S = ± 1 , AMj=0) , 
Tx ( A M S = ± 1 , AMi==Fl) , and Tn (AMs = 0, AMj 
= db 1). The other "diagonal" relaxation Tx> (AMS= ± 1 , 
A l f j = ± l ) is negligible as has been shown experi
mentally.6 No TV relaxation is expected if the lattice 
waves only modulate the magnitude of an isotropic 
hyperfine interaction. 

Exchange relaxation processes5,1S (exchange between 
two donor electrons, exchange between a donor electron 
and a conduction electron, and also the interchange of 
a donor electron between two donor sites) designated 
by T8S can also be important when the population 
differences of the different hyperfme lines are not equal 
to the Boltzmann values or to one another. If the 
concentration of donors is small enough (^D < 1016/cc) 

18 R. S. Levitt and A. Honig, J. Phys. Chem. Solids 22, 269 
(1961). 
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and no light, visible or infrared, is incident on the 
sample, exchange processes will not be important at 
liquid-helium temperatures. In the liquid-hydrogen 
range there is a small number of free electrons, «, in the 
conduction band given by19 

w~6.6X l^T^[_{ND~NA)/NA]e-EilkT
i (1) 

where ND is the number of donors, NA the number of 
acceptors, and Ei the ionization energy of the particular 
donor. For P donors with £,-/& = 540°K, ND/NA=10, 
and r = 2 0 ° K , w=107/cc. This is about the same 
number of free carriers as Feher introduced with light 
at helium temperatures. However, the spin-lattice 
relaxation of the conduction electrons is slow20 and the 
spin heat capacity of the 107 free electrons is small 
compared to the 1016/cc donor electron spins having 
a Ts of 0.5 jxsec at 20°K. Consequently, even though 
saturation of a single hyperfine line raises the spin 
temperature of that hyperfine line relative to the other 
hyperfine lines, the exchange-relaxation process is 
much too weak, compared to the Ts process, to spread 
the saturation to the other hyperfine lines. For As and 
Bi, experiments were done up to 30°K, but for these 
donors the Ei values are correspondingly higher and the 
resulting values of n are no larger. 

Rate equations for the populations of the hyperfine 
levels have been solved21 for the steady-state condition 
with the times T8y Tx, and Tn as the relaxation processes 
for the case of microwave power applied to one of the 
allowed hyperfine line transitions. These solutions were 
obtained for the case gusH^kT and for the hyperfine 
splitting negligible compared to the Zeeman splitting. 
Although there are several parallel paths for relaxation, 
if Tn^>Ts only the vertical relaxation (AMj=0) is 
important and each hyperfine line will have the same 
Tiefp^T8 independent of the relative magnitude of Tn 

and Tx. Experimentally, for P donors at helium tem
perature, Tn>30 T8. Since the temperature dependence 
of the Tn process is not likely to be any stronger than 
that of the Ts process, then the above condition should 
continue to hold at liquid-hydrogen temperatures. 
For the other donors it will also be assumed that 
Tn^>Ts and that saturation of a given hyperfine line 
will determine T8. 

Culvahouse and Pipkin22 have measured T8 and Tx 

for As75 by observing the recovery rates of the different 

19 See W. Shockley, Electrons and Holes in Semiconductors 
(D. Van Nostrand Company, Inc., Princeton, New Jersey, 1950), 
p. 472. 

20 G. Lancaster and E. E. Schneider, in Proceedings of the Inter
national Conference on Semiconductor Physics, Prague, 1960 
(Czechoslovakian Academy of Sciences, Prague, 1961). These 
authors show that for w-type samples (P, «z>^4X 1017/cc) T\ for 
the conduction electrons is about 2X10^8 sec at 100°K. At 
liquid-hydrogen temperature the conduction electron 7\ will be 
substantially longer. 

2 1T. G. Castner, Jr., Ph.D. thesis, University of Illinois (unpub
lished). 

22 J. W. Culvahouse and F. M. Pipkin, Phys. Rev. 109, 319 
(1958). 

hyperfine lines after inverting all the hyperfine lines by 
adiabatic fast passage. Their results vielded a different 
value of T8/Tx at 4.2°K than at 1.3°K at 8500 G. In 
this work the ratio TJTX was measured as a function of 
temperature. To interpret the data, computer calcula
tions were made of the recovery of the individual 
hyperfine lines after inversion considering only T8 and 
Tx processes. The effect of a long Tn is quite unimport
ant when all the lines have been inverted. These 
results are discussed in Sec. VC. 

III. TEMPERATURE DEPENDENCE OF 
SPIN-LATTICE RELAXATION 

At low temperatures (T<O.O5X0D, the Debye tem
perature) where giABH<KkT, the spin-lattice relaxation 
time Ts of donor electrons in silicon can be represented 
by the empirical formula 

l/T8=AH4T+BH2T7+Cr+DTn+E(H)e-A/kT
7 (2) 

where the magnetic field dependence is explicitly shown. 
The constants A through D contain deformation 
potentials, velocities of sound, etc., and also may 
contain an angular dependence (between H and the 
crystal axis). The first linear term is due to a single-
phonon absorption or emission process (phonon energy 
ffoo^gPBH). All the other terms represent two-phonon 
Raman scattering processes and contain an integration 
over all phonon energies up to k$D with the restriction 
that the difference in energy of the absorbed and 
emitted phonon energies must equal the Zeeman energy. 
The T7 term comes from a magnetic type of interaction, 
for example the anisotropic Zeeman interaction. Those 
phonons with energy within a few kT of fiw^6kT are 
most important for the T7 term. The T9 term results 
from the spin-orbit interaction as the spin-flipping 
mechanism, the higher temperature dependence coming 
from the well-known Van Vleck cancellation.17 One 
should note that the T7 term contains an H2 field 
dependence while the T9 term is independent of 
magnetic field. Abrahams9 calculated a Raman process 
considering only dilatational deformations, which 
because of extra phase cancellations yielded a Tn 

temperature dependence also independent of magnetic 
field. However, Abrahams' calculated D coefficient is 
quite small because the long-wavelength dilatations 
couple only to different bands in higher order which 
are separated by several electron volts. The exponential 
term (Sec. VI D) results from a resonance fluorescence 
of phonons with energy //a>=A, where A (A <kdD) is 
the energy to the important excited states. 

I t is obvious from (2) that as one goes to high 
temperatures (T always less than 0.05XdD) the 
temperature dependence of the spin-lattice relaxation 
rate can only go to the next higher term. For example, 
if the T9 term follows the linear T term because of a 
small B coefficient, then the T7 term will never be 
observed (fixed magnetic field). Similarly, with &2>T, 
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if the exponential term were large and followed the 
linear term, one would not observe any of the power 
law Raman terms. This is the case for some para
magnetic rare-earth ions.12 For the shallow donors in 
silicon the exponential relaxation starts at higher 
temperatures allowing the power law terms to sandwich 
between the linear term and the exponential term. One 
objective of the theory will be to determine correctly 
the values of all the coefficients in (2). 

The phonon modulation of the isotropic hyper fine 
interaction produces a relaxation rate 1/TX given by 

l/Tx=aAhi
2H*T+bAht

2T\ (3) 

where AM is the magnitude of the hyperrlne interaction 
(5-state contact term) and a and b are constants. The 
field dependence is two powers lower than for T9 

processes. The possibility of an exponential temperature 
dependence for Tx is discussed in Sec. VI F. 

The strong temperature dependence of Raman spin-
lattice relaxation causes the relaxation times to very 
over many orders of magnitude from liquid-helium to 
liquid-hydrogen temperatures, typically from many 
seconds to small parts of a microsecond. In the next 
section we consider the methods to be used in measuring 
this range of times. 

IV. EXPERIMENTAL METHODS AND APPARATUS 

A. Methods of Relaxation Time 
Measurement Employed 

1. Saturation (2X10~7 sec<Ti<10~A sec) 

The spin resonance lines are inhomogeneously broad
ened with very narrow spin-packet widths much like 
the F center23 in KC1. The spin-packet width has been 
measured24 and gives a Tz longer than 10~4 sec, therefore 
T<L—T\ for TVs shorter than 10~4 sec. Saturation 
measurements were readily made with an X-band 
spectrometer.25 The onset of saturation of x", the 
absorption susceptibility, is a direct measure of 7Y 

2, Broadening of Inhomogeneous Line Envelope 
(TtKlO-^sec) 

At high temperatures, or high concentrations of 
donors, the relaxation time may become short enough 
so that the Lorentzian spin-packet width becomes 
comparable to or larger than the Gaussian inhomo
geneous broadening. The resonance line broadens as T\ 
gets shorter until finally the line shape will change to a 
Lorentzian. By measuring the Lorentzian component 
of the width one obtains T\ (assuming T1—T2) by the 
relation 

T^(2/y/5yAHw)K(a); a = AHL/AHG, (4) 

23 A. M. Portis, Phys. Rev. 91, 1071 (1953). 
24 See J. P. Gordon and K. D. Bowers, Phys. Rev. Letters 1, 

368 (1958). 
25 T. G. Castner, Jr., Phys. Rev. 115, 1506 (1959). 
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FIG. 2. K(a) is the factor representing the ratio of the total 
peak-to-peak envelope width, AHPP, to the Lorentzian spin-packet 
width, AHL, for an inhomogeneously broadened line, a is the ratio 
of the Lorentzian spin-packet width, AHL, to the Gaussian 
inhomogeneous broadening, AHG. For a>\ AHPP may be used to 
determine T\ directly. 

where AHPP is the peak-to-peak width of the envelope; 
AHL and AHG are the Lorentzian and Gaussian widths, 
respectively; and K(a) is a factor depending on the 
way one unfolds the Lorentzian and Gaussian from the 
actual line shape. K{a) has been calculated and is 
compared in Fig. 2 with the result when one simply 
takes the rms sum of the Lorentzian and Gaussian 
contributions. For a ~ l it is difficult to get accurate 
values of K(a). 

