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The question is posed of how the ground state of the Heisenberg Hamiltonian # = —SF<yS,--S; depends 
on the magnitude s of N interacting spins, particularly in the case of long-ranged oscillatory interactions 
Ft/. It is discussed whether fixing the geometry and the bond strengths Fa suffices to determine the nature 
of the spin correlations in the ground state, and a review is given of known instances when this is the case; 
those are special situations in ferromagnetism and antiferromagnetism when qualitative ground-state 
properties such as "lack of nodes" can be proved to be independent of s. These are valuable examples for the 
application of semiclassical methods, which are strictly valid only for s —* <*> and depend on the convergence 
of a series in powers of s~K But these examples are, after all, only special cases, and it is argued that, in 
general, the nature of the ground state can depend sensitively on s. The following situation is considered 
in some detail: An oscillatory interaction which leads to a ferromagnetic ground state in the correspondence 
limit s^>l, but for which the ferromagnetic state of saturation magnetization may be unstable for small 
quantum mechanical spins, e.g., s—i or 1. Two distinct types of interaction are considered which lead to 
this result, and it is seen that the ferromagnetic instability is a consequence, not so much of the long range 
of the interaction as of the presence of some relatively strong antiferromagnetic (negative) bonds. However, 
the variational approach which is used casts no light on the nature of the true ground state or of the thermal 
properties, problems which are increasingly interesting in these instances when semiclassical procedures 
are seen to fail. 

INTRODUCTION 

THE direct overlap of wave functions belonging to 
neighboring spins leads to a magnetic interaction 

which can be of either sign—ferromagnetic or anti-
ferromagnetic.1 Lately, interest has been focused on 
theories of "indirect exchange interactions" via conduc
tion electrons, which result in oscillatory magnetic 
coupling as a consequence of the sharp Fermi surface.2 

The "indirect exchange" coupling may or may not be 
more important than the "direct coupling" in a given 
material, and the two mechanisms doubtless can coexist 
in the same substance. In the indirect exchange theory 
originally ascribable to Ruderman and Kittel,3 the 
interaction was long ranged and decreased only as the 
inverse cube of the distance at large separation. A sub
sequent modification by Yosida4 even further increased 
the range. Bloembergen and Rowland5 adapted the con
cept to nonmetals, and found qualitatively the same os
cillatory behavior but a range reduced by "tunneling." 
On the experimental side, recent investigations on rare 
earth solutes in palladium by Peter etal.* have uncovered 
an interaction between magnetic atoms which is even 
longer ranged than predicted by any of these theories. 

On the other hand, in the case of the Heisenberg spin 
Hamiltonian, 

H^-ZFijSrSj, (1) 

by far the greatest theoretical effort has been expended 

1 R. E. Peierls, Quantum Theory of Solids (Oxford University 
Press, New York, 1955). 

2 W. Kohn, Phys. Rev. Letters 2, 393 (1959). 
3 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 
4 K. Yosida, Phys. Rev. 106, 893 (1957). 
5 N . Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679 

(1955). 
8 M. Peter, D. Shaltiel, J. H. Wernick, H. J. Williams, J. B. 

Mock, and R. C. Sherwood, Phys. Rev. Letters 9, 50 (1962). 

in understanding the properties of the nearest-neighbor 
interaction (Fij= 0 unless i and j are nearest neighbors). 
Obviously, in order to tie in with modern theory and 
experiment, as briefly outlined above, one should also 
wish to understand the properties of H when both 
ferromagnetic (F^>0) and antiferromagnetic (F tJ<0) 
bonds are present, and when the interaction is not 
necessarily short ranged. 

We shall find, in this event, the interesting possibility 
for some such interactions that even if we maintain the 
positions of the spins and the magnitudes and signs of 
the bonds fixed, but vary only the magnitude of the N 
interacting spins (s=f, 1, f, • • -in units where ft=l), 
that the ground state can be nonferromagnetic for 
small spins even if it be proved to be ferromagnetic for 
large S>>1. 

This implies that classical or semiclassical methods7 

valid for s —> <x>, although well known and applied in 
problems of interacting spins, must be cautiously used 
when spins as small as s=\ or 1 interact via an oscilla
tory interaction F#, and that quantum fluctuations may 
be of essential importance in the ground state. 

But before exploring this possibility, we first review 
some instances of magnetic interactions when the struc
ture of the ground state is definitely not a sensitive func
tion of s, and semiclassical methods can be expected to 
work best. 

We shall follow this by a necessary condition for 
ferromagnetism, which will also turn out to be a suffi
cient condition in the correspondence limit $»1. How
ever, we shall then emphasize that this does not ensure 
ferromagnetism for the ground state of quantum 
mechanical, finite spins, by displaying a trial state of 
variationally lower energy than the state of saturation 
magnetization for a sufficiently fluctuating interaction. 

76 
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CASE OF NODELESS GROUND STATE 

In some special cases it can be proved that some 
important ground-state property persists for all values 
of s, and it is then plausible that the ground-state 
energy and other properties may be developed as a 
series in powers of s-1. It is, of course, difficult to justify 
such an expansion, but the motivation is clearly that 
one wishes to tie into the known properties of the solu
tion in the correspondence limit.7 

Let us distinguish the possibility (a) of proving anti-
ferromagnetism for all s, and (b) proving ferromag-
netism for all s, under the following circumstances: 

(a) Antiferromagnetism. We shall follow, with only 
slight changes of notation, a recent paper by Elliott Lieb 
and the author,8 to which the reader is referred for a 
complete proof. For present purposes, a simplified 
theorem may be proved as follows. 

Consider those arrays for which an A and a B sub-
lattice can be defined, such that if A spins interact with 
other A spins, they do so ferromagnetically and 
similarly for interactions among B spins, 

FA.A>>0, FB>B>>0} FA,B<0; (2) 

but B spins and A spins are coupled antiferromag-
netically if they are coupled at all. There is no restriction 
made as to the range of the interaction. 

We may define a "natural representation" as follows. 
Let the ferromagnetic state of all spins "down" be de
noted the "vacuum state," 

* ( < ) , • • • ( > , • • • ) = ! < > > ( 3 ) 

and all other states are of the form 

M 

*(»!..-nr-O-nWlO) (4) 

for given positive integers %. The yth spin raising 
operator is, as usual, 

S}=Sf+iS?. (5) 

The Hamiltonian is not yet in a convenient form, so 
we make the transformation on the A spins, 

Sf-*-Sf, St-*-SP, SiZ->+Siz, (6) 

(which corresponds to a classical rotation of A spins 
about the Z axis) but leave the B spins invariant. In 
this representation, we have 

# = ~ { i E l ^ y | ^ + 5 r + H . c . } - Z FuSfSf, (7) 

7 For example, the formal expansion of operators in powers of 
s~l, of T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
For present purposes any approximation which is accurate in the 
limit s —> oo will be considered semiclassical, without prejudice, 
although some methods may be far more accurate than others for 
finite s. 

8 E. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962). 

making use of (2). The off-diagonal matrix elements are 
all negative, and it can be proved that the ground state 
of H is nodeless in this representation, i.e., if the ground 
state \f/ is expanded in our complete set (4), 

^ = E f(nhn2r ••,»*• • ')4>(nhn2,' ••,«*• • •)> (8) 

all the amplitudes / are of the same sign. Even though 
the states change with s, this property does not, and is 
as valid for $=§ as in the correspondence limit. For N 
even (but for all s), \f/ is always a singlet, and moreover, 
it can be proved that the energy of the lowest state of 
spin S— 1 is lower than the energy of the lowest state 
of spin S up until the maximum S=Ns. 

It seems plausible that semiclassical methods for 
the ground state and thermal properties will be success
ful in this instance, given the independence of these 
important properties on s. However, we have no explicit 
proof of this. 

In the following example, the ground-state correla
tions are exactly, and trivially the same both classically 
and quantum mechanically. 