3. Adiabatic Fast Passage Methods (T{> 10~z sec) 

This technique has been thoroughly discussed in the 
literature26"28 and has been particularly useful for 
nuclear relaxation work.29 We used a sweep large 
compared to the linewidth and observed the signal 
with a superheterodyne spectrometer and oscilloscope 
display. Since it is desirable to invert the population 
differences or the magnetization 100% on passage 
through the line, the following passage conditions 
must be carefully satisfied: 

(a) Saturation 7#i(2YT 2 )*>l , 

(b) Adiabatic transitions umHm<£yHi2
y 

(c) Fast passage ccmHm^>Hi/Th 

(d) Spin diffusion 03mHm2>AH/TD. 

Hm is the modulation amplitude, a>m/27r is the modula
tion frequency, H\ is the microwave magnetic field, 
AH is the total linewidth, and m is the spin diffusion 
time. For 7Ys>10~3 sec, conditions (a) and (c) are 
easily satisfied. Condition (b), which is important for 

26 F. Bloch, W. W. Hansen, and M. E. Packard, Phys. Rev. 
70, 474 (1946). 

27 L. E. Drain, Proc. Phys. Soc. (London) A62, 301 (1949). 
28 Ciaroti, Cristiani, Giulotto, and Lanzi, Nuovo Cimento 12, 

519 (1954). 
29 See for example, A. G. Redfield, Phys. Rev. 101, 67 (1956). 
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H = H0 + Hm SIN wm t 
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(3) SINGLE SHOT INVERSION 
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M = M0 ( l - 2 e ^ ) 

FIG. 3. Adiabatic fast passage methods of measuring I \ when 
the magnetic field modulation amplitude or the field sweep is 
large compared to the linewidth. (1) In the M vs wm method the 
signal M starts to decrease as camTi approaches 1. (2) In the 
displacement method the ratio of the field-increasing signal Mi 
to the field-decreasing signal Mi vs (h—h) determines T\. (3) 
The single shot inversion monitors the recovery at a variable time 
t after inversion at / = 0. 

complete population inversion during passage, is 
somewhat more difficult to satisfy depending on com, 
Th and TD. Spin diffusion and forbidden transition 
effects5 often play a role in preventing complete 
inversion. By careful choice of umHm and Hi in the 
present work the loss of magnetization reversal per 
passage has been reduced to less than 2% for P and 
even less for As. The effects of spin diffusion and 
forbidden transitions on the loss of magnetization 
during each passage are not quantitatively understood 
at present. The loss of magnetization during passage 
must be known, however, to enable one to make valid 
measurements of TVs. 

Figure 3 shows the types of methods used in the fast 
passage region. For short times (10~3 <2\ <0.3 sec) the 
most convenient method is to measure the signal 
magnitude vs modulation frequency, com/2?r. Displace
ment of the line position relative to the center of the 
field modulation changes the relative magnitude of the 
steady-state field-increasing and field-decreasing res
onance signals. These relative magnitudes are readily 
found as a function of Th a>w, and the displacement. 
The displacement method is most useful for the range 
5X10~2 s e c < T i < l sec. For very long times the usual 
single shot sweeps, with observations of the recovery a 
variable time later, are used to monitor the TVs. Care 
was taken for the very long times to be certain that the 
microwave magnetic field was zero while the spins were 
relaxing and that no infrared radiation was incident 
on the sample. 

B. Experimental Apparatus and 
Experimental Details 

The saturation and the line broadening data were 
taken with an X-band spectrometer, previously 
described,25 using balanced bolometer detection. For 
the fast passage work the spectrometer is converted 
to a 60-Mc/sec i.f. superheterodyne spectrometer. This 
is achieved by replacing the bolometers with crystals, 
introducing a modulator crystal between the V-58 
klystron and the detector bridge magic tee. By driving 
the crystal with a 60-Mc/sec oscillator sidebands are 
obtained with about one mW/sideband. Two filter 
cavities, in series with phase shifters, follow the 
modulator crystal and reduce the carrier frequency and 
the other unneeded sideband by more than 60 dB. By 
this substitution one has a stable local oscillator using 
a single klystron already phase-locked to the carrier 
frequency. The output of the balanced-mixer bridge 
detector crystal is amplified by a 60-Mc/sec i.f. pre
amplifier and amplifier (100-dB gain) and is, then, fed 
to a balanced demodulator. A 60-Mc/sec reference 
voltage of the proper phase from the rf oscillator is fed 
to the demodulator. The dc output is displayed on an 
oscilloscope versus the field sweep voltage. This detec
tion scheme is a phase coherent system capable of 
measuring % or x", and therefore can readily be used 
to measure the recovery of a resonance line after 
inverting it by adiabatic fast passage. 

The temperature of the samples was varied from 2 to 
30°K. The TEoi mode cavity is at the end of a 10-in. 
piece of thin-walled stainless steel waveguide section, 
all enclosed in a vacuum-tight can. Around each half of 
the split cavity is wound a heating coil. A carbon 
resistor is imbedded in one of the cavity walls. The 
sample is held pressed against a vertical narrow face by 
a block of styrofoam which fills the cavity. A thin film 
of apiezon grease is used to improve the thermal contact 
between the sample and the cavity wall. Helium 
exchange gas is used to regulate the amount of contact 
with the liquid refrigerant. With about 50 mW dis
sipated in the heater coils it is possible to maintain the 
cavity temperature at 12°K with liquid He and at 
33°K with liquid H2. By monitoring the temperature 
with the carbon resistor (Wheatstone bridge null 
method) it is easy to maintain a steady known tempera-
ture to approximately \% of the absolute temperature. 
The carbon resistor was calibrated in the 2 to 4°K 

TABLE I. Data on silicon samples. 

Sample 

A 
B 
C 
D 
E 

Concentration RT resistivity 
number/cc (O-cm) 

9X10 l^P 0.70 
3Xl01 6As 0.26 
6Xl01 6Sb 0.15 
4X10^ Bi 0.21 

1.5X10" P < r 
2.5Xl015As ^ 

Source 

Merck floating zone 
Czochralski grown 
Czochralski grown 
Czochralski grown 

Czochralski grown 
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range and the 10 to 20°K range with vapor pressure-
temperature curves. Particular care was taken to assure 
that the sample cavity was in good thermal contact 
with the solid hydrogen for temperatures between 10 
and 14°K. Since the Tx measurement accuracy is 5 % 
or worse depending on the method, the \% temperature 
accuracy is sufficient despite the high power-law 
temperature dependences being studied. 

The sample is placed on a cavity sidewall with a 
[110] crystal axis vertical; this arrangement helps 
shield the sample from any infrared leakage and also 
allows rotation of the magnetic field in a (110) plane 
covering the three principal directions [100], [110], 
[111]. A solid glass microwave quarter-wave plate was 
fitted snugly inside the waveguide above the cavity to 
reduce the infrared radiation getting to the cavity. 
Even at the lowest temperatures no shortening of the 
relaxation time due to infrared radiation was found. 

A Hewlett-Packard low-frequency function generator 
is used to provide the variable frequency modulation 
for the fast passage work. For vm from 0.1 to 2 cps the 
output voltage is fed directly to the Varian magnet. 
For vm from 2 to 200 cps the function generator output 
is used to drive a dc power amplifier and a Helmholtz 
pair of modulation coils. (cow9r

m)max could be 500 G 
rad/sec or larger, dependent on the modulation fre
quency. Typical Hi values used for fast passage ranged 
from 0.007 to 0.07 G. With these values, it is possible 
to reasonably satisfy all the passage conditions in (5). 

C. Samples 

The Si samples used in this work are tabulated in 
Table I. Although the boron content is not specificially 

lOOOi 
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FIG. 4. Saturation curves of the spectrometer signal x"Hi vs Hi, 
the microwave field, for P donors in Si (sample A) in the tempera
ture range 10 to 20°K. The onset of saturation is a direct measure 
of TV 

FIG. 5. Saturation curves of the spectrometer signal x " # i v s 

Ex for As donors in Si (sample B) in the temperature range 
14 to 20°K. 

known, none of these samples is heavily compensated 
and it is likely that ND/NA for all these samples is 
substantially larger than ten. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Typical Data 

Saturation curves are shown in Figs. 4 and 5 for P 
and As donors for a series of temperatures in the 
liquid-hydrogen range. At intermediate temperatures 
(14.0°K for P) the relative signal VR (VR*x"Hi) is 
linear below saturation and flattens as Hi is increased, 
just as for the F-center case,23 indicating the usual 
saturation behavior for inhomogeneously broadened 
lines when the spin-packet width is very much less than 
the Gaussian envelope width. Reducing the tempera
ture, Ti gets longer, approaching r2 ' ,24 the time 
associated with the static low-temperature spin-packet 
width. For 7 \ > T2' the saturation curves bend down at 
high power and do not seem to behave like any of the 
calculated special passage cases. Spin diffusion would 
offer a qualitative explanation by spreading the satura
tion throughout the entire envelope, but this effect 
does not give quantitatively correct relaxation times. 
Nevertheless, at higher temperatures before the bend-
over starts, an experimental measure of the onset of 
saturation, Hi$, is a direct measure of T\. Very similar 
absorption saturation curves were observed for Sb and 
Bi donors although the temperature where the satura
tion occurs is very different for the two donors. 