(b) Ferromagnetism. The case we consider is, 

all Ftf>0, (9) 

in which case it is easy enough to verify that the ground 
state is nodeless in the "natural" representation, and is, 
therefore, either the ferromagnetic state of all spins 
"down," 

|0>, (3) 

or any of its rotations, 

(£/S/)»|o>. (io) 
The ground-state energy is equal to the classical 
ferromagnetic energy 

£* .= - £ I wlFtfS* (11) 

and all spins are parallel in the ground state, quantum 
mechanically or classically. 

In the special but very important case of this, i.e., 
nearest-neighbor ferromagnetic coupling, an investigation 
by Dyson9 of the thermal properties of this ferromagnet 
revealed that the quantum-mechanical effects of spins 
as small as s = | were unimportant at very low tempera
tures just as in the ground state, and that the semi-
classical picture of noninteracting spin waves was 
accurate in this range. It can also be assumed that so 
long as all F#> 0, the greater the range of the interaction 
the better is the accuracy of some semiclassical 
procedures. 

But let us recall, in view of some of the remarks in 
the introduction, that ferromagnets are not likely to 
satisfy the condition for case (b) in general, and, there
fore, let us seek a less stringent condition for ferro
magnetism in cases when the interaction can be 
oscillatory. 

9 F. J. Dyson, Phys. Rev. 102, 1230 (1956). 
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NECESSARY CONDITION FOR FERROMAGNETISM 

For the sake of definiteness, we shall, henceforth, 
assume that the spins form a Bravais lattice, and that 

F<,= F(R<-Ry), (12) 

which establishes translational invariance. This also 
insures that (regardless of the signs and magnitudes of 
F) we know an entire set of eigenstates consisting of one 
spin wave, 

| * ) s £ y «*•*«/10>, (13) 

(unnormalized). The energy of these states, relative to 
the ferromagnetic energy, is readily calculated to be 

e(k) = 5[ / (k) - / (0) ] , (14) 
where 

/(k)=-i:y.*«'k-R 'F(R,). (15) 

The case of dilute random magnetic alloys10 will not be 
considered in this work. 

Evidently, a necessary condition that the ground 
state be the ferromagnetic state (3) or (10) is 

e(k)>0, k^O, (16) 

and it is easy enough to verify that the positive semi-
definite interaction of case (b) always satisfies (16). We 
shall call any system which obeys (16), "spin-wave 
stable." 

IS THIS CONDITION SUFFICIENT? 

Remarkably, (16) is both the necessary and the 
sufficient condition for saturation ferromagnetism of 
classical spins (£2>1). According to the method of 
Luttinger and Tisza,11 the configuration of lowest energy 
[subject to Eq. (12) and supra] can be chosen classically 
as 

6 7 = 0 , 6V=scosk-Ri, 5^=^sink-Ri, (17) 

and it is a simple matter to substitute in (1), and find 
the energy proportional to /(k). Thus, an interaction 
which is spin-wave stable is ferromagnetic in the 
correspondence limit. 

However, because spin-wave stability is not a 
sufficient condition quantum mechanically, we shall find 
it possible to prove that the ground state is not ferro
magnetic in some instances of small s even when (16) 
is obeyed. 

The basic reason is that the antiferromagnetic bond 

4-SrS,- (18) 

benefits from a ground-state energy of 

s(s+l), (19) 
10 An Ising theory for this situation was given by W. Marshall, 

Phys. Rev. 118, 1519 (1960). It is not known whether the proper
ties of a Heisenberg Hamiltonian for random spins and long-range 
oscillatory interaction have been investigated. 

11 The method devised by J. M. Luttinger and L. Tisza, Phys. 
Rev. 70, 954 (1946), has recently been discussed by A. Yoshimori, 
J. Phys. Soc. (Japan) 14,807 (1959); M. J. Freiser, Phys. Rev. 123, 
2003 (1961); and D. Lyons and T. Kaplan, ibid. 120,1580 (1960). 

whereas the ferromagnetic bond 

has precisely the classical energy 

-s2 

(20) 

(21) 

as we have already mentioned. Crudely, the effect is of 
order 

s(s+l)/s*=l+l/s (22) 

which is most significant for s=§ or 1. 

TWO EXAMPLES OF THE EFFECT 

I. Classically and in the simple cubic lattice, the 
Ruderman-Kittel interaction, 

r(2kFR cos2kFR-sm2kFR)-\ 
-F(R)~[ J, (23) 

leads to ferromagnetism over the range, 2kF greater 
than zero but less than half a reciprocal lattice vector.12 

At the upper end of this range F is strongly oscillatory 
and the ferromagnetic state, even classically, is only 
slightly more stable than some antiferromagnetic con
figurations. There is reason, therefore, to believe that 
some quantum-mechanical effects may be important. 
Unfortunately, (23) must be analyzed numerically,12 

therefore we shall investigate a reasonable imitation of 
this interaction in one dimension, for which lattice sums 
can be trivially performed. Let this be 

F(j?) = ex(-l)n-V-X I n | , where R=na and A>0. (24) 

Only the nearest-neighbor ferromagnetic bonds survive 
in the limit X —» oo, and in this limit, therefore, the 
interaction is of class (b) with a ferromagnetic ground 
state, regardless of spin magnitudes. But the situation is 
different for finite X. 

First, we must calculate the negative Fourier sum as 
n Eq. (15), 

1 + £X COS& 
/ ( * ) = - £ e*»F(R)= , (25) 

n7*° coshX+cos& 

and it follows that the spin-wave energy 

(ex sinhX)(l — cos&) 
e(k) = s£f(k)-f(0)]=s (26) 

(1+coshX) (coshX+cos&) 

is positive for all allowed (positive) values of X, and this 
interaction is always spin wave stable. 

The energy of the ferromagnetic state is 

ENs=±Nf(0)s*= -A^ 2 / ( l+e- x ) . (27) 

It shall be compared to the variational energy of a trial 
singlet (5=0) state. When the singlet energy E0 lies 
lower, 

E0<ENa, (28) 
12 D. Mattis and W. Donath, Phys. Rev. 128, 1618 (1962). 
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this will be sufficient indication of the instability of the 
state of saturation ferromagnetism in the absence of 
external fields. (But the ferromagnetic state might be 
even less stable than we find variationally, particularly 
in one dimension.) 

The trial function is constructed as follows. We pair 
off spins at 

R=4na, R'=(4n+2)a 
and (29) 

R= ( 4»+ l )a , R'= (4n+3)a 

and letting 
do(R,Rf) (30) 

be the singlet pair wave function, we take the un
corrected product over all such pairs, 

i ^ i i f l o d w . (31) 

The pairs have been chosen to take advantage of the 
largest existing antiferromagnetic bond, to the neglect 
of all others. The energy is readily calculated, noting 
that 

(^o| S r S y | ^ 0 ) = —$(H-1) if Riy Rj are paired, (32) 
= 0 otherwise, 

so that the variational energy is 

£o=<lMH|*o>/<*o |*o>=- l .V«-MH-l) . (M) 

For sufficiently small X and s we find instability of the 
type (28), i.e., when 

s$-
l+ex 

'2«»-(!+«*) 
(34) 

We have not found a simple three-dimensional extension 
of this example of a spin-wave stable system which can 
be unstable against such a highly uncorrected and 
crude product of pair functions. This suggests that 
"spin-wave stability" is a better criterion for the 
occurrence of ferromagnetism in three dimensions than 
in one, but it is not foolproof as we shall now see. 