Figure 6 contains adiabatic fast passage data obtained 
for P donors, namely, a plot of the oscilloscope relative 
signal voltage vs magnetic field modulation frequency. 
The signal decreases as um7\ approaches one. A 
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FIG. 6. Typical fast passage data for P donors using the M vs 
c*}m method for obtaining the T\ values. 

comparison of the experimental curves with the 
calculated curve gives T\ directly. Sample E, containing 
small concentrations of both As and P donors, was run 
at 10°K, producing the recorder trace in Fig. 7. At 
10°K the P donor has a much shorter Ti than the As 
donor. The passage condition for the P lines is slow, 
the trace giving the slow passage dispersion derivative, 
while for As fast passage is amply satisfied (Hi/o)J3m 

= 8X10~5 sec, r ^ O . 0 3 sec), the trace showing the 
characteristic fast passage absorption envelope with 
opposite sign. The parameters and the signal for As 
correspond to Portis' case III-B.80 

The four As hyperfine lines are readily inverted at 
helium temperatures. Recovery of the hyperfine lines 
after inversion is illustrated in Fig. 8. The ratio of the 
recovery of the two inner lines to the two outer lines 
determines Ts/Tx and then T8 and Tx may be deter
mined from the individual rates. Below 2.5°K the times 
are so long that thermal equilibrium populations are 
difficult to achieve in convenient experimental times. 
This accounts for the deviation from Boltzmann 

population difference at t=0+. Figure 9 shows recovery 
curves after inversion of the Sb121 (7=5 /2) and Sb123 

(7=7/2) isotopes. One notes that the innermost lines 
recover most rapidly, the outermost lines most slowly. 
The Sb121 lines are recovering more rapidly than the 
Sb123 lines, consistent with the larger hyperfine splitting 
for Sb121. Because of the short times and the high 
concentration of Sb donors needed for an adequate 
signal, not much effort was spent in obtaining accurate 
TVs for the Sb isotopes in the helium range. For Bi209 

(7=9/2) with a hyperfine splitting of 528 G it was not 
possible to invert more than a single line at a time. 
Since the Zeeman interaction isn't large compared to 
the hyperfine interaction and both Ts and Tx are 
complicated functions of magnetic field, it wasn't 
worthwhile to do much with Bi even though the 7Ys 
were long enough for fast passage at 4.2°K. 

Computer calculations of the recovery of the As75 

hyperfine energy level populations after inversion were 
made at temperatures of 2.5, 2.0, and 1.5°K for a series 
of X values. Figure 10 shows the various ratios (ratios 
characteristic of the average recovery of the two inner 
lines compared to the average recovery of the two 
outer lines) versus X. The ratio of zero-crossing times 
[curve (b)] is similar to Culvahouse and Pipkin's 
curve22 except that it starts to flatten slightly at large 
values of X. Curve (c) is closest to a straight line and 
is the strongest function of X. Neglecting experimental 
error considerations measurements of the slopes at 

FIG. 7. Recorder electron spin resonance signal x'Si for sample 
E (2.6X1016 As/cc and 1.4X101* P/cc) at 10.1 °K. Hi/u>mHm 
~ 8 X ICr-5 sec. The P81 shows a normal dispersion derivative signal 
indicating a short Ti, however the As75 dispersion signal resembles 
an absorption signal of opposite sign and represents a much 
longer T\. 

30 A. M. Portis, "Magnetic Resonance in Systems with Spectral 
Distributions," Office of Scientific Research, Air Research and 
Development Command Report, 1955 (unpublished). 

FIG. 8. The recovery of the four As hyperfine lines after inversion 
of all four lines at 2.44°K (times are in minutes). The unequal 
signal intensities of the four lines at / = 0 is mainly a result of an 
inadequate wait in preparing thermal equilibrium populations. 
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FIG. 9. The recovery after inversion at 2.50°K of the six Sb m 

hyperfine lines and the eight Sb153 hyperfine lines. The Sb m 

lines are recovering more rapidly than the Sb m lines. For Sbm , 
Tx<Ta and the central lines are recovering most rapidly because 
of the dominant hyperfine spin-lattice relaxation. 

zero crossing would give the most accurate values of X. 
In practice, however, because of poor signal-to-noise 
near crossover and also errors which grow with time, 
the initial slope ratio and the time of crossover ratio 
give more accurate values of X. Consistency of the 
three methods was used to ascertain the quality of the 
data points and to estimate limits of error. 

B. T8 Results 

The results of the T8 data for P, As, Sb, and Bi are 
given in Fig. 11. For Sb and Bi only good saturation 
data could be obtained. Good data were obtained for 
P over the entire temperature range, while for As 
more scatter is observed, particularly at low tempera
tures. For both P and As the relaxation time T8 varies 
inversely with the temperature up to 2.4 and 3.0°K, 
respectively, then goes into a power-law region. A line 
with a T~7 dependence is drawn between the P and 
As logT8 vs logT curves. Both P and As have slopes 
that are measurably steeper than the T~7 line and seem 
to be more closely parallel to the T~9 line shown in the 
figure. At 6 and 11°K, respectively, P and As begin 
exponential temperature-dependent relaxation. The 
exponential relaxation rates have been extended to 
lower temperature (see dashed lines) on the figure. One 
notes that at 5.1 and 9.2 °K, respectively, for P and As the 
exponential relaxation is about 10% of the total rate; 
therefore, the effect of exponential relaxation on the 

FIG. 10. Characteristic ratios of the rate of average recovery 
after inversion of the two inner lines to the average recovery of 
the two outer lines vs Ta/Tx. (a) is the ratio of the initial recovery 
slopes of the inner to the outer; (b) is the ratio of the average 
zero-signal crossing times of the outer to the inner; (c) is the 
ratio of the average inner slopes to the average outer slopes at the 
respective zero-crossing times. 

slope in the power-law region is negligible below these 
temperatures. Our first important conclusion is that the 
power-law region is closer to a T~9 dependence rather 
than the T~7 dependence reported previously.5,6 For P 
the power-law region (2.4 to 5.1 °K) is too small to be 
very certain, but for As the power law region (3 to 
9.2 °K) is large enough to demonstrate the better fit 

J*K 

FIG. 11. Ta data for P, As, Sb, and Bi donors. The figure shows 
log Ta vs log r , hence a constant slope indicates Ta oc T~n. T~t 
and T~9 guide lines are shown. The high-temperature TacceAlkT 

curves are extended with dashed lines into the power-law region 
to help show when the exponential contribution can be neglected. 
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FIG. 12. Log T„ vs l/T for P and As donors in samples A and 
B, respectively, and also the mixed (P and As) sample E. The 
results for the more dilute sample E indicate about the same slope, 
A/k, but a rate constant E (1/T8 oc Ee~AlkT) smaller by a factor 
more than four for both P and As. 

with the T~9 dependence. In addition, the lack of any 
field dependence7 and the lack of any angular depend
ence at 4.2°K for the T8 of P point to the "Van Vleck 
cancellation" field-independent T~9 Raman term. This 
would suggest that the spin-orbit interaction is respon
sible for this relaxation. There is no experimental 
evidence for a T~n temperature-dependent Raman term. 

For Sb121 only the exponential range and a few 
tentative data points in the helium range are shown. 
It is estimated exponential relaxation would start in 
the vicinity of 4°K. For Bi the exponential relaxation 
changes to a power-law dependence close to 26°K; 
however, the slope is less than the T~9 and T~7 lines. 
The reason for this is that the long-wavelength approxi
mation becomes poor for phonons with wave number q 
when qa* approaches one (a* is the donor electron 
orbital radius). For the J9 term the most important 
phonons are transverse phonons with energy near 
fio)=SkT with a value of qa*c^.0AT. Breakdown of the 
long-wavelength approximation is already beginning at 
helium temperatures. This breakdown would also 
explain why the slopes for P and As are slightly less 
than -9. 

Saturation runs were made on sample E with low 
concentrations of both P and As donors in the liquid-
hydrogen range. Inadequate signal-to-noise didn't 
permit fast passage measurements at helium tempera
tures. The points are compared with samples A and B 
in Fig. 12. The less accurate T8 values obtained for 

sample E indicated exponential temperature-dependent 
relaxation with about the same slope31 as the more 
heavily doped samples. For both P and As the relaxation 
rate is more than four times slower for the lightly 
doped samples. This concentration dependence is not 
very strong and may be similar to that found by 
Honig6 for the direct single-phonon process. The 
significant result for this mixed sample is that the rate 
constant E [see Eq. (2)] for As is 75 times larger than 
for P. Moreover, the E's for Sb and Bi are, respectively, 
4 and 8 times the As value. Although some of this 
variation may be due to the higher concentrations of 
Sb and Bi donors, it would appear that E depends 
strongly on the atomic number Z of the donor. One 
notes in the summary of the Ta results below in Table 
II that the rate constant C does not have the same 
strong Z dependence. 