I I . The second example is a model18 of a direct anti-
ferromagnetic interaction superposed on a long-ranged 
indirect ferromagnetic interaction. [An instance of the 
latter is (23) in the limit kp —> 0, in which case bonds 
between spins less than 7T/4^F apart are ferromagnetic, 
with a negligible antiferromagnetic " tai l" beyond.] We 
can simulate this effect quite well by the model, 

F(R) = Fa(R)+Ff(R), (35) 

where we define the interactions in the simple cubic 
structure, 

F«(R)= -A for R= ( ± a , 0, 0) or (0, ±a, 0) 

or (0,0, dba), 
= 0 otherwise. (36) 

13 This magnetic model was suggested to the author by R. K. 
Nesbet. Also, cf., R. K. Nesbet, Phys. Rev. 122, 1497 (1961), 
where the antiferromagnetic "direct" interaction is discussed. 

The value of the constant A will be discussed shortly. 
The ferromagnetic part decays exponentially with 
distance, but in a separable way: 

P / ^ ^ W F W F W , (37) 
where 

j / » = e - M \ (38) 

and the distance vector is the triad, 

Tt=a(nhn2im). 

The negative Fourier sum of this interaction is readily 
calculable, 

/ (k) = 2^4[cos&i-f-cos&2+cos&3] 

+ [l-G(*1)G(*,)G(ft8)] , (39) 
where 

G (k/) = sinhX/ (coshX — coskj), (40) 

and from this it can be deduced that the interaction is 
spin-wave stable for A in the range, 

0<,4 <A0= ( 4 + 3 sinh2X)/6 sinh3X. (41) 

When A excels the value A0 defined just above, then 
/ (k) has its minimum value at k = Q , where Q is the 
reciprocal lattice vector 

1 / sinhX \ 3 

(H-Gwr), f(Q)=-6A + l-( ) . (42) 
a \ c o s h X + l / 

The classical ground state is the Neel state in that case, 
which consists of each " u p " spin being surrounded by 
"down" nearest-neighbor spins. Let us discuss this 
antiferromagnetism in somewhat more detail. 

Anderson14 has given a method for calculating the 
lowest order quantum-mechanical corrections to the 
Neel state energy, and Oguchi15 has shown that this 
procedure is satisfactory and that further corrections 
are probably negligible. If one applies the Anderson 
procedure for an arbitrary interaction, he finds for the 
energy 

£ o = + | A 7 ( Q > 2 - i A * , (43) 
where 

A=EB.z .co f c - (^ 2 - r f c
2 ) 1 / 2 , (44) 

and 

«*=*C/(k)+/(k+Q)]-/(Q), (45) 

r*=J[/(k+Q)-/(k)]. (46) 

The quantities have been so defined that the sum (44) 
is over all N states in the first Brillouin zone. Now, this 
can be further simplified by using the definition of / (k ) , 
Eq. (15), to prove that 

I B . Z . /(k)=LB.z. /(k+Q)=0. (47) 
Therefore, 

A=-A7(Q)-iV<f>, (48) 
14 P. W. Anderson, Phys. Rev. 86, 694 (1952). 
16 T. Oguchi, Phys. Rev. 117, 117 (1960). 
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where (converting sums to integrals in the usual way) 

<£==( — j / dkidk2dkz 
\2wJ J_. 

X { C / ( Q ) - / ( k ) ] [ / ( Q ) » / ( k + Q ) ] } ^ . (49) 

These formulas (43)-(49) are valid for arbitrary 
interaction in a simple cubic antiferromagnet. Returning 
now to the model denned above, which is classically an 
antif erromagnet for ^4>^40, we recall that in this range 
of the parameter A, / (Q) is the minimum value of 
/ (k) and; therefore, the integral # is real and A is 
positive. Let us now set down the ferromagnetic energy, 
which is 

-6A + 
4 sinh3|X J 

(50) 

When A=Ao, it occurs that / (0) = / (Q) , and the 
classical ferromagnetic and antiferromagnetic (Neel) 
states become degenerate. The quantum corrections, 
however, always favor the antiferromagnetic state, 
so that 

£ 0 — E N S = — %AS<0 when A = A0, for all s. (51) 

As A is lowered still further, an interesting phe
nomenon occurs in the neighborhood A<Ao.In addition 
to its minimum at k=0, the function / (k) retains a 
local minimum at k=Q; and one notices that the inte
grand of Eq. (49) for <i> becomes imaginary near the 
origin and near Q. Thus, the energy of the Anderson-
Neel state becomes complex and the antiferromagnetic 
state is unstable. Note that the breakdown for small k 
indicates a radical change in long-range order, and at 
k«sQ in short-range order. 

Nor does the ferromagnetic state succeed as the 
ground-state configuration until A is somewhat less than 
the critical value A o, so there exists a range of A depend
ing on s, over which both ferromagnetic and antiferro
magnetic states are unstable. 

Let us analyze this for spin s=J. We use a simple trial 
function 

^ = 11 R=suchthat (o^R1"—i85+
R+o(l,0,0))|0), (52) 

«i +«s +»J —even 

where a2+/32= 1. This reduces to the Neel state when 
a = l ? i g = : 0 o r a = 0, 0 = 1 . 

We shall show that this function leads to an energy 
lower than E%N over some of the spin-wave stable 
region, A<A$. The variational energy [after eliminat
ing a = (1-/32)1 '2] is 

Eo(l3)~iNf(Q)(i)(l~2(Py--±NtA-e-^(l) 
X{l~( l~2^ 2 ) 2 +4GS 2 ( l - /5 2 ) ] 1 / 2 } , (53) 

where it must not be forgotten that / (Q) depends on A 

by Eq. (42). This energy is minimized by the choice 

I t may be verified that /5, as defined in this manner, is 
appropriately real provided Ao>A>e~x, which includes 
the requirement for antiferromagnetic bonds to exist in 
this model. With the value of P, the variational energy is 

Eo=tNf(Q)-tN-
(A-e-*) X\2 

•f(Q)-A+e-
(55) 

and is to be compared to the ferromagnetic energy 

Ew=lNf(0) = lNf(Q)-$N(A0-A). (56) 

The latter is not the ground state until A is less than is 
required to satisfy the equality 

\(A0-A) = 
1 (A-e~*Y 

8 -fM-A+g-* 
(57) 

(Note that / (Q) is negative in this range.) However, 
one should be cautioned against attaching any impor
tance to this precise value, considering the crude nature 
of the trial function. 

MOTIVATION AND CONCLUSION 

Recently, Donath and the author investigated the 
nature of the ground state of classical spins disposed on 
a single cubic lattice and interacting via the Ruderman-
Kittel interaction3 (23), by evaluating e(k) numerically 
on an IBM 7090 computer. I t was found that over a 
relatively important range of values of the parameter 
2kF the ferromagnetic state lay lowest. But the fact that 
some antiferromagnetic bonds were clearly not negligible 
led the author to wonder whether, in the physically 
important case of small spins, new and interesting 
quantum-mechanical ground-state correlations might 
not be present. However, it was possible to show in 
special cases (a) and (b) that the antiferromagnetic or 
ferromagnetic behavior was insensitive to the magnitude 
5 of the interacting spins. In such cases, the classical or 
semiclassical analyses would be sufficient for many 
purposes. But, in general, new quantum-mechanical 
correlations could be expected to exist and to manifest 
themselves in such important properties as the long-
range order. 

We have not found what these correlations might be, 
but in this work we have shown that the classical 
criterion for ferromagnetism, which we have called 
"spin-wave stability" is, in any event, not sufficient to 
insure ferromagnetism of quantum-mechanical spins. 
This is because of what might be termed, quantum 
fluctuations associated with the antiferromagnetic 
bonds. (The converse—a classical antiferromagnetic 
interaction which leads to ferromagnetism for small 
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spins—is clearly impossible.) It appears that just as 
long-range ferromagnetic interactions are good for 
classical methods, long-range oscillatory interactions 
lead to these fluctuations and are bad for classical or 
semiclassical methods applied for small spins. 

We have examined the Anderson spin-wave theory 
of antiferromagnetism14,15 which is patently correct in 
case (a) (although it is not mathematically exact). 
However, in spin-wave stable systems the approximate 
antiferromagnetic eigenstate has in general a complex 
energy and is, therefore, unstable, even in such a 
favorable model as we have considered, where nearest 
neighbor bonds are antiferromagnetic, and the lattice is 
three-dimensional simple cubic. 