C. 7* Results 

By observing the recovery of the four hyperfine lines 
of As75 (sample B) after inversion A was measured 
between 2 and 5°K. The results in Fig. 13 demonstrate 
that, between 2.2 and 5°K and probably higher X oc T~2. 
Below 2°K the data points of Abragam and Combris-
son,3 and Feher8 suggest that X(JT) flattens out at 
about 2. Below 2.2°K T8 and Tx are both inversely 
proportional to temperature (X=constant), while 
above 2.2°K T8 decreases more rapidly with increasing 
temperature than Tx. Near 5°K T8 oc T~*-5 and Tx oc r~6 5 

as shown in Fig. 14 of separate plots of T8 and Tx vs T. 

FIG. 13. Log (T8/Tx) vs logT for As donors in sample B. These 
values are all for #~3300 G. Reference 22 contains values for 
H~8500 G. Above 2°K Ta/Tx oc T~*. 

31 The ionization energy of shallow donors is concentration 
dependent [see P. P. Debye and E. M. Conwell, Phys. Rev. 93, 
693 (1954)]. Slightly larger slopes or valley-orbit splittings might 
be expected for sample E. 
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TABLE II. T8 results. 
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FIG. 14. Log 2% and log 7% vs log T for As donors in sample B at 
# ^ 3 3 0 0 G. Both T8 and Tx are into the Raman region above 3°K. 

This lends additional support for the importance of the 
CT9 Raman relaxation rate for 1/TS. 

Culvahouse and Pipkin's experiments22 were at 8500 
G compared with our 3300 G. At the same temperature 
their single-phonon 1/7% should be (8.5/3.3)4 larger 
than ours and their single-phonon 1/7% should be 
(8.S/3.3)2 larger than ours. For their case the pure 
Raman region is probably not important until above 
4.2 °K. This is borne out by their smaller change in X, 
X~l to X~1.5=±=0.5, between 4.2 and 1.3°K. CP 
observed only a change of a factor of 6 in 7% between 
4.2 and 1.3°K, while in this work there was a factor of 
20 between 4.2 and 2°K. CP obtained 7%=7%=60 sec 
at 4.2 °K compared with the values here of 7%~100 sec 
and 7%£^170 sec at 4.2°K. These values are not incon
sistent, considering the different magnetic fields and the 
different magnetic field and temperature dependences 
of 7% and 7%. However, for the normal single-phonon 
process l/7%oc#4 and l/Tx<*H2

y hence \ocH~2 at low 
enough temperatures. Our low-temperature value of 
X~2 is not consistent with CP's value of X~1.5. 
Although Honig6 has found other single-phonon 
mechanisms with different field dependences for 1/7% 
than 774, the HA mechanism is expected to be dominant 
above 3000 G. Wilson and Feher7 have discussed the 
sensitivity of a single-phonon 7% process to residual 
lattice strains. Different residual strains for CP's 
sample than for sample B would be a possible explana
tion for the lack of fit with X cc H~2. The cause for the 
discrepancy is very uncertain. 

In an experiment with Sb121 Tx was found to be 

Donor Power CT9 Expon. £<rA/*T 

and Cone. A law start C law start E 
sample (1016/cc) (°K) (°K) (sec"1 °K.~*) (°K) (lO^sec"1) 

P A 
P E 
As B 
As E 
Sb C 
Bi D 

0.9 
0.15 
3 
0.25 
6 
4 

122.5 2.4 1.0X10"7 6.0 

229 

105 
393 

3.0 2.0X10-8 

••• 2 X10-6 

11 

4 
26 

0.091 
0.020 
6.4 
1.5 

26 
52 

approximately 100 sec at 2.2°K. For Bi Tx was found 
to be about 7 sec at 4.2 °K. The Tx results in this section 
will be compared with theory and previous results in 
Sec. VI E. 

D. Summary of Experimental Conclusions 

Above the linear temperature region 1/7% cc TT\ 
where the evidence points to nc^.9 in contrast to the 
T7 dependence reported by Feher5 and Honig.6 At 
different temperatures, depending on the magnitude 
of the valley-orbit splitting A, all the donors start 
exponential temperature-dependent relaxation. The 
rate constant E, although slightly concentration 
dependent, seems to be strongly dependent on the 
atomic number Z of the donor. However, the rate 
constant C of the T9 dependence does not follow the 
same Z dependence as E. 

For As T8/Txo:T~2 between 2.2 and 5°K consistent 
with rscc r-8-5 a n d rx<x r-6-5. 

VI. RAMAN PROCESS SPIN-LATTICE 
RELAXATION CALCULATIONS 

A. Introduction 

Van Vleck's development,17 using perturbation 
theory, of the calculation of spin-lattice relaxation 
rates will be the basis for the calculations made here 
and the calculations will be similar to those of Hase-
gawa10 and Roth.11 Orbach,16 in his work on the rare-
earth ions, has reviewed the historical developments and 
the present status of the spin-lattice relaxation field. 
Therefore, we start right in with the perturbation theory 
to be used. 

The Hamiltonian for a donor electron in a silicon 
lattice can be written 

H=H°+Hl+H°\ (6) 

where H° is the complete static Hamiltonian (including 
spin-orbit, hyperfine, Zeeman, and other interactions) 
for the donor electron in a rigid lattice, Hl represents 
the Hamiltonian of quantized lattice waves, and Z7o1 

is the weak interaction of orbital motion of the donor 
electron with the phonons. Because matrix elements 
of H°l are very small compared with the diagonal 
energy splittings of H°, we employ perturbation theory. 
It is convenient to start with an approximate separated 

iiilinnmilii.il
file:///ocH~2
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FIG. 15. Wave functions (after Kohn) for the 15 valley-orbit 
singlet, doublet, and triplet. The six degenerate conduction band 
valleys are also shown, the mimima resting about 15% in from the 
first Brillouin zone edges along [100] axis. The doublet and 
triplet are considered nearly degenerate at an energy A above 
the singlet. 

wave function 

II<MqT), (7) 
q 

which is only an approximate eigenfunction of H°. 
We now divide H° into diagonal terms, Hd, and non-
diagonal terms, Hnd, for the basis functions (7). 

For the Raman two-phonon scattering process we 
utilize third-order perturbation theory using one H°l 

for the absorption of a phonon and another H*°l for the 
emission of a phonon and the part of Hnd producing the 
desired spin-flip, subject to the requirement of conserva
tion of energy for the total system of electron spins 
plus phonons. The Raman transition probability will 
be 

TT/. .Raman _ 

ft 

HjmHmkHki 

k.~ (Ei-Ek)(Ei-Em) 
PE{. (8) 

and We must use all possible permutations of Hnd, Ho1, 

Studies of the physical properties of shallow donors 
in semiconductors have been extensive and are reviewed 
by Kohn.32 The conduction band minimum is sixfold 
degenerate with the minima on [100] axis about 85% out 
toward the edge of the first zone. The energy ellipsoids 
at each minimum are characterized by longitudinal 
and transverse effective masses and also by longitudinal 
and transverse g values (spectroscopic splitting factors), 
respectively, gi and gt. The donor wave functions are 
linear combinations of Bloch functions times hydrogenic 
envelope functions associated with the 6 conduction 
band minima. Each hydrogenic state has a sixfold 
degeneracy which can be removed by the tetrahedral 
crystalline field and the impurity potential. The wave 
functions for the low-lying states of a shallow donor are 
shown in Fig. 15. 

32 W. Kohn in Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1957), Vol. 5. 

The Zeeman interaction between two states m and n 
is given10 by 

Hmnz=!xBtt- £ a * W [ g i l + (gi-g*)U<]-S, (9) 
»—I 

where the a1 are the coefficients in the wave function, 
I is the unit tensor, and U ' is a tensor which selects the 
ith valley along one of the [100] axes. Using the 
orthogonality condition 

6 

2_j <Xm OLn
 = : O m n 5 

i - 1 

we obtain 

Hmn
z = fXBH. • [_gtf>mn+ (gl — gt) D m n ] • S, 

where 

(10) 

Because gi—g^O.OOl,7 the off-diagonal Zeeman inter
action matrix elements are small, however it is just 
these off-diagonal Zeeman terms which couple to \S 
doublet states [(10) will not connect the 16* singlet 
and triplet states] which Hasegawa10 and Roth11 use to 
successfully explain the low-temperature single-phonon 
T8 process. The ground-state singlet Zeeman interaction 
is isotropic with a g value, g0= l/3(gz+2g*), but all the 
other 16* states have anisotropic g values and can 
contribute to the spin-lattice relaxation. 

The hyperflne interaction with the donor nucleus 
results from the Fermi contact term. For the ground-
state singlet the hyperfine interaction is given by 
(8x/3)gM£g«Mi3tt!^o(0)|2, while for all the other IS 
states the hyperfine interaction is zero. Similarly, there 
are no hyperfine interaction matrix elements between 
the ground state and any of the 15 excited states. 

B. The Orbit-Lattice Interaction 

For the calculations we employ the familiar deforma
tion potential approach,33 using specifkially the de
formation potential for many-valley semiconductors34 

containing a pure dilatational deformation potential 
2d, and a pure shear deformation potential Hw. The 
deformation potential change due to a phonon of wave 
number q and polarization es(q) is ^[8Ek(eSyq)-\-8Ek' 
X(e„q) ] where k is the initial electron wave vector 
and k' the final wave vector after interaction with the 
phonon. The atom displacement, Q(r), due to acoustic 
modes only, is given by 

Q W = E [ c . ( q ) a ^ ' r + C * ( q ) f l « * ^ - ' ] . (11) 
q.s 

The amplitudes aq and aq* are phonon operators with 

3 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950). 
4 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956). 
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matrix elements 

(nq— 11 aq | nq) = [fmq/2M<&q']
lt2, 

(nq+ l\a*\ nq) = [* (» ,+ l)/2Mco)J1/2 , (12) 

where Mc is the mass of the crystal and nq [nq=l/ 
X(e*wq/*7'—1)] is the phonon occupation number of 
the mode with wave number q. The Fourier component 
of the energy shift due to the qth mode with polarization 
es is given by 

8Eq,8= {3d(es- q ) + J £ w [ ( q • K<)(e.- K*) 
+ (q- Ky)(e,- K y ) ] } a ^ ' + c . c , (13) 

where K» and K,- are unit vectors to the ith and jih 
valleys, replacing k and k'. At this juncture only two 
types of transitions (k —» k') are considered, intravalley 
scattering with K*=Ky and intervalley scattering (to 
opposite valley only) Umklapp processes with K*= — K,. 
The matrix element for the absorption of a phonon by 
the donor will be Hmn

ol= f\f/m*(8Eq,8)\pndV given by 

£ a m W[Hd(e 8 - q)+EM(q- Kf-)(e,- K<)] 

Xaq I FfFjUkfuk,**-*****-*** rdV. (14) 

We have restricted ourselves to terms with Fi=Fj and 
Uk^Ukj. Expanding the periodic Uk*Uk in terms of 
reciprocal lattice vectors, the integral in (14) becomes 

E C ^ | | ^ | V ^ H . + K,).rrfri (15) 

The hydrogenic \F{\2 may be Fourier analyzed using 

1 
FA 

(2T) 

£ / C X < ) e x p ( - & r r ) , (16) 

which then reduces the integral in (15) to a 5 function. 
The result for Hmn°

l is 

Hmn<« = E aJan'tSdd*.' q)+S w (q• K<) (c.• K,)] 

X « , Z C * i ' / w ( K , , + q + k i - k < ) . (17) 
V 

For the i = j intravalley terms k«=k1- and the only 
large term is the K„=0 term. In this case we have just 
Hasegawa's result,10 namely, 

6 

Hmn
ol(i=j) = [3dqif(qi)&mn+3u E <*mW 

X(q-K,) (e . -K,) /*(q)Ik , (18) 

whereas for the Umklapp process i^j case (k,-= — k1') 

(100): q u = K ( O O - 2 k o = , 3 0 k m a x 

q u = 0.345 x l O 8 

(110): q y : K , | o - v ^ k0 = . 9 2 k m o x 

q u = 1.06 x l O 8 

PHOSPHORUS-DOPED SILICON 

i * 0.0106 eV 

q A # = 0.19 x 108 

1100,1 l:',-o.mM> 

(100): 

ARSENIC-DOPED SILICON 

A =0 .020 eV 

q A i = 0 . 3 5 4 x l 0 8 

q A | : NONE 

FIG. 16. A (001) plane cross section of the first Brillouin zone 
for Si showing the conduction band minima and possible Umklapp-
type intervalley H°l matrix elements. Only the intervalley process 
from a given valley to the opposite valley has a small enough 
required umklapp vector qu to be important. The resonant 
longitudinal and transverse wave numbers #A are listed for both 
P and As. The As q&i is very close to the required qu for opposite 
valley intervalley Umklapp. 

the matrix element becomes 

# m « o l ( ^ i ) = E ' a«W[Hdgz0«+E t t(e,- K,-)(q- Kf)a«] 

X l C ^ ( K , + q - 2 k 4 ) . (19) 

The only important Umklapp terms are for the six 
smallest reciprocal lattice vectors along the [100] axis. 
The /* decrease very rapidly for large arguments. The 
matrix element will only be large for values of q^2k» 
— K„. Since \ki\ =0.85&max (&max=<7max), we can define 
an Umklapp phonon wave number qw<= (2k*—Kt-) 
with the magnitude \qu\ ~0.30graa,x. Figure 16 shows a 
(001) plane cross section of the first Brillouin zone 
illustrating the various Umklapp processes. 

A typical matrix element between the 15 singlet and 
a 15 triplet will be 

H0z
ol= (l/2^)[Sdqi+Zuexqxlaq 

XCkXfx(-quX+q)-f(qux+qn (20) 

where % is a unit vector in the x direction. The two 
terms do not cancel for large enough values of qu 

and I?o3o1 will peak for values of q = ± ^ M ^ . Although 
the intravalley H°l terms connect the 15 singlet to the 
IS doublet only, the intervalley Umklapp terms 
connect the IS singlet to both the 15 doublet and 
triplet. Calculation of the "resonance phonon" #A'S 
(qA = A/fw) where A is the measured valley-orbit 
splitting indicates the ^ ' s are in the range where 
Umklapp will be important (see Fig. 16). For the 
arsenic donor q& is very close to 0.30gmax, the value 
needed to maximize / . For arsenic the intervalley HoX 

should be much more important than the intravalley 
H°l for phonons with q close to q&. Since H°l is propor
tional to / we may use the magnitude of / as a measure 
of the strength of the orbit-lattice interaction. Following 
Hasegawa,10 the / function is the inverse Fourier 
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TABLE III. Relative strength of the orbit-lattice interaction 
for intra valley processes [# o lcc/(qA ) ] and intervalley processes 
[.H°l oz fx(q&—qux)~\ in the short-wavelength region for resonant 
phonons (qA — A/hv). QA represents an effective wave number 
using an effective sound velocity averaged over solid angle. 
<7A[ioo] is the wave number for a phonon propagating along a [TOO] 
axis. For Si, a* = 20XlO~8 cm. 

Donor 

P 

As 

Bi 

Mode 

long. 
trans. 
long. 
trans. 
long. 
trans. 

U 
(108 cm"1) 

0.173 
0.297 
0.323 
none 
0.554 
none 

q^a* 

2.45 
5.94 
6.45 

10.97 

MA) 

0.063 
0.010 
0.0077 

0 
0.0010 

0 

2A[ioo] 
(108 cm~ 

0.190 
0.274 
0.354 

0.608 

/max 
(qA- quxx) 

qz=qA, 
l) qv = q, = 0 

0.20 
0.63 
0.99 

0 
0.049 

0 

transform of (16). For the two cases one has 

Intravalley fx(q) 

="i/{i+i[?*2&2+(<?/+<?* V 3 F , (2D 
Intervalley fx( — quzx-\-q) 

= i/{i+iC(?x-^)262+(<z,2+?z
2)a2]}2. 

For the resonant phonons </A&>1 and the long-wave
length approximation ( / ~ 1 ) is poor. Table I I I shows 
typical /values in the short-wavelength region for intra
valley and intervalley processes. I t should be noted that 
fx(q — qu%) is strongly peaked along the x axis when 
q& is close to qu. Table I I I only indicates the maximum 
value of fx(({A—qu%). When | fx\2 is averaged over solid 
angles this will be reduced somewhat. In fact, for P 
the effect of intravalley and intervalley H°l on the 
spin-lattice relaxation rate are comparable. However, 
for As, and Bi to a lesser extent, the intervalley Umklapp 
processes will be dominant. For As and Bi, A is large 
enough to exclude transverse acoustical phonons. Even 
for P, longitudinal phonons have assumed a greater 
importance in the short-wavelength region than in the 
long-wavelength region. This is because, although the 
density of longitudinal modes per unit frequency is 
much less than for transverse modes, the interference is 
much less for longitudinal phonons of a given energy 
than for transverse phonons of the same energy. 

To obtain relaxation rates one must evaluate quanti
ties like tf\Hmn

ol(q)Hpr
ol(q)\dQqy representing the 

average over solid angle of the absorption \Hol\2 

matrix element squared. This is done in the Appendix. 
In calculating the orbit-lattice interaction the deforma
tion-potential constants *Ed and Ew have been assumed 
to be independent of q and equal to the long-wavelength 
values. For such high-g phonons near gmax, the deforma
tion potential constants might be substantially different 
than the long-wavelength values. 

anisotropy spin-flip mechanism which involves only 
the IS doublet states. This calculation is briefly 
sketched here. The matrix element for a spin flip of a 
donor electron in the ground state is 

(0'|Jf|0) = £ 
Ho'jHjkHko 

k.j (Eo-EjXEo-Et) 
(22) 

where 0 = 10, l /2 ,^ ,?v) and 0 '= | 0 , - l / 2 , » f f - l , * v + l ) . 
At sufficiently low temperatures the Raman relaxa

tion is due to thermal phonons (hco^kT). The long-
wavelength approximation is valid [ga<$Cl, / ( q ) ^ l ] , 
furthermore longitudinal phonons can be neglected 
because of their low density of states compared with 
transverse phonons. The 15 triplet states can be 
neglected and the sum in (22) is over orbital states 1 
and 2. Twenty-four terms remain in (22) with several 
different energy denominators which become identical 
when the phonon energy and Zeeman energy are 
negligible compared with A. | (0' | M | 0) |2 is then 
averaged over solid angle for the incoming phonon, q, 
and the outgoing phonon, q'. The various matrix 
elements and solid angle averages of (\Hij0lHki0l\)Qq 

are tabulated in the Appendix. After some algebra one 
has 
, , , , xl 2{gl-gt)KnBHyf{6,4>) 
| (0 ' \M 0) 2 = 

A4 

X(|^o2
o l(q)l%(|H„2o>(2') l2K', (23) 

where f(6,4>) is Hasegawa's angular function.10 Using 
(8), (12), and (A5) the transition probability (neglect
ing the longitudinal lattice modes) becomes 