I. INTRODUCTION 

SEVERAL of the II-VI compounds have been under 
investigation by luminescence and photoconductive 

techniques for a great many years. Much of this work 
was directed toward the goal of understanding the role 
of the impurities and of identifying the states associated 
with them. Despite this work, however, the identifica
tion of the specific impurity states is still a matter of 
considerable debate and uncertainty. At present there 
is still little conclusive evidence about the identity of 
any shallow impurity states, which, for example, play 
an important role in the optical properties of these 
crystals. 

The primary aim of the present work was to obtain 
additional information about the shallow donor and 
acceptor levels in some of the II-VI compounds by 
means of electrical transport studies. In the past, 
extensive electrical measurements have not generally 
been possible due to the unavailability of suitable 
material. However, considerable advances have recently 

f The research reported in this paper has been sponsored by the 
Air Force Cambridge Research Laboratories Contracts No. 
AF 19(604)-8512 and AF 19(628)-329. 

This suggests that in those spin-wave stable systems 
which are not actually ferromagnetic because small 
spins ( | or 1) and antiferromagnetic bonds favor 
quantum fluctuations, the long-range ground-state 
correlations might either vanish, or exhibit a more 
complicated structure than has heretofore been thought 
likely on theoretical grounds without introducing 
anisotropy. 
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been made in the preparation of some of these materials, 
including the compounds that are the subject of the 
present study, ZnSe and ZnTe.1"3 It is, of course, well 
known that in addition to yielding information about 
the energy levels of the defects, the electrical transport 
measurements provide a valuable means for studying 
the mechanism by which the carriers are scattered. This 
question was considered in some detail for the two 
compounds studied. 

In an earlier work, the results of optical and pre
liminary electrical measurements on ZnSe were re
ported.4*5 The electrical measurements of the w-type 

1 L. R. Shiozawa, J. L. Barrett, G. P. Chotkevys, S. S. Devlin, 
and J. M. Jost, Aeronautical Research Laboratory Contract 
No. AF 33(616)-6865, Final Report, Period January 1960-
December 1961 (unpublished). 

2 A. G. Fisher and A. S. Mason, Air Force Cambridge Research 
Laboratories Contract No. AF 19(604)-8018, Scientific Reports 
Nos. 1, 2, and 3, 1961 (unpublished). 

3 M . Aven and W. W. Piper, Air Force Cambridge Research 
Laboratories Contract No. 19(604)-8512, Scientific Report No. 1, 
1961 (unpublished). 

4 M. Aven, D. T. F. Marple, and B. Segall, J. Appl. Phys. 32, 
2261 (1961). 

6 M. Aven, Extended Abstracts, Meeting of the Electrochemical 
Society, Los Angeles, 1962, p. 46. 
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Carrier Mobility and Shallow Impurity States in ZnSe and ZnTef 
M. AVEN AND B. SEGALL 

General Electric Research Laboratory, Schenectady, New York 
(Received 19 November 1962) 

Electrical transport measurements have been made on £-type ZnTe and «-type ZnSe. In ZnTe crystals, 
doping with Cu, Ag, and Au produces acceptor levels at 0.15, 0.11, and 0.22 eV, respectively. An acceptor 
with an ionization energy of 0.048 eV was found in the undoped crystals and is identified as the first charge 
state of the Zn vacancy. A shallow donor state, at approximately 0.01 eV below the conduction band, was 
found in n-type ZnSe. It also proved possible to prepare degenerate ZnSe. The scattering mechanisms 
limiting the lattice mobilities of both materials were considered. It was found that the polar interaction with 
the longitudinal optical phonons dominates the scattering of electrons in ZnSe. This mechanism probably 
also predominates in the scattering of the holes in ZnTe. However, the nonpolar interaction with the optical 
modes could also contribute significantly if the appropriate coupling parameter is larger than we presently 
believe. 