WWo = - (cfc0°) 
(gi-gd'QiBB)* /(*,*) 

225(2TT)3\ 

[?/2(?)»JDz72(?')(v+i)]9Y% (24) X 

We set q' = q and Cfc0°^l. We use u>=qvt and make the 
substitution ho>/kT=x. Now (24) becomes 

W,u 
^(gi-gpbsm'fiw) 

225 (2a-)3 ffl-
Kfy 

BDIT x6exdx 

( e * - l ) 2 
(25) 

For r « f e ( , the integral is nearly 6!. The final result 
for 1 / r . ( l /T 8 =WV~o+HVo<^2W) is 

1 _ 8 /gA4 ( g ,~g < ) 2 ( i t t £ g ) 2 / ( g^V^ rV 
T. 5 x 3 \ A / P%1 0 I - ' • \T)-

C. The Raman T9-Power Law Region This result is slightly smaller than Roth's Raman 
calculation.11 Using Wilson and Feher's values7 of 

Roth11 has evaluated the Raman spin-lattice relaxa- EW/A = 0.76X103, gi~gt = 1.04X10"3 and also p=2.33, 
tion rate \/Ts using the valley repopulation g-value vt = 5.42X105, and H = 3200 G one obtains r s—5.0X104 
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sec at 4.2°K in contrast with the experimental value 
of 25 sec. Furthermore, the experimental results show 
no field dependence between 3000 and 8000 G7 and 
no angular dependence at 4.2°K within experimental 
error. Taking the ratio of Ts (direct) to T8 (Raman) 
for the Hasegawa-Roth mechanism one obtains 

r . (direct) 27 /E«\ 2 (kT)« 
=—( — } . (28) 

r„(Raman) w2\A/ t>vt*k*(nBH)2 

Using the above numbers the two processes would be 
competitive at 4.8°K, whereas the experimental results 
of Feher and Honig indicate a change to the Raman 
process near 2.5°K. The experiments and calculations 
suggest another mechanism. Roth35 has calculated 
another process contributing to red i rec t ) which 
arises from a phonon modulation of the g shift within 
a single valley. Wilson and Feher7 have shown that the 
two mechanisms of g modulation give excellent agree
ment of the angular dependence and the magnitude of 
T8 at 1.25°K. However, this second mechanism used 
for a Raman process would yield an H2T7 dependence 
which is contrary to experiment. 

The H°T9 dependence of the Raman 1/TS points to 
the spin-orbit interaction, HBO, as the spin-flip Hnd. 
However, tetrahedral symmetry only permits nonzero 
Hmn

so among the IS triplet states and also between 
the IS doublet and triplet states. The magnitudes of 
such Hmn

so are unknown, moreover at least one of the 
HoVs will have to be HmQ°l, w = 3, 4, or 5. For g a « l , 
|Jjr3o

ol|2 will be small because of the cancellation of 

[/*(q+«^)-/*(q-^)]. 
Furthermore, \Hzool\2ccaq

2q4 rather than aq
2q2 for the 

intravalley matrix elements. This would then lead to a 
T11 temperature dependence for 1/TS. The coefficient 
would be small. 

Another possibility is a process involving H8° and H°l 

matrix elements to other bands. Liu36 has examined 
spin-orbit effects and the g values for the Si conduction 
band. Recently, Roth and Ham37 have independently 
calculated an isotropic, field-independent T9 process 
using only conduction band (Ai) and valence band (AB) 
states. Ham's result is 

1 3584 (kTy 

Ts 5TT3 p2mt
10 

r /HA/ (A 5 l / l ^ lAi ) (Ai l£ y 2 lA5 j / ) \ - j 2 

36 L. Roth, Massachusetts Institute of Technology, Lincoln 
Laboratory Reports, 1960 (unpublished). 

36 L. Liu, Phys. Rev. 126, 1317 (1962). 
37 (Private communication.) The author is grateful to F. Ham 

for considering the question of a field-independent T9 process. 
This process was suggested by the experimental results and Van 
Vleck's pioneering work (see reference 17). We have learned that 
L. Roth has also calculated this process and obtains a similar 
result. 

where (A$y\hx\Ai) has been calculated by Liu,36 

(Ai\Eyz\Asy) is an interband matrix element of the 
deformation potential, and Elb is the energy difference 
between Ai and A6. Using a reasonable guess for 
(Ax\EyZ\Aby) and Liu's value for (A&y\hx\ Ai), one finds 
(28) to be about two orders of magnitude too weak 
although it has all the correct qualitative features. 
Equation (28) shows Ts<xA2, roughly consistent with 
the C constants for P and As in Table I I . Nevertheless, 
the origin of the power-law Raman Ts must be con
sidered in doubt.37a 

D. Resonant Exponential Relaxation 

Because k6n>A there are phonons with energy ftco 
near A which are very effective relaxers because of a 
resonant absorption-emission process. This case has 
been treated by Orbach16 for rare-earth ions in crystals 
in which the low-lying levels are spin levels and S > 1 . 
5 = 1 / 2 for the shallow donors in silicon, hence the 
exponential relaxation involves different orbital levels. 
The resonant process is a three-step process in the 
following sequence. First, a phonon of energy fu^^A is 
absorbed, putting the donor electron into one of the IS 
doublet or triplet states. While in this state there is a 
small probability the spin will be flipped before the 
donor electron decays to the ground state with the 
spontaneous emission of a phonon. 

If we consider the matrix element Af0'«-o in (22) the 
following types of energy denominators occur in the 
sum (emission first, then absorption will not produce 
resonant denominators). 

(A) Spin flipping term first or last 

( A - £ C O ) ( A - £ M B # ) ' ( 2 9 ) 

(B) Spin flipping term in middle 

(A-fiu>)(A+gtJiBH-ho>) 

In calculating Wo>+-0, (29) will enter squared, hence the 
integral over phonon energy will involve a second-order 
pole for term A and two second-order poles, separated 
in energy by gfXBH, for term B. The integration over 
phonon energy in W0>+-0 diverges because of the second-
order poles. Following Orbach,16 a level width for the 
excited states is introduced, as is done for the resonance 
fluorescence of photons in gases and for resonant nuclear 
absorption phenomena. The level width T may be due 
to spontaneous emission of a phonon or photon, or 
might be due to strain. The level width is considered in 

37a Note added in proof. The author has recently learned that 
L. Roth and H. Hasegawa and M. Nakayama have calculated a 
new T9 mechanism based on the breakdown of the effective mass 
approximation. They use the impurity potential to admix the 
A2 band, thus going to one order higher perturbation theory. 
Surprisingly, the result is one to two orders of magnitude more 
effective than (28) and would be close to the experimental result. 
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Sec. VII. For the B term an integral of the following 
form arises: 

f 
Jo 

G(o))dw 

C ( A - M 2 + (r/2)2][(A+^B-ff-M2+ (r/2)2] 

(30) 

The function G(a>), which may be a complicated func
tion of co, is, nevertheless, slowly varying in the region 
of resonance compared to the energy denominator 
(T«A) and may be removed from the integral. The 
integral is, then, readily evaluated for two distinct cases, 
g/xB iJ«r and gixBHy>T. The result is 

4ir 
—G\ 
* 

/ A \ 1 /F, 

d)x 
1 / 1 1 ( ^ 1 7 ) 2 + ( r / 2 ) 2 ] , gnBH»r. 

(31) 

I t is noted for g/j,BH<KT the twro second-order poles are 
not resolved and the integrand behaves as if it contains 
a fourth-order pole. I t is also easy to show that the 
integral of the A term is smaller than the B term by 
(T/A)2 or (gjjiBH/A)2. These are both very small 
quantities. The most effective resonant relaxation 
comes from exciting the electron to the 15 doublet and 
triplet states and letting it relax while there. The 
process might be considered "excited state spin-lattice 
relaxation." 

Wo>+-o can be divided into three types of terms, WN 

intravalley and Wu intervalley terms, where the N and 
U refer to the normal and Umklapp orbit-lattice 
interactions, and mixed terms WNU. I t can be shown 
that J*llQm

olHon
oldQqcc5mn, hence all cross terms in the 

matrix element | ( 0 ' | M | 0 ) | 2 are zero. The WN terms 
result from states 1 and 2 only, while the Wu arises 
from all the states 1-5. If HBt, the spin-flip interaction, 
doesn't connect the doublet and triplet, then the mixed 
terms could occur only within the doublet. For sim
plicity the mixed terms will be neglected. 

(1) The Intravalley Relaxation Rate WN 

Using (8), (12), (A6), and (31), the result for WN 

will be 
9 ( v 2 ! | S u 2 / A \ 3 r 6 / 2 ( ^ ) 4/»(&,)-

Ht[367rp\fiJ L5 v? S] v? J 

X-
gA/jfcr 12 

— - e - ^ ( £ |Z7*sfl2) 
— 1)J 1.2 

i / r 
X 

g»BH«r 

i/rc(gMBH)s+(r/2)2, glxBn»v. 
(32) 

I t is written in this form because the quantity in the 
braces is just the minimum level width TN=hWB1?, 
where WBp is the transition probability for spontaneous 
intravalley phonon emission. Hence, the spin-lattice 

relaxation takes the particularly simple form 

£ l#*8fl2 

/YJSe~^fkT\ 
W-.m^1/2

N=2( JX 
(gnBHy+(T/2¥) 

TN«gnBH. (33) 

The factor W8pe~A,kT is the transition probability for 
exciting a donor electron to one of the doublet states 
by the absorption of a phonon of energy ho)^A (both 
doublet states have the same TN). The second factor 
represents the effectiveness of the doublet spin-relaxing 
mechanisms by measuring them relative to the Zeeman 
energy. For the Hasegawa-Roth mechanism the second 
factor would be of order (4/9) (gj—-gt)2/g2 for small T. 
The 4 arises from the number of cross paths of HBi 

between states 1 and 2. The 2 in front in (33) results 
from the integration in (30) and represents the equiv
alence of a process with absorption and emission 
energies A and A—gusH, respectively, with a second 
process with absorption and emission energies A-j-gfisH 
and A, respectively. 

The particular V dependence of (33) is not present 
in Orbach's result.16 Orbach's second-order perturbation 
calculation involved spin flips between the ground 
state and the excited state. Here, in third-order pertur
bation theory, the spin is predominately flipped 
between the different excited states. When the donor 
electron is in the excited states for a time r such that 
rco iarmor> 1 Hs{ can be fully effective, however, as the 
lifetime in the excited states decreases until it is less 
than the Larmor period (T/2>giiBH) HBi becomes less 
effective and WN starts to fall off as 1/T. WN is max
imum for r=2gnBH. 

If numbers are inserted in (33), namely, T/h=<hr 
X1010 sec"1 and gz—ge^lO-3, the Hasegawa-Roth 
mechanism gives 1 / J T S ~ 2 . 8 X 1 0 4 e~A/kT in contrast to 
an experimental value of l / r s ~ 2 . 2 X l 0 8 e~AlkT for P. 
This disagreement by a factor of 8 000 is slightly larger 
than that for the V Raman Ts calculation suggesting 
that the same unknown mechanism may be accounting 
for the much faster relaxation for the power law and the 
exponential temperature ranges. 

(2) The Intervalley Relaxation Rate Wu 

For pure intervalley spin-lattice relaxation the result 
will be the same as (33) except that we replace TN with 
T^ and the sum of HnBi is over all excited states 1 to 5. 
Tu=2w\HtnQol\2pE/ and using (A7) we have 

T^= ( - ) |l+2-
247rp \h / UJUOO]5 \hJ Uf[ioo]5J 

/ H A 2 / /h • / < 4 ) i 

fl*[100]6 

(34) 
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where the In are given in the Appendix, ztyiooj and 
VtiiQo] are used rather than mean values because the 
|#mool|2 are only large along the [100] axis. Ck0

x is 
not known but a crude estimate places it in the range 
0.3 to 0.7. The real difficulty with (34) is the lack of 
knowledge of Ed. Hydrostatic pressure experiments38 

help determine Eu—Eiv, the difference in dilatational 
energies of the conduction and valence bands (Eic=Sd 
+JEW). However, Eu and E\v are not readily separated. 
If Ed were negative and close to the Ge value of —6.9 
eV, the longitudinal term in (34) would nearly cancel. 
We consider the longitudinal part as including an 
unknown parameter a (inside brackets) which might 
reasonably lie within the limits 0.1 and 4. 

For P both longitudinal and transverse phonons 
contribute to (34) and TN may be slightly larger than 
Tu depending on CV and Ed. For As with C^^O.S, 
(TU/TN)~ 100 for Ed=0. It would be fortuitous if Ed 
were such to reduce TU/TN to less than 10% of the above 
value. Hence, for As it would appear that TU^>TN. 
It is also likely that T(As) >T(P). We calculate W»»(IS 
doublet) > 2.5X1010 sec"1 and IF8*(IS triplet) > 0.6 
X1010 sec"1 for P donors. The P values of T are at least 
within a factor of 5 of the value which maximizes (33). 
It would appear that the large experimental E(As)/ 
E(P) ratio would have to be explained almost entirely 
by a large ratio Hsf(As)/#sf(P). The still larger E 
constants for Sb and Bi, suggest successively larger 
HaVs for Sb and Bi. This conclusion, if correct, disagrees 
with effective mass theory and would lend support to 
an atomic-type impurity spin-orbit Ha(. A relaxation 
process involving interband matrix elements might 
remove this difficulty. 

E. The Raman Tx Process 
(Long-Wavelength Region) 

Wilson and Feher7 have discussed the Tx process 
noting that the Pines, Bardeen, Slichter calculation8 

of \/Tx greatly overestimated the amplifying effect of 
a dilation on d\\pQ(0)\2. Hasegawa7'39 has calculated a 
Raman l/Tx depending on the modulation of the 
hyperfine interaction by the phonon-induced admixture 
of the IS doublet states, this admixture reducing the 
hyperfine interaction (15 doublet and triplet states 
have no contact hyperfine interaction). Hasegawa also 
demonstrated for a strain-free crystal that this process 
does not permit a single phonon 1/TX. This mechanism 
can be calculated by treating H°l as a perturbation, 
obtaining the perturbed wave functions to second 
order, then calculating the hyperfine interaction 
between states \0,l/2,mi,nqinq') and |0, —1/2, wj+1, 

38 W. Paul , J. Phys . Chem. Solids 8, 196 (1959); J . Appl. Phys . 
32, 2082 (1961). 

39 (Private communication.) T h e author also independently 
calculated this process for 1/TX, bu t is grateful to H . Hasegawa 
for communicating his results to the author and for pointing out 
a numerical mistake in the author ' s calculation. 

T A B L E IV. Comparison of calculated and experimental TVs. 

Donor 

p31 

As75 

Sb m 

Bi209 

• / 

1/2 

3/2 
5/2 
9/2 

A# h f 
(g) 

42 

71 
67 

528 

A T 
(eVXlO-3) (°K) 

10.6 

19.8 
9.1 

34 

2.16 
(4.2) 
4.2 
2.2 
4.2 

r*(calc) 
(sec) 

16 000 
(150) 
210 
600 

11.2 

r*(expt) 
(sec) 

11000 (reference 6) 
(105) 
160 
100 

7 

nq— 1, ttg'+l). The result for Wx is 

2TT 
WXMI = — ^ K - i M H - l l L S l i M , ) ! * 

<|H0n*Ol|2W(l^n0Ol|2K 

where the sum is restricted to the 15 doublet states 
for the long-wavelength region. A = (8w/3) {gixBgnVBn) 
X | ̂ o (0) |2, the magnitude of the hyperfine interaction. 
Inserting (A5), the density of states for the more dense 
transverse modes, and integrating over frequency one 
obtains Hasegawa's final result for Tx(mi—I—\) is 

1 8 AH /3u\*/kT\7 

T~5wz
PHtAA/ \fi / 

Comparing this result with that for the T7 Raman T, 
using the Hasegawa-Roth mechanism, one obtains the 
ratio 

—=7— ( • ) , (37) 
T. (gi-gt)>\ H ) ' 

where AH^ is the hyperfine splitting of the donor 
electron. This ratio for P with AFhf=42 G, gi—gt 

^0.001, and #=3300 G is about 300, whereas the 
experimental ratio is about 0.2 in the Raman tempera
ture range. For As the disagreement is even worse. 

Table IV compares calculated values of Tx with 
experimental values. The agreement of the experimental 
and calculated values using (36) is surprisingly good 
except for Sb121. However, the measured Tx in sample C 
is only approximate and at 2.2°K it is possible one is 
in the linear temperature-dependent range which would 
result from internal strains. The significant result is 
the agreement with 1/Txcc (AHhi)

2I/A*. The longer 
Tx for As than for P and the surprisingly long value of 
Tx for Bi must be attributed to the significantly greater 
A values for As and Bi. The phonon modulation of the 
hyperfine interaction via the IS doublet states satisfac
torily accounts for the Tx Raman process in the long-
wavelength region. This is in sharp contrast to the 
disagreement for the Raman Ts as emphasized by (37). 

F. Tx Process—Resonant Exponential 
Temperature-Dependent Case 

The hyperfine spin-lattice relaxation process respon
sible for Tx can have a resonant absorption-emission 
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process involving phonons with energy hu^ A. Equation 
(35) shows a single second-order pole at hco=A. Follow
ing the same procedure used for the T9 exponential 
relaxation case it is straightforwardly shown that 

1 / Tne-A/kT\/A\2 

F,=(?—A*)'' (38) 

where the first term represents the total absorption 
probability to all the IS valley-orbit states, each having 
a level width Yn associated with a phonon spontaneous 
emission rate Wn

ap. However, this process is very weak. 
Inserting numbers for P, namely, (A/A)2~2.0X10-9 

and £ n Tn/hc^lOn sec"1, yields a Tx of 4 sec at 20.4°K, 
many orders of magnitude longer than the extrapolated 
T1 process Tx at 20°K. The exponential temperature-
dependent T» will never catch up to the T7 process as 
the temperature is increased, unless the T1 term is 
strongly reduced due to the breakdown of the long-
wavelength approximation at high temperature. If Tz 

were to have an exponential temperature dependence, 
it would begin at a temperature well above where T8 

starts to exhibit an exponential temperature dependence. 

G. Summary of Calculations and 
Comparison with Experiment 

The measured power-law Raman Ts is three orders 
of magnitude shorter than the calculated Ts based on 
the Hasegawa-Roth mechanism. So far it has not been 
possible to show how the spin-orbit interaction, a 
likely candidate for the spin-flipping mechanism, might 
explain the experimental results.87a The measured expo
nential temperature-dependent Ts is also nearly four 
orders of magnitude shorter than the calculated value if 
the Hasegawa-Roth mechanism is used. Here, the 
calculated 1/TS exhibits a maximum relaxation rate 
when the excited-state lifetime is equal to the Larmor 
period, a result of the dominance of the terms involving 
a spin-flip interaction as the middle term. Here also 
the results suggest that the spin-flip matrix element 
must get larger for the heavier donor impurity atoms. 

The calculated Raman Tx, the result of the lattice 
wave modulation of the hyperfine interaction through 
the admixture of 15 doublet states, is in good agreement 
with the experimental TVs for the different donors. 
1/TX can have an exponential temperature-dependent 
term but the numerical values suggest it will always be 
smaller than the T7 term. 

VII. THE LEVEL WIDTH AND SPONTANEOUS 
PHONON EMISSION 

Kane40 has pointed out that, due to weakness of the 
electron-phonon interaction in Si, the width of the 
excited-state impurity levels is determined by the 
lifetime broadening of the excited states as a result of 
spontaneous phonon emission rather than by the 
mechanism of Lax and Burstein.41 Expressions for the 

40 E. O. Kane, Phys. Rev. 119, 40 (1960). 
41 M. Lax and E. Burstein, Phys. Rev. 100, 592 (1955). 

TABLE V. Wsp for 15 excited states, in units of 1010 sec-1. 

Donor 
and state 

P doublet 
P triplet 
As doublet 
As triplet 

WlN 

1.26 

0.13 

WtN 

0.74 

Wiu 

0.55a-
0.55<r 

13.5a-
13.5a-

Wtv 

0.55 
0.55 

W t o t a l s p 

>2.55 
0.55(l+<r) 
0.13-j-13.5a-

13.5a 

lifetime limited widths of the IS valley-orbit states for 
intravalley H°l and intervalley H°l have already been 
developed in (32) and (34), respectively. These widths 
have been calculated using Eu=8.5 eV, Ck0°£^l, 
CV-0 .5 , vt=5A2X105 cm/sec, ^=9.33X105 cm/sec, 
[̂iooj = 5.87X105 cm/sec, and ^[i0o] = 8.5Xl05 cm/sec. 

For the longitudinal intervalley W8p, the factor 
<r(2d/3u) mentioned in (34) has been explicitly left in 
the results shown in Table V. For P we note that the 
contribution to the width T due to A7 processes is 
probably larger than that due to U processes, whereas 
for As the bulk of the contribution will be due to U 
processes unless cr<0.01. In addition, the doublet 
states are more important than the triplet states for P 
while for As the two are equally important. 

We now investigate the intervalley differential 
spontaneous transition probability dWBp/dz where 
z=cos# and 8 is the angle between q and the [100] 
axis associated with K„. The factor |/*(q— qu%)\2 

plotted as a function of cos0 will vary from 1/a4 for 
cos0=O to 4.3X105/"4 for cos0=l if |q|=gA~gM. 
Since qh^qu for As, dWb0

u/dz will be very strongly 
peaked along both the positive and negative qz axis. 
Putting in numbers for As(qA=qu) shows that 40% of 
Wzou will result from q's within a cone 0<5.7° and a 
cone 7r-5.7°<0<7r. dW10

u/dz and dW2o
u/dz are also 

strongly dependent on the orientation of q but have 
similar peaks along several [100] axis. Since, for As, 
Wuy>WN, the above implies that As donor electrons in 
16" doublet or triplet states decay with the emission of 
phonons directed primarily along [100] axis. This 
suggests that if the As donor electrons could somehow 
be rapidly pumped into these IS excited states it 
might be possible to generate enough incoherent 
phonons of frequency 4.8 X1012 cps to exceed the 
thermal phonons at fko^A if it were done at liquid-He 
temperatures. However, the propagation of such 
short-wavelength phonons (X—18 A) any distance 
would require very perfect, ultrapure, strain-free 
material. The detection of these incoherent phonons 
might be accomplished by several methods, including, 
for example, the enhancement of the exponential 
temperature-dependent spin-lattice relaxation rate of 
As donor electrons. 
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APPENDIX 

Orbit-Lattice Matrix Elements and 
Angular Averages 

The absorption orbit-lattice matrix elements between 
the 15 orbital states are listed below in three separate 
categories, namely, the long-wavelength region [Eq. 
(18), f(q)azl~\, the short-wavelength intravalley matrix 
elements [Eq. (18)], and the short-wavelength inter-
valley matrix elements [Eq. (19)3. 

1. Long-wavelength region 

#00° 

# 2 2 ° 

# 1 0 ° 

# 2 0 ° 

# 2 1 ° 

= (Bd+lB^qiaqCk®, 

= [(zd+hZu)qi--i'£uezqzlaqCkQ
0, 

= (l/2V3)£u(qi-3ezqz)aqCk(i
0, 

= (l/\/6)Bu(exqr~eyqy)aqCkQ
0, 

= (l/v2)#2oo1. 

(Al) 

= q cos0, the polarization components are shown below 

Londitudinal Transverse Transverse 

sin0 cos<£ 
sin0 sin<£ 
COS0 

sin</> 
-COS0 

0 

— COS0COS0 
—cos0sin<£ 
sin0 

Performing the averages it is readily demonstrated that 

(\HmoolHno
ol\) = 8mn. (A4) 

The results we need for the calculations are: 

1. Long-wavelength region 

( | ^ 1 0
o l | 2 ) = ( l ^ 2 0 o l | 2 ) = 2 ( | ^ 2 1 o 1 | 2 ) = 2 ( | 5 1 1 ° 1 - ^ o o o l | 2 ) 

= 2< | i ? 2 2
o l -^00 O 1 1 2) = Vl< | #21Ol#20O11 > 

/6 4 \ 
= (2T/9)SuW[-qt2+-qi2) (<V)2 . 

2. Short-wavelength region, intravalley 

For simplicity we set f= fy=fz=f= l/[l+l(qa*)2J. 

<|F10° l |2) = <l^20Ol|2) 

r6 4 
= ( 2 * / 9 ) E u V -qt2f2(qt)+-qi2f2(qi) 

L5 5 
(C*0°)2. 

2. Short-wavelength region, intravalley 

Since the dominant relaxation (foo^A) occurs with 
H*1 as the middle term we need consider only J5"ioo1 

and #2oo1. 

#o i o l = ( V 2 / 6 ) S u [ e ^ x / - ( q ) + ^ g ^ ( q ) l 

- 2 e * ^ q ) ] a / V , (A2) 

i?2o o l =(V\ /6)S w [e^x/ x (q) -M^(q)3a ( ? C,- 0
0 . 

J. .SAor̂  wavelength, intervalley 

F 1 0
o l = ( l / 6 v 2 ) { [ 2 d g ? ± H t t ^ J [ ^ ( q + g u f ) 

+/* (q-<z^)3+D • -«rfyX/*(q+g«0)+ • • •] 
" 2 [ - • 'ezqz~im<l+qJ)+ • • ' 3 K C V , (A3) 

# 2 0
o l = (1 /2^6) { [ S ^ i + S ^ x ] 

X [ / * ( q + ? « * ) + / * ( q - g « f ) 3 

- [ • • -^J[/y(q+<74)+ • • ' W V , 

i74o°l and 2y50
o1 same as #3oo1 replacing # with y 

and 2, respectively. 

We now evaluate the solid angle average of \Hol\2, 
namely ( |# o l | 2 )o q for the above matrix elements, qi 
indicates longitudinal phonons and the other quantities 
must be averaged over both longitudinal and transverse 
phonons. For a phonon with propagation vector q with 
components qx= q sin0 cos<£, gv=gsin0 sin0, and qz 

3. Short-wavelength region, intervalley, \q\cmq&=A/hv. 
The functions / { ( q ± g J) only peak along the ith axis 
and the solid angle average of all cross terms /*/', 
iy^j, will be negligible. Furthermore, cross terms 
between opposite valleys will be negligible. With these 
approximations the angular averages are 

< | Fm0
o112)= (27r/6){[Sd

2/ i°+2E<iEu/z2+E.2/ i
23^z

2 

m=l-»5 

where 
+Su2(It2-It

A)qAt2}aq*(Cki)\ 

with 

1 rl xndx 
In = — / , 

a*J-ill+l3x-yx2y 

a = l + | a 2 ( g A
2 + ^ 2 ) , £ = ftYa» = 0.32, 

0 = (l/a)(ia2&A$u), a = 2 5 X 1 0 - 8 cm, 

7 = ( l / a ) ( i r f ( l - f V ) . 

The Iin and It
n are evaluated using q&i and q&t, 

respectively. Typical values of In are shown below in 
Table VI. 

QA 

0.20 
0.22 
0.345 

TAB LE VI. Integral for intervalley (| H°l12)f 

P 

0.0023 
0.0035 
0.0092 

P 

0.0021 
0.0032 
0.0089 

P 

0.0019 
0.0030 
0.0086 

9-

/HQA) 

0.00160 
0.00086 
0.00006 



10.5 
FIG. 8. The recovery of the four As hyperfine lines after inversion 

of all four lines at 2.44°K (times are in minutes). The unequal 
signal intensities of the four lines at t=0 is mainly a result of an 
inadequate wait in preparing thermal equilibrium populations. 



20 SEC 

30 SEC 

FIG. 9. The recovery after inversion at 2.50°K of the six Sb m 

hyperfine lines and the eight Sb123 hyperfine lines. The Sb121 

lines are recovering more rapidly than the Sb123 lines. For Sb'21, 
TX<T, and the central lines are recovering most rapidly because 
of the dominant hyperfine spin-lattice relaxation. 


